首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of bacterioplankton in the cycling of marine dissolved organic matter (DOM) is central to the carbon and energy balance in the ocean, yet there are few model organisms available to investigate the genes, metabolic pathways, and biochemical mechanisms involved in the degradation of this globally important carbon pool. To obtain microbial isolates capable of degrading semi-labile DOM for growth, we conducted dilution to extinction cultivation experiments using seawater enriched with high molecular weight (HMW) DOM. In total, 93 isolates were obtained. Amendments using HMW DOM to increase the dissolved organic carbon concentration 4x (280 μM) or 10x (700 μM) the ocean surface water concentrations yielded positive growth in 4–6% of replicate dilutions, whereas <1% scored positive for growth in non-DOM-amended controls. The majority (71%) of isolates displayed a distinct increase in cell yields when grown in increasing concentrations of HMW DOM. Whole-genome sequencing was used to screen the culture collection for purity and to determine the phylogenetic identity of the isolates. Eleven percent of the isolates belonged to the gammaproteobacteria including Alteromonadales (the SAR92 clade) and Vibrio. Surprisingly, 85% of isolates belonged to the methylotrophic OM43 clade of betaproteobacteria, bacteria thought to metabolically specialize in degrading C1 compounds. Growth of these isolates on methanol confirmed their methylotrophic phenotype. Our results indicate that dilution to extinction cultivation enriched with natural sources of organic substrates has a potential to reveal the previously unsuspected relationships between naturally occurring organic nutrients and the microorganisms that consume them.  相似文献   

2.
Hirabayashi  Kimio  Wotton  Roger S. 《Hydrobiologia》1998,382(1-3):151-159
In laboratory experiments, we used fluorescent dye markers to investigate processing of organic matter by larvae of Psectrocladius limbatellus (Holm.) (Diptera: Chironomidae). 59% of the organic matter used was incorporated into tubes, 39% was present in faecal pellets (both after 24 h), and 2% was found in the larval gut at the end of experiments. Ingested matter passed through the gut rapidly, resulting in the gut being emptied more than 20 times each day. Further 24-h experiments using dye-marked faecal pellets showed that 6% of pellets produced were re-ingested and 12% were incorporated into tubes. There was no preference for conditioned faecal pellets as food over those that had recently been egested and tubes also provided a food reserve on which larvae feed. Chironomid larvae recycle organic matter resulting in its mineralization and their ‘engineering’ has a dramatic effect on the substratum. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Downward particle fluxes measured by means of sediment traps to a shallow semi-closed bay (Johnson’s Dock, Livingston Island) and to a deep basin in the western Bransfield Strait (Antarctic Peninsula) showed the important role of glaciers as sediment carriers and suppliers to the ocean in a continent without major rivers such as Antarctica. The trap moored in Johnson’s Dock collected coarse sediment (>1 mm mesh) not observed in the offshore traps, which mainly received fine sediment and faecal pellets. The annual total mass flux (TMF) to the coastal zone (15 m) was 900- and three times that to mid-depth (500 m) and near-bottom (1,000 m) traps, respectively. The fine sediment flux was especially important due to its biogenic particle contents. Despite the differences in TMF to the coastal zone and near the bottom in the deep basin, the organic carbon (OC) flux was similar in both environments (16 and 18 g m−2, respectively), whereas biogenic silica (BSi) flux increased three times with depth (75 and 201 g m−2, respectively). These fluxes imply that an important part of the particulate organic matter deposited in the coastal zone is advected basinward within the fine-particle flux. Thus, benthos in deep areas depends largely on the lateral transport of biogenic material produced in shallow environments near the coast. It is also proposed that the disintegration of Antarctic ice shelves and the consequent increment of ice calving may produce local devastations of ecological importance not only on the shallow but also on the rich Antarctic deep-sea benthic communities due to an increment of iceberg scouring and reduction of the organic matter supply.  相似文献   

4.
Phytoplankton is composed of a broad-sized spectrum of phylogenetically diverse microorganisms. Assessing CO2-fixation intra- and inter-group variability is crucial in understanding how the carbon pump functions, as each group of phytoplankton may be characterized by diverse efficiencies in carbon fixation and export to the deep ocean. We measured the CO2-fixation of different groups of phytoplankton at the single-cell level around the naturally iron-fertilized Kerguelen plateau (Southern Ocean), known for intense diatoms blooms suspected to enhance CO2 sequestration. After the bloom, small cells (<20 µm) composed of phylogenetically distant taxa (prymnesiophytes, prasinophytes, and small diatoms) were growing faster (0.37 ± 0.13 and 0.22 ± 0.09 division d−1 on- and off-plateau, respectively) than larger diatoms (0.11 ± 0.14 and 0.09 ± 0.11 division d−1 on- and off-plateau, respectively), which showed heterogeneous growth and a large proportion of inactive cells (19 ± 13%). As a result, small phytoplankton contributed to a large proportion of the CO2 fixation (41–70%). The analysis of pigment vertical distribution indicated that grazing may be an important pathway of small phytoplankton export. Overall, this study highlights the need to further explore the role of small cells in CO2-fixation and export in the Southern Ocean.Subject terms: Biogeochemistry, Biogeochemistry, Stable isotope analysis, Microbial ecology  相似文献   

5.
During 1975, measurements were made to quantify all sources of input of organic matter in the Dollard. This made a comparison possible between in situ primary production, import from natural sources and organic waste discharges in terms of organic carbon. In order to make a carbon budget, mineralization and the amount of organic matter buried in the sediment was also measured. Input of organic carbon was mainly based on primary production on the tidal flats (measured in situ as O2 production, 9.3×106 kg C · year–1), accumulation of suspended matter originating from the North Sea and the River Ems (maximal 37.1×106 kg C · year–1) and discharge of heavily polluted water (33.0×106 kg C · year–1). Input from primary production in the water phase was negligibly low (0.7×106 kg C · year–1). Loss of organic carbon was due to mineralization in the sediment (measured in situ as oxygen consumption, 18.2×106 kg C · year–1), mineralization in the water phase (using the BOD technique, 7.2×106 kg C · year–1) and burying of organic matter in the sediment (9.9·106 kg C · year–1). The loss of dissolved organic matter to the adjacent Waddensea was not measured but must be considerable. Allochthonous detritus was the main source of energy for the food-webs in the Dollard. The role of bacteria as an important source of food for higher organisms in the Dollard is discussed.  相似文献   

6.
Summary A multi-cup sediment trap was deployed at 250m in the shelf area off Kapp Norvegia, Weddell Sea (630 m water depth) to determine the relative importance of water mass advection, sea ice movement, phytoplankton biomass and plankton feeding. Short-term fluctuations in sedimentation were determined using a sampling frequency of 2.7 days over 54 days during January and February 1988. Three periods of enhanced sedimentation were associated with water mass exchange, settling of diatoms following break-up of ice cover and release of fecal matter by krill feeding on particulate matter derived from phytoplankton and ice algae. An initial sedimentation pulse (28 Jan) was mainly due to sinking pelagic diatoms and krill fecal strings containing algae released from sea ice passing over the trap position. The 13C-composition of the sedimented organic carbon was about-24. The isotope ratio decreased sharply by about 5.5 at the end of the first pulse indicating the source of sinking matter becoming pelagic diatoms of the retreating ice-edge. At this time the diatom Corethron criophilum contributed a very high proportion of the organic flux causing an increase of the opal/Corg ratios. The second pulse (6 Feb) was due to empty diatom frustules, minipellets and small planktonic aggregates. Much of the organic carbon was transported by round fecal pellets. During the third pulse (14 Feb), round fecal pellets transported even more; the percentage of C. criophilum to the diatom organic carbon flux was more than 80% (>2mg C m–2 day–1).Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

7.
The monthly, seasonal and interannual variability of microbial eukaryote assemblages were examined at 5 m, the deep chlorophyll maximum, 150 m and 500 m at the San Pedro Ocean Time-series station (eastern North Pacific). The depths spanned transitions in temperature, light, nutrients and oxygen, and included a persistently hypoxic environment at 500 m. Terminal restriction fragment length polymorphism was used for the analysis of 237 samples that were collected between September 2000 and December 2010. Spatiotemporal variability patterns of microeukaryote assemblages indicated the presence of distinct shallow and deep communities at the SPOT station, presumably reflecting taxa that were specifically adapted for the conditions in those environments. Community similarity values between assemblages collected 1 month apart at each depth ranged between ∼20% and ∼84% (averages were ∼50–59%). The assemblage at 5 m was temporally more dynamic than deeper assemblages and also displayed substantial interannual variability during the first ∼3 years of the study. Evidence of seasonality was detected for the microbial eukaryote assemblage at 5 m between January 2008 and December 2010 and at 150 m between September 2000 and December 2003. Seasonality was not detected for assemblages at the deep chlorophyll a maximum, which varied in depth seasonally, or at 500 m. Microbial eukaryote assemblages exhibited cyclical patterns in at least 1 year at each depth, implying an annual resetting of communities. Substantial interannual variability was detected for assemblages at all depths and represented the largest source of temporal variability in this temperate coastal ecosystem.  相似文献   

8.
During one year, concentration profiles of sulfate and methane were measured in sediment cores of eutrophic Lake Loosdrecht. Sulfate concentrations decreased exponentially with depth towards a constant threshold value of 7.6 ± 6.1 μM. Concentration profiles were used to calculate fluxes of sulfate and methane and to estimate the anaerobic mineralization rate. Anaerobic mineralization was highest in autumn which was probably due to an increased sedimentation of easily degradable organic carbon. At high rates (>600 μ mol organic carbon .m−2.h−1), sulfate reduction appeared to be limited by sulfate and methanogenesis accounted for over 80% of the anaerobic mineralization. At low anaerobic mineralization rates, measured in winter and spring, sulfate reduction was predominant. There was little methanogenesis below 5 cm depth in the sediment which indicated a rapid decrease of degradable organic matter with depth. There was a remarkable difference, especially in winter, between methane fluxes which were measured in batch experiments and those calculated from the concentration profiles in the sediment. These differences may be due to methane diffusing upward from deep layers.  相似文献   

9.
Oxygen minimum zones (OMZs) currently impinge upon >1 million km2 of sea floor and are predicted to expand with climate change. We investigated how changes in oxygen availability, macrofaunal biomass and retention of labile organic matter (OM) regulate heterotrophic bacterial C and N incorporation in the sediments of the OMZ-impacted Indian continental margin (540–1100 m; [O2]=0.35–15 μmol l−1). In situ pulse-chase experiments traced 13C:15N-labelled phytodetritus into bulk sediment OM and hydrolysable amino acids, including the bacterial biomarker 𝒟-alanine. Where oxygen availability was lowest ([O2]=0.35 μmol l−1), metazoan macrofauna were absent and bacteria assimilated 30–90% of the labelled phytodetritus within the sediment. At higher oxygen levels ([O2]=2–15 μmol l−1) the macrofaunal presence and lower phytodetritus retention with the sediment occur concomitantly, and bacterial phytodetrital incorporation was reduced and retarded. Bacterial C and N incorporation exhibited a significant negative relationship with macrofaunal biomass across the OMZ. We hypothesise that fauna–bacterial interactions significantly influence OM recycling in low-oxygen sediments and need to be considered when assessing the consequences of global change on biogeochemical cycles.  相似文献   

10.
Frouz  Jan  Lobinske  Richard J.  Ali  Arshad 《Hydrobiologia》2004,518(1-3):169-177
Two opposite distribution patterns of larval Glyptotendipes paripes in relation to organic carbon content in sediments of central Florida lakes were discovered. In a majority of examined lakes, G. paripes larvae were most abundant in sand sediment and their density rapidly declined with increased carbon content (type 1 lakes); however, in some cases the opposite was true (type 2 lakes). To elucidate this anomaly, field-collected organic sediments from types 1 and 2 lakes and sand sediment were studied for G. paripes development in the laboratory. Type 1 organic sediment consisted predominantly of fine particles (<0.25 mm diameter) with low dissolved oxygen levels, whereas type 2 organic sediments consisted primarily of chironomid large faecal pellet aggregates (>0.25 mm diameter), with significantly higher levels of dissolved oxygen concentrations that were similar to sand sediment. Type 2 organic sediment and sand sediment were conducive to higher survival of G. paripes larvae than fine organic sediment. The larvae in type 2 organic sediment produced longer tubes than in other sediment types. This observation indicates that accumulation of chironomid faecal pellets in lake sediments may change physical properties, such as dissolved oxygen level and consequently alter conditions for survival of chironomid larvae and possibly other benthic fauna.  相似文献   

11.
We report here the first comprehensive seasonal study of benthic microbial activity in an Antarctic coastal environment. Measurements were made from December 1990 to February 1992 of oxygen uptake and sulfate reduction by inshore coastal sediments at Signy Island, South Orkney Islands, Antarctica. From these measurements the rate of benthic mineralization of organic matter was calculated. In addition, both the deposition rate of organic matter to the bottom sediment and the organic carbon content of the bottom sediment were measured during the same period. Organic matter input to the sediment was small under winter ice cover, and the benthic respiratory activity and the organic content of the surface sediment declined during this period as available organic matter was depleted. On an annual basis, about 32% of benthic organic matter mineralization was anoxic, but the proportion of anoxic compared with oxic mineralization increased during the winter as organic matter was increasingly buried by the amphipod infauna. Fresh organic input occurred as the sea ice melted and ice algae biomass sedimented onto the bottom, and input was sustained during the spring after ice breakup by continued primary production in the water column. The benthic respiratory rate and benthic organic matter content correspondingly increased towards the end of winter with the input of this fresh organic matter. The rates of oxygen uptake during the southern summer (80 to 90 mmol of O2 m-2 day-1) were as high as those reported for other sediments at much higher environmental temperatures, and the annual mineralization of organic matter was equally high (12 mol of C m-2 year-1). Seasonal variations of benthic activity in this antarctic coastal sediment were regulated by the input and availability of organic matter and not by seasonal water temperature, which was relatively constant at between -1.8 and 0.5°C. We conclude that despite the low environmental temperature, organic matter degradation broadly balanced organic matter production, although there may be significant interrannual variations in the sources of the organic matter inputs.  相似文献   

12.
Marine sediments cover two-thirds of our planet and harbor huge numbers of living prokaryotes. Long-term survival of indigenous microorganisms within the deep subsurface is still enigmatic, as sources of organic carbon are vanishingly small. To better understand controlling factors of microbial life, we have analyzed viral abundance within a comprehensive set of globally distributed subsurface sediments. Phages were detected by electron microscopy in deep (320 m below seafloor), ancient (∼14 Ma old) and the most oligotrophic subsurface sediments of the world''s oceans (South Pacific Gyre (SPG)). The numbers of viruses (104–109 cm−3, counted by epifluorescence microscopy) generally decreased with sediment depth, but always exceeded the total cell counts. The enormous numbers of viruses indicate their impact as a controlling factor for prokaryotic mortality in the marine deep biosphere. The virus-to-cell ratios increased in deeper and more oligotrophic layers, exhibiting values of up to 225 in the deep subsurface of the SPG. High numbers of phages might be due to absorption onto the sediment matrix and a diminished degradation by exoenzymes. However, even in the oldest sediments, microbial communities are capable of maintaining viral populations, indicating an ongoing viral production and thus, viruses provide an independent indicator for microbial life in the marine deep biosphere.  相似文献   

13.
Krill diet affects faecal string settling   总被引:1,自引:1,他引:0  
Summary Free-floating sediment traps used on a transect from Scotia Sea to Weddell Sea collected larger, more degraded, krill faecal strings in the deeper (150 m) than in the 50 or 75 m traps. The smallest faecal strings were only present in the shallower traps. Sinking velocity of smaller faecal strings was — as expected — much lower than for larger ones, with a total range of 50 to 800 m · day –1 for faecal string volumes of 0.007 to 0.53 mm3. Krill feeding largely on diatoms produced faeces with higher settling velocity than those feeding on non-diatom phytoplankton. Smaller krill faecal strings do not leave the upper mixed layer. Potential settling velocities as measured in settling tubes (without turbulence), may in this respect be misleading. Small oval faecal pellets of unknown origin showed relatively high settling velocities (80 to 250 m·day–1 for 0.002 to 0.013 mm3) due to higher compaction and lower form resistance to sinking.Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation  相似文献   

14.
Abstract The combined effects of organic matter additions and temperature on short chain fatty acid (SCFA) turnover, sulfate reduction and nutrient accumulation were examined in an organic-rich fish farm sediment. Fish food pellets, which contribute significantly to the organic matter loss from fish farms, were added to surface sediment at three loadings (2.8; 14.0; 28.0 mg ww g−1 ww sediment; equivalent to organic matter loadings measured during fish farming) and incubated for 30 days in anaerobic bags at 5°C and 15°C. SCFA accumulated to high levels (acetate up to 85 mM, propionate up to 17 mM, butyrate up to 25 mM) in sediments amended with food pellets, and sulfate reduction was stimulated up to 30 times relative to unamended sediments. Sulfate reducers appeared saturated with substrates (SCFA) even in the lowest additions. A low C/N ratio (0.4–1.8) of the major mineralization products (TCO2 and NH4+) indicated preferential nitrogen mineralization in amended sediment compared with the total particulate pool (C/N = 8.8–11.9) and added food pellets (C/N = 8.4).  相似文献   

15.
Many organic pollutants are readily degradable by microorganisms in soil, but the importance of soil organic matter for their transformation by specific microbial taxa is unknown. In this study, sorption and microbial degradation of phenol and 2,4-dichlorophenol (DCP) were characterized in three soil variants, generated by different long-term fertilization regimes. Compared with a non-fertilized control (NIL), a mineral-fertilized NPK variant showed 19% and a farmyard manure treated FYM variant 46% more soil organic carbon (SOC). Phenol sorption declined with overall increasing SOC because of altered affinities to the clay fraction (soil particles <2 mm in diameter). In contrast, DCP sorption correlated positively with particulate soil organic matter (present in the soil particle fractions of 63–2000 μm). Stable isotope probing identified Rhodococcus, Arthrobacter (both Actinobacteria) and Cryptococcus (Basidiomycota) as the main degraders of phenol. Rhodococcus and Cryptococcus were not affected by SOC, but the participation of Arthrobacter declined in NPK and even more in FYM. 14C-DCP was hardly metabolized in the NIL variant, more efficiently in FYM and most in NPK. In NPK, Burkholderia was the main degrader and in FYM Variovorax. This study demonstrates a strong effect of SOC on the partitioning of organic pollutants to soil particle size fractions and indicates the profound consequences that this process could have for the diversity of bacteria involved in their degradation.  相似文献   

16.
The post-glacial Baltic Sea has experienced extreme changes that are archived today in the deep sediments. IODP Expedition 347 retrieved cores down to 100 m depth and studied the climate history and the deep biosphere. We here review the biogeochemical and microbiological highlights and integrate these with other studies from the Baltic seabed. Cell numbers, endospore abundance and organic matter mineralization rates are extremely high. A 100-fold drop in cell numbers with depth results from a small difference between growth and mortality in the ageing sediment. Evidence for growth derives from a D:L amino acid racemization model, while evidence for mortality derives from the abundance and potential activity of lytic viruses. The deep communities assemble at the bottom of the bioturbated zone from the founding surface community by selection of organisms suited for life under deep sediment conditions. The mean catabolic per-cell rate of microorganisms drops steeply with depth to a life in slow-motion, typical for the deep biosphere. The subsurface life under extreme energy limitation is facilitated by exploitation of recalcitrant substrates, by biochemical protection of nucleic acids and proteins and by repair mechanisms for random mismatches in DNA or damaged amino acids in proteins.  相似文献   

17.
Many diatoms that inhabit low-nutrient waters of the open ocean live in close association with cyanobacteria. Some of these associations are believed to be mutualistic, where N2-fixing cyanobacterial symbionts provide N for the diatoms. Rates of N2 fixation by symbiotic cyanobacteria and the N transfer to their diatom partners were measured using a high-resolution nanometer scale secondary ion mass spectrometry approach in natural populations. Cell-specific rates of N2 fixation (1.15–71.5 fmol N per cell h−1) were similar amongst the symbioses and rapid transfer (within 30 min) of fixed N was also measured. Similar growth rates for the diatoms and their symbionts were determined and the symbiotic growth rates were higher than those estimated for free-living cells. The N2 fixation rates estimated for Richelia and Calothrix symbionts were 171–420 times higher when the cells were symbiotic compared with the rates estimated for the cells living freely. When combined, the latter two results suggest that the diatom partners influence the growth and metabolism of their cyanobacterial symbionts. We estimated that Richelia fix 81–744% more N than needed for their own growth and up to 97.3% of the fixed N is transferred to the diatom partners. This study provides new information on the mechanisms controlling N input into the open ocean by symbiotic microorganisms, which are widespread and important for oceanic primary production. Further, this is the first demonstration of N transfer from an N2 fixer to a unicellular partner. These symbioses are important models for molecular regulation and nutrient exchange in symbiotic systems.  相似文献   

18.
An array of four sediment traps and one current meter was deployed under a well-developed platelet layer for 15 days in the Drescher Inlet in the Riiser Larsen ice shelf, in February 1998. Traps were deployed at 10 m (just under the platelet layer), 112 m (above the thermocline), 230 m (below thermocline) and 360 m (close to sea floor). There was a substantial flux of particulate organic material out of the platelet layer, although higher amounts were collected in the traps either side of the thermocline. Material collected was predominantly composed of faecal pellets containing diatom species growing within the platelet layer. The size classes of these pellets suggest they derive from protists grazing rather than from larger metazoans. Sediment trap material was analysed for particulate organic carbon/nitrogen/phosphorus (POC/PON/POP) and '13CPOC (carbon isotopic composition of POC). These were compared with organic matter in the overlying platelet layer and the water column. In turn, the biogeochemistry of the platelet layer and water column was investigated and the organic matter characteristics related to inorganic nutrients (nitrate, nitrite, ammonium, silicate, phosphate), dissolved organic carbon/nitrogen (DOC/DON), pH, dissolved inorganic carbon (DIC), oxygen and '13CDIC (carbon isotopic composition dissolved inorganic carbon).  相似文献   

19.
西藏达则错盐湖沉积背景与有机沉积结构   总被引:1,自引:0,他引:1  
以西藏拟溞(Daphniopsis tibetana Sars)为优势浮游动物物种的低盐度盐湖是西藏湖泊的一个重要类型,以达则错为代表,分析了其沉积背景及沉积物组成。结果如下:(1)湖泊敞水区无机沉积以内生化学沉积为主,可代表深水盐湖无机沉积物的自然沉积过程。(2)达则错盐湖浮游植物以蓝藻、硅藻、裸藻、绿藻为主,总生物量11.35 mg/L;浮游动物生物量为4.92 mg/L,其中西藏拟溞占 82.30%;浮游植物残体受盐梯度影响在盐梯度层之上聚集,而浮游动物残体及粪粒(Fecal pellets)因外表有碳酸盐附着可穿过盐梯度层沉积湖底,生物残体与浮游动物代谢产物构成了沉积有机物的物质基础。(3)表层沉积物平均含水量为66.70%,粒径0.004-0.02 mm范围内的颗粒物含量最大,占20.42%,其次为<0.004 mm的粘土,占4.53%。(4)表层沉积物总有机碳(TOC)平均含量为27.99 mg/g(干重),其中颗粒有机碳(POC)约为18.11 mg/g,占TOC的64.70%;在POC中,西藏拟溞粪粒贡献最大,约占POC的60.48%,占TOC的39.06%,占沉积物总量的1.12%,其次为西藏拟溞残体,占POC的38.85%。分析结果表明盐湖因其独特的水化学和生物学特征具有较强的沉积能力,以化学沉积为主的无机沉积及以西藏拟溞粪粒和残肢碎屑为主的有机沉积构成了该类型盐湖颗粒物沉降及沉积的主要过程。  相似文献   

20.
High-elevation cold environments are considered ideal places to test hypotheses about mechanisms of bacterial colonization and succession, and about bacterial biogeography. Debris-covered glaciers (glaciers whose ablation area is mainly covered by a continuous layer of rock debris fallen from the surrounding mountains) have never been investigated in this respect so far. We used the Illumina technology to analyse the V5 and V6 hypervariable regions of the bacterial 16S rRNA gene amplified from 38 samples collected in July and September 2009 at different distances from the terminus on two debris-covered glaciers (Miage and Belvedere—Italian Alps). Heterotrophic taxa-dominated communities and bacterial community structure changed according to ice ablation rate, organic carbon content of the debris and distance from the glacier terminus. Bacterial communities therefore change during downwards debris transport, and organic carbon of these recently exposed substrates is probably provided more by allochthonous deposition of organic matter than by primary production by autotrophic organisms. We also investigated whether phylotypes of the genus Polaromonas, which is ubiquitous in cold environments, do present a biogeographical distribution by analysing the sequences retrieved in this study together with others available in the literature. We found that the genetic distance among phylotypes increased with geographic distance; however, more focused analyses using discrete distance classes revealed that both sequences collected at sites <100 km and at sites 9400–13 500 km to each other were more similar than those collected at other distance classes. Evidences of biogeographic distribution of Polaromonas phylotypes were therefore contrasting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号