首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. Carbon dioxide anaesthesia differentially affects the knockdown and recovery of cockroaches, depending on the strain and the length of time that the colony has been subjected to a CO2 regime. Adult males from two laboratory and two field-collected strains of German cockroaches, Blattella germanica, are knocked down within 7–45 s after exposure to CO2. After 5 min of CO2 exposure, presumptive recovery (i.e. the time for the cockroach to right itself after knockdown) for laboratory strains occurs significantly sooner than for field-collected strains. Control cockroaches, exposed to compressed air rather than CO2, exit harbourage cups rapidly (≤3.20 min). However, although allowed a recovery period of 5 min, significant movement impairment occurs for all cockroach strains anaesthetized with CO2. Carbon dioxide exposure significantly reduces consumption of 2.15% hydramethylnon bait and delays mortality even when 24 h is allowed for recovery before bait placement. Cockroaches allowed to recover for 48 h after 5 min of CO2 exposure consume significantly more bait and die significantly faster than CO2 exposed groups allowed 24 h of recovery, and mortality is not significantly different from nonanaesthetized bait-fed controls.  相似文献   

2.
Carbon dioxide and chilling are sometimes used to immobilise insects for laboratory research. Both of these methods are known to have short-term effects on behaviour and physiology in Drosophila, but their long-term impacts are unknown. We exposed female D. melanogaster adults to high CO2 concentrations (4 h at 18,000 ppm) and chronic cold (72 h at 4 °C). The carbon dioxide exposure increased chill coma recovery time, but did not result in changes in offspring number, sex ratio, or size. By contrast, the cold exposure resulted in fewer, smaller offspring, and resulted in a male-biased sex ratio compared to controls. There was no significant interaction between CO2 and cold. We conclude that although caution must be used in choosing an immobilisation method, CO2 appears to have less long-term impact than cold.  相似文献   

3.

Background and Aims

The inverse relationship between stomatal density (SD: number of stomata per mm2 leaf area) and atmospheric concentration of CO2 ([CO2]) permits the use of plants as proxies of palaeo-atmospheric CO2. Many stomatal reconstructions of palaeo-[CO2] are based upon multiple fossil species. However, it is unclear how plants respond to [CO2] across genus, family or ecotype in terms of SD or stomatal index (SI: ratio of stomata to epidermal cells). This study analysed the stomatal numbers of conifers from the ancient family Cupressaceae, in order to examine the nature of the SI–[CO2] relationship, and potential implications for stomatal reconstructions of palaeo-[CO2].

Methods

Stomatal frequency measurements were taken from historical herbarium specimens of Athrotaxis cupressoides, Tetraclinis articulata and four Callitris species, and live A. cupressoides grown under CO2-enrichment (370, 470, 570 and 670 p.p.m. CO2).

Key Results

T. articulata, C. columnaris and C. rhomboidea displayed significant reductions in SI with rising [CO2]; by contrast, A. cupressoides, C. preissii and C. oblonga show no response in SI. However, A. cupressoides does reduce SI to increases in [CO2] above current ambient (approx. 380 p.p.m. CO2). This dataset suggests that a shared consistent SI–[CO2] relationship is not apparent across the genus Callitris.

Conclusions

The present findings suggest that it is not possible to generalize how conifer species respond to fluctuations in [CO2] based upon taxonomic relatedness or habitat. This apparent lack of a consistent response, in conjunction with high variability in SI, indicates that reconstructions of absolute palaeo-[CO2] based at the genus level, or upon multiple species for discrete intervals of time are not as reliable as those based on a single or multiple temporally overlapping species.  相似文献   

4.
Nitrogen fixation of terrestrial legumes is strongly and rapidly diminished under flooding. Although recovery is possible with the formation of aerenchyma, information is scarce regarding recovery after draining following short-term flooding, before the appearance of morphological adaptations. This study used soybean (Glycine max) plants nodulated with Bradyrhizobium elkanii to determine xylem sap glutamine as an indication of nitrogen fixation activity during recovery from different periods of flooding. Xylem glutamine levels showed rapid recovery (within 90 min) following periods of flooding up to 4 h. Recovery was progressively slower after longer periods of flooding. After 48 h flooding very little recovery could be observed within the first 120 min after draining but recovery was possible within 48 h. Consistent with the changes in xylem glutamine, direct measurements of apparent nitrogenase activity carried out immediately on draining revealed rapid recovery after flooding for 1 h and slow recovery following 48 h of flooding. In the latter case, nitrogenase activity largely recovered 24 h after draining. Experiments with 15N2 incorporation into amino acids exported in the xylem sap revealed that glutamine was by far the most highly labelled amino acid in sap collected over the first 30 min of exposure to the isotope. This is conclusive evidence that xylem sap glutamine is an immediate product of N2 fixation and export. The changes in xylem sap glutamine seen on flooding (decline) and after draining (recovery) can therefore be attributed to changes in nitrogenase activity. The data show that xylem sap glutamine is a useful means for assessing changes in nitrogenase activity, especially when the root system is submersed in water and activity cannot be measured directly.  相似文献   

5.
Microbial activity is the driving force of the carbon cycle, including the digestion of biomass in the soil, oceans, and oil deposits. This natural diversity of microbial carbon sources poses challenges for humans. Contamination monitoring can be difficult in oil tanks and similar settings. To assess microbial activity in such industrial settings, off‐gas analysis can be employed by considering growth and non‐growth‐associated metabolic activity. In this work, we describe the monitoring of CO2 as a method for measuring microbial activity. We revealed that the CO2 signal corresponds to classical growth curves, exemplified by Pseudomonas fluorescens, Yarrowia lipolytica, and Penicillium chrysogenum. Deviations of the CO2 signal from the growth curves occurred when the yield of biomass on the substrate changed (i.e., the non‐growth‐associated metabolic activities). We monitored CO2 to track the onset of microbial contamination in an oil tank. This experimental setup was applied to determine the susceptibility of heating oil and biodiesel to microbial contamination long before the formation of problematic biofilms. In summary, the measurement of CO2 production by bacteria, yeasts, and molds allowed the permanent monitoring of microbial activity under oil storage conditions without invasive sampling.  相似文献   

6.
Mating experiments using Drosophila have contributed greatly to the understanding of sexual selection and behavior. Experiments often require simple, easy and cheap methods to distinguish between individuals in a trial. A standard technique for this is CO2 anaesthesia and then labelling or wing clipping each fly. However, this is invasive and has been shown to affect behavior. Other techniques have used coloration to identify flies. This article presents a simple and non-invasive method for labelling Drosophila that allows them to be individually identified within experiments, using food coloring. This method is used in trials where two males compete to mate with a female. Dyeing allowed quick and easy identification. There was, however, some difference in the strength of the coloration across the three species tested. Data is presented showing the dye has a lower impact on mating behavior than CO2 in Drosophila melanogaster. The impact of CO2 anaesthesia is shown to depend on the species of Drosophila, with D. pseudoobscura and D. subobscura showing no impact, whereas D. melanogaster males had reduced mating success. The dye method presented is applicable to a wide range of experimental designs.  相似文献   

7.
The objective of this study was to determine the response of nitrogen metabolism to drought and recovery upon rewatering in barley (Hordeum vulgare L.) plants under ambient (350 μmol mol−1) and elevated (700 μmol mol−1) CO2 conditions. Barley plants of the cv. Iranis were subjected to drought stress for 9, 13, or 16 days. The effects of drought under each CO2 condition were analysed at the end of each drought period, and recovery was analysed 3 days after rewatering 13-day droughted plants. Soil and plant water status, protein content, maximum (NRmax) and actual (NRact) nitrate reductase, glutamine synthetase (GS), and aminant (NADH-GDH) and deaminant (NAD-GDH) glutamate dehydrogenase activities were analysed. Elevated CO2 concentration led to reduced water consumption, delayed onset of drought stress, and improved plant water status. Moreover, in irrigated plants, elevated CO2 produced marked changes in plant nitrogen metabolism. Nitrate reduction and ammonia assimilation were higher at elevated than at ambient CO2, which in turn yielded higher protein content. Droughted plants showed changes in water status and in foliar nitrogen metabolism. Leaf water potential (Ψw) and nitrogen assimilation rates decreased after the onset of water deprivation. NRact and NRmax activity declined rapidly in response to drought. Similarly, drought decreased GS whereas NAD-GDH rose. Moreover, protein content fell dramatically in parallel with decreased leaf Ψw. In contrast, elevated CO2 reduced the water stress effect on both nitrate reduction and ammonia assimilation coincident with a less-steep decrease in Ψw. On the other hand, Ψw practically reached control levels after 3 days of rewatering. In parallel with the recovery of plant water status, nitrogen metabolism was also restored. Thus, both NRact and NRmax activities were restored to about 75-90% of control levels when water supply was restored; the GS activity reached 80-90% of control values; and GDH activities and protein content were similar to those of control plants. The recovery was always faster and slightly higher in plants grown under elevated CO2 conditions compared to those grown in ambient CO2, but midday Ψw dropped to similar values under both CO2 conditions. The results suggest that elevated CO2 improves nitrogen metabolism in droughted plants by maintaining better water status and enhanced photosynthesis performance, allowing superior nitrate reduction and ammonia assimilation. Ultimately, elevated CO2 mitigates many of the effects of drought on nitrogen metabolism and allows more rapid recovery following water stress.  相似文献   

8.
9.
Immobilisation of aphids of three species, Schizaphis graminum, Myzus persicae and Dactynotus ambrosiae, was accomplished using low temperature (6 ± 1°C; or nitrogen (N2), argon (Ar), or carbon dioxide (CO2) gases at 25°C for 1,3,6, or 24 h. Mortality was recorded and also times until treated aphids first walked or probed. Cold immobilisation caused least mortality and allowed rapid recovery of walking and probing abilities. CO2 treatment, even when accompanied by cyclic administration of bottled air, caused excessive mortality when used beyond 6 h, and long recovery times. After 24 h immobilisation with CO2 aphids seldom walked or probed. N2 or Ar gases, when administered with alternating cycles of bottled air, produced a nontoxic, hypoxic immobilisation from which aphids recovered fairly rapidly to walk and probe, apparently normally.  相似文献   

10.
The aim of this study was to assess unconsciousness in pigs during and after the exposure to gas mixtures of 70% nitrogen (N2) and 30% carbon dioxide (CO2) (70N30C), 80% N2 and 20% CO2 (80N20C) and 85% N2 and 15% CO2 (85N15C) compared with 90% CO2 in air (90C) by means of the Index of Consciousness®(IoC), their behaviour and the absence of brain stem reflexes. The experiment included three trials of 24 pigs divided into four groups according to the number of treatments. Half of the group was exposed for a short time and the other half for a long time (3 and 5 min for the N2/CO2 mixtures exposure and 2 and 3 min in 90C exposure, respectively). During exposure, the IoC and the electroencephalography suppression rate (ESR) were assessed, as well as the time to onset and percentage of gasping, loss of balance, vocalizations, muscular excitation and gagging. At the end of the exposure, the corneal reflex, rhythmic breathing and sensitivity to pain were each assessed at 10 s intervals for 5 min. Brain activity decreased significantly (P < 0.05) 37.60 s after the start of the exposure to 90% CO2, which was significantly earlier than in 70N30C, 80N20C and 85N15C exposure, (45.18 s, 46.92 s and 43.27 s, respectively). Before brain activity decreased, all pigs experienced gasping and loss of balance and a 98% muscular excitation. The duration of the muscular excitation was longer in animals exposed to 70N30C, 80N20C and 85N15C than 90C (P < 0.01). After a long exposure time, all animals exposed to 90C died, whereas the 30.4% of animals exposed to N2/CO2 gas mixtures survived. Pigs exposed to 85N15C recovered corneal reflex and sensitivity to pain significantly earlier than when exposed to 90C. Exposure to 90C causes a higher aversive reaction but a quicker loss of consciousness than N2/CO2 gas mixtures. Exposure to N2/CO2 gas mixtures causes a lower percentage of deaths and an earlier recovery of the brain stem activity than 90C, whereas the time to recover the cortical activity is similar. In conclusion, the inhalation of N2/CO2 gas mixtures reduces the aversion compared with high concentrations of CO2; however, the period of exposure for inducing unconsciousness may be longer in N2/CO2 gas mixtures, and the signs of recovery appear earlier, compared to CO2.  相似文献   

11.
Background and Aims Following the consensus view for unitary origin and conserved function of stomata across over 400 million years of land plant evolution, stomatal abundance has been widely used to reconstruct palaeo-atmospheric environments. However, the responsiveness of stomata in mosses and hornworts, the most basal stomate lineages of extant land plants, has received relatively little attention. This study aimed to redress this imbalance and provide the first direct evidence of bryophyte stomatal responsiveness to atmospheric CO2.Methods A selection of hornwort (Anthoceros punctatus, Phaeoceros laevis) and moss (Polytrichum juniperinum, Mnium hornum, Funaria hygrometrica) sporophytes with contrasting stomatal morphologies were grown under different atmospheric CO2 concentrations ([CO2]) representing both modern (440 p.p.m. CO2) and ancient (1500 p.p.m. CO2) atmospheres. Upon sporophyte maturation, stomata from each bryophyte species were imaged, measured and quantified.Key Results Densities and dimensions were unaffected by changes in [CO2], other than a slight increase in stomatal density in Funaria and abnormalities in Polytrichum stomata under elevated [CO2].Conclusions The changes to stomata in Funaria and Polytrichum are attributed to differential growth of the sporophytes rather than stomata-specific responses. The absence of responses to changes in [CO2] in bryophytes is in line with findings previously reported in other early lineages of vascular plants. These findings strengthen the hypothesis of an incremental acquisition of stomatal regulatory processes through land plant evolution and urge considerable caution in using stomatal densities as proxies for paleo-atmospheric CO2 concentrations.  相似文献   

12.
Avermectins are macrocyclic lactones produced by Streptomyces avermitilis. Abamectin is a blend of B1a and B1b avermectins that is being used as a seed treatment to control plant-parasitic nematodes on cotton and some vegetable crops. No LD50 values, data on nematode recovery following brief exposure, or effects of sublethal concentrations on infectivity of the plant-parasitic nematodes Meloidogyne incognita or Rotylenchulus reniformis are available. Using an assay of nematode mobility, LD50 values of 1.56 μg/ml and 32.9 μg/ml were calculated based on 2 hr exposure for M. incognita and R. reniformis, respectively. There was no recovery of either nematode after exposure for 1 hr. Mortality of M. incognita continued to increase following a 1 hr exposure, whereas R. reniformis mortality remained unchanged at 24 hr after the nematodes were removed from the abamectin solution. Sublethal concentrations of 1.56 to 0.39 μg/ml for M. incognita and 32.9 to 8.2 μg/ml for R. reniformis reduced infectivity of each nematode on tomato roots. The toxicity of abamectin to these nematodes was comparable to that of aldicarb.  相似文献   

13.

Background and Aims

Elucidation of the mechanisms by which plants adapt to elevated CO2 is needed; however, most studies of the mechanisms investigated the response of plants adapted to current atmospheric CO2. The rapid respiration rate of cotton (Gossypium hirsutum) fruits (bolls) produces a concentrated CO2 microenvironment around the bolls and bracts. It has been observed that the intercellular CO2 concentration of a whole fruit (bract and boll) ranges from 500 to 1300 µmol mol−1 depending on the irradiance, even in ambient air. Arguably, this CO2 microenvironment has existed for at least 1·1 million years since the appearance of tetraploid cotton. Therefore, it was hypothesized that the mechanisms by which cotton bracts have adapted to elevated CO2 will indicate how plants will adapt to future increased atmospheric CO2 concentration. Specifically, it is hypothesized that with elevated CO2 the capacity to regenerate ribulose-1,5-bisphosphate (RuBP) will increase relative to RuBP carboxylation.

Methods

To test this hypothesis, the morphological and physiological traits of bracts and leaves of cotton were measured, including stomatal density, gas exchange and protein contents.

Key results

Compared with leaves, bracts showed significantly lower stomatal conductance which resulted in a significantly higher water use efficiency. Both gas exchange and protein content showed a significantly greater RuBP regeneration/RuBP carboxylation capacity ratio (Jmax/Vcmax) in bracts than in leaves.

Conclusions

These results agree with the theoretical prediction that adaptation of photosynthesis to elevated CO2 requires increased RuBP regeneration. Cotton bracts are readily available material for studying adaption to elevated CO2.  相似文献   

14.
Postma JA  Lynch JP 《Annals of botany》2011,107(5):829-841

Background and Aims

The formation of root cortical aerenchyma (RCA) reduces root respiration and nutrient content by converting living tissue to air volume. It was hypothesized that RCA increases soil resource acquisition by reducing the metabolic and phosphorus cost of soil exploration.

Methods

To test the quantitative logic of the hypothesis, SimRoot, a functional–structural plant model with emphasis on root architecture and nutrient acquisition, was employed. Sensitivity analyses for the effects of RCA on the initial 40 d of growth of maize (Zea mays) and common bean (Phaseolus vulgaris) were conducted in soils with varying degrees of phosphorus availability. With reference to future climates, the benefit of having RCA in high CO2 environments was simulated.

Key Results

The model shows that RCA may increase the growth of plants faced with suboptimal phosphorus availability up to 70 % for maize and 14 % for bean after 40 d of growth. Maximum increases were obtained at low phosphorus availability (3 µm). Remobilization of phosphorus from dying cells had a larger effect on plant growth than reduced root respiration. The benefit of both these functions was additive and increased over time. Larger benefits may be expected for mature plants. Sensitivity analysis for light-use efficiency showed that the benefit of having RCA is relatively stable, suggesting that elevated CO2 in future climates will not significantly effect the benefits of having RCA.

Conclusions

The results support the hypothesis that RCA is an adaptive trait for phosphorus acquisition by remobilizing phosphorus from the root cortex and reducing the metabolic costs of soil exploration. The benefit of having RCA in low-phosphorus soils is larger for maize than for bean, as maize is more sensitive to low phosphorus availability while it has a more ‘expensive’ root system. Genetic variation in RCA may be useful for breeding phosphorus-efficient crop cultivars, which is important for improving global food security.  相似文献   

15.
16.

Background

The Delta-Proteobacterium Desulfotignum phosphitoxidans is a type strain of the genus Desulfotignum, which comprises to date only three species together with D. balticum and D. toluenicum. D. phosphitoxidans oxidizes phosphite to phosphate as its only source of electrons, with either sulfate or CO2 as electron acceptor to gain its metabolic energy, which is of exclusive interest. Sequencing of the genome of this bacterium was undertaken to elucidate the genomic basis of this so far unique type of energy metabolism.

Results

The genome contains 4,998,761 base pairs and 4646 genes of which 3609 were assigned to a function, and 1037 are without function prediction. Metabolic reconstruction revealed that most biosynthetic pathways of Gram negative, autotrophic sulfate reducers were present. Autotrophic CO2 assimilation proceeds through the Wood-Ljungdahl pathway. Additionally, we have found and confirmed the ability of the strain to couple phosphite oxidation to dissimilatory nitrate reduction to ammonia, which in itself is a new type of energy metabolism. Surprisingly, only two pathways for uptake, assimilation and utilization of inorganic and organic phosphonates were found in the genome. The unique for D. phosphitoxidans Ptx-Ptd cluster is involved in inorganic phosphite oxidation and an atypical C-P lyase-coding cluster (Phn) is involved in utilization of organophosphonates.

Conclusions

We present the whole genome sequence of the first bacterium able to gain metabolic energy via phosphite oxidation. The data obtained provide initial information on the composition and architecture of the phosphite–utilizing and energy-transducing systems needed to live with phosphite as an unusual electron donor.  相似文献   

17.

Background

Acetogenic bacteria are able to use CO2 as terminal electron acceptor of an anaerobic respiration, thereby producing acetate with electrons coming from H2. Due to this feature, acetogens came into focus as platforms to produce biocommodities from waste gases such as H2 + CO2 and/or CO. A prerequisite for metabolic engineering is a detailed understanding of the mechanisms of ATP synthesis and electron-transfer reactions to ensure redox homeostasis. Acetogenesis involves the reduction of CO2 to acetate via soluble enzymes and is coupled to energy conservation by a chemiosmotic mechanism. The membrane-bound module, acting as an ion pump, was of special interest for decades and recently, an Rnf complex was shown to couple electron flow from reduced ferredoxin to NAD+ with the export of Na+ in Acetobacterium woodii. However, not all acetogens have rnf genes in their genome. In order to gain further insights into energy conservation of non-Rnf-containing, thermophilic acetogens, we sequenced the genome of Thermoanaerobacter kivui.

Results

The genome of Thermoanaerobacter kivui comprises 2.9 Mbp with a G + C content of 35% and 2,378 protein encoding orfs. Neither autotrophic growth nor acetate formation from H2 + CO2 was dependent on Na+ and acetate formation was inhibited by a protonophore, indicating that H+ is used as coupling ion for primary bioenergetics. This is consistent with the finding that the c subunit of the F1FO ATP synthase does not have the conserved Na+ binding motif. A search for potential H+-translocating, membrane-bound protein complexes revealed genes potentially encoding two different proton-reducing, energy-conserving hydrogenases (Ech).

Conclusions

The thermophilic acetogen T. kivui does not use Na+ but H+ for chemiosmotic ATP synthesis. It does not contain cytochromes and the electrochemical proton gradient is most likely established by an energy-conserving hydrogenase (Ech). Its thermophilic nature and the efficient conversion of H2 + CO2 make T.kivui an interesting acetogen to be used for the production of biocommodities in industrial micobiology. Furthermore, our experimental data as well as the increasing number of sequenced genomes of acetogenic bacteria supported the new classification of acetogens into two groups: Rnf- and Ech-containing acetogens.  相似文献   

18.
Carbon dioxide (CO2) exposure is a common method of anesthesia in studies of Drosophila melanogaster. A number of negative side effects of CO2 anesthesia have been reported. It is not clear whether the length of CO2 anesthesia time affects Drosophila survival in aging research. Here, we examined the potential effect of the CO2 anesthesia time length of 10–150 min. We found that long CO2 exposure could lead to Drosophila death, more significant in males. The longer the anesthesia time is, the longer it takes for flies to wake up. Long-time CO2 anesthesia can reduce the lifespan. Our stress tests showed that long-time CO2 anesthesia can increase the average survival time in both males and females under starvation conditions, but can only increase female lifespan under H2O2 oxidative stress. Long-time CO2 anesthesia also significantly affects physiological traits, with spontaneous activity increased in females but decreased in males, and reduced female fecundity. Our study suggests that limiting the CO2 anesthesia time and giving enough recovery time before performing physiological tests are important in Drosophila aging research.  相似文献   

19.
Velikova  V.  Yordanov  I.  Kurteva  M.  Tsonev  T. 《Photosynthetica》1998,34(4):523-535
A single treatment with a low pH solution of bean plants led to serious changes in the net photosynthetic rate (P N) as well as in various parameters of photosystem 2 (PS2) activity. A considerable suppression of P N was established already in the first hours (3 and 5) following the acid treatment (pH 2.4-1.8). The period of strong inhibition of CO2 uptake and photochemical activity was followed by the period of recovery (24-72 h). At a single spraying, pH values exceeding 2.0 did not lead to irreversible damages of the photosynthetic apparatus. The damages resulting from treatments with pH 2.0 and 1.8 were on the threshold of irreversible ones and were the cause of faster ageing.  相似文献   

20.

Background and Aims

Water and nitrogen (N) are two limiting resources for biomass production of terrestrial vegetation. Water losses in transpiration (E) can be decreased by reducing leaf stomatal conductance (gs) at the expense of lowering CO2 uptake (A), resulting in increased water-use efficiency. However, with more N available, higher allocation of N to photosynthetic proteins improves A so that N-use efficiency is reduced when gs declines. Hence, a trade-off is expected between these two resource-use efficiencies. In this study it is hypothesized that when foliar concentration (N) varies on time scales much longer than gs, an explicit complementary relationship between the marginal water- and N-use efficiency emerges. Furthermore, a shift in this relationship is anticipated with increasing atmospheric CO2 concentration (ca).

Methods

Optimization theory is employed to quantify interactions between resource-use efficiencies under elevated ca and soil N amendments. The analyses are based on marginal water- and N-use efficiencies, λ = (∂A/∂gs)/(∂E/∂gs) and η = ∂A/∂N, respectively. The relationship between the two efficiencies and related variation in intercellular CO2 concentration (ci) were examined using A/ci curves and foliar N measured on Pinus taeda needles collected at various canopy locations at the Duke Forest Free Air CO2 Enrichment experiment (North Carolina, USA).

Key Results

Optimality theory allowed the definition of a novel, explicit relationship between two intrinsic leaf-scale properties where η is complementary to the square-root of λ. The data support the model predictions that elevated ca increased η and λ, and at given ca and needle age-class, the two quantities varied among needles in an approximately complementary manner.

Conclusions

The derived analytical expressions can be employed in scaling-up carbon, water and N fluxes from leaf to ecosystem, but also to derive transpiration estimates from those of η, and assist in predicting how increasing ca influences ecosystem water use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号