首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ecological interactions among invasive species can affect not only the success of the invaders, but also their impact on ecosystems in the invaded range. In Australia, both dung beetles (subfamily Scarabaeinae) and cane toads (Rhinella marina) were introduced for biocontrol: the beetles to break down bovine faeces piles (cowpats) that otherwise accumulate and reduce pasture productivity, and the cane toad to consume scarab beetles that eat sugarcane and thus reduce sugar production. The dung beetles have been a success, whereas the toads have been a failure. Our experimental studies show that as well as impacting native fauna directly, cane toads reduce the rate of cowpat breakdown by consuming dung beetles. In the laboratory, dehydrated toads actively sought out cowpats based on scent cues, and in field enclosures, the presence of a cane toad significantly reduced rates of cowpat decomposition. Although toads have benefited from agricultural activities, their spread across Australia likely has reduced the effectiveness of one of the most successful biocontrol programmes ever conducted in that continent.  相似文献   

2.
Understanding the factors that affect an invasive species’ viability and distribution has vital implications for biocontrol. In Australia, invasive cane toads (Rhinella marina) are anecdotally reported to utilise commercial beehives as a prey resource, but that interaction has never been studied in detail. We investigated the impact of apiaries on cane toads in northern New South Wales via mark-recapture surveys, dissections, and camera-trap observations. Cane toads were the most frequent visitors to apiaries, followed by bandicoots and corvid birds. Cane toads at apiaries were more abundant and in better body condition (i.e., larger mass relative to snout-urostyle length) than were toads at nearby control sites. Toads at beehives contained more prey items per stomach (mostly bees, which were never recorded in the stomachs of toads from other sites), and adult female toads at beehives had larger livers and ovaries relative to body size. We conclude that commercial apiaries attract cane toads, influence their diets, and increase their feeding rates and reproductive capacity. Like other habitat modifications wrought by agricultural activities, honey bee colonies provide resources that facilitate the spread of cane toads through an otherwise harsh landscape matrix. Minor modifications to beehives could exclude toads, thereby eliminating their positive impact on the invader.  相似文献   

3.
Individual variation in behavioural traits (including responses to social cues) may influence the success of invasive populations. We studied the relationship between sociality and personality in invasive cane toads (Rhinella marina) from a recently established population in tropical Australia. In our field experiments, we manipulated social cues (the presence of a feeding conspecific) near a food source. We captured and compared toads that only approached feeding sites where another toad was already present, with conspecifics that approached unoccupied feeding sites. Subsequent laboratory trials showed correlated personality differences (behavioural syndromes) between these two groups of toads. For example, toads that approached already-occupied rather than unoccupied feeding sites in the field, took longer to emerge from a shelter-site in standardized trials, suggesting these individuals are ‘shy’ (whereas toads that approached unoccupied feeding stations tended to be ‘bold’). Manipulating hunger levels did not abolish this difference. In feeding trials, a bold toad typically outcompeted a shy toad under conditions of low prey availability, but the outcome was reversed when multiple prey items were present. Thus, both personality types may be favored under different circumstances. This invasive population of toads contains individuals that exhibit a range of personalities, hinting at the existence of a wide range of social dynamics in taxa traditionally considered to be asocial.  相似文献   

4.
Like many invasive species, cane toads (Rhinella marina) in Australia concentrate in the disturbed habitats created by human activity, rather than in pristine areas. We surveyed cane toads in the wet–dry tropics of the Northern Territory to assess the abundances, body sizes, sexes, behaviour, hydration state and feeding rates of toads around buildings compared to those in areas remote from buildings, and conducted experimental trials to assess the effects of building-related variables (lights and increased toad densities) on the foraging success of toads. Toads around buildings were smaller than bushland conspecifics, and adult sex-ratios were female-biased. Toads were more sedentary around buildings than in the bush, but their feeding rates (based on direct observations and faeces production post-capture) were similar. That similarity, despite twofold-higher densities of competing toads around building, reflected the strong enhancement of feeding rates due to artificial lights attracting insects (in our experimental trials, a threefold increase regardless of the number of competing toads). Toads collected from around buildings were apparently in better hydric condition. Thus, access to water also may attract toads to buildings. The relative scarcity of adult male toads around buildings likely reflects waterbody-centred reproductive activities, whereas the concentration of females and juveniles around buildings is driven largely by access to the insects attracted by artificial light. We conclude that buildings enhance the persistence of cane toad populations and may facilitate their spread.  相似文献   

5.
Most ecological research on cane toads (Rhinella marina) has focused on invasive populations in Australia, ignoring other areas where toads have been introduced. We radio-tracked and spool-tracked 40 toads, from four populations on the island of Hawai’i. Toads moved extensively at night (mean 116 m, from spool-tracking) but returned to the same or a nearby retreat-site each day (from radio-tracking, mean distance between successive retreat sites 11 m; 0 m for 70% of records). Males followed straighter paths during nocturnal movements than did females. Because moist sites are scarce on the highly porous lava substrate, Hawai’ian toads depend on anthropogenic disturbance for shelter (e.g. beneath buildings), foraging (e.g. suburban lawns, golf courses) and breeding (artificial ponds). Foraging sites are further concentrated by a scarcity of flying insects (negating artificial lights as prey-attractors). Habitat use of toads shifted with time (at night, toads selected areas with less bare ground, canopy, understory and leaf-litter), and differed between sexes (females foraged in areas of bare ground with dense understory vegetation). Cane toads in Hawai’i thrive in scattered moist patches within a severely arid matrix, despite a scarcity of flying insects, testifying to the species’ ability to exploit anthropogenic disturbance.  相似文献   

6.
Many invasive species exploit the disturbed habitats created by human activities. Understanding the effects of habitat disturbance on invasion success, and how disturbance interacts with other factors (such as biotic resistance to the invaders from the native fauna) may suggest new ways to reduce invader viability. In tropical Australia, commercial livestock production can facilitate invasion by the cane toad (Rhinella marina), because hoofprints left by cattle and horses around waterbody margins provide distinctive (cool, moist) microhabitats; nevertheless the same microhabitat can inhibit the success of cane toads by increasing the risks of predation or drowning. Metamorph cane toads actively select hoofprints as retreat-sites to escape dangerous thermal and hydric conditions in the surrounding landscape. However, hoofprint geometry is important: in hoofprints with steep sides the young toads are more likely to be attacked by predatory ants (Iridomyrmex reburrus) and are more likely to drown following heavy rain. Thus, anthropogenic changes to the landscape interact with predation by native taxa to affect the ability of cane toads in this vulnerable life-history stage to thrive in the harsh abiotic conditions of tropical Australia.  相似文献   

7.
Plasticity or evolution in behavioural responses are key attributes of successful animal invasions. In northern Australia, the invasive cane toad (Rhinella marina) recently invaded semi-arid regions. Here, cane toads endure repeated daily bouts of severe desiccation and thermal stress during the long dry season (April–October). We investigated whether cane toads have shifted their ancestral nocturnal rehydration behaviour to one that exploits water resources during the day. Such a shift in hydration behaviour could increase the fitness of individual toads by reducing exposure to desiccation and thermal stress suffered during the day even within terrestrial shelters. We used a novel method (acoustic tags) to monitor the daily hydration behaviour of 20 toads at two artificial reservoirs on Camfield station, Northern Territory. Remarkably, cane toads visited reservoirs to rehydrate during daylight hours, with peaks in activity between 9.00 and 17.00. This diurnal pattern of rehydration activity contrasts with nocturnal rehydration behaviour exhibited by adult toads in their native geographical range and more mesic parts of Australia. Our results demonstrate that cane toads phase shift a key behaviour to survive in a harsh semi-arid landscape. Behavioural phase shifts have rarely been reported in invasive species but could facilitate ongoing invasion success.  相似文献   

8.
The primary ecological impact of invasive cane toads (Rhinella marina) in Australia is mediated by their powerful toxins, which are fatal to many native species. Toads use roads as invasion corridors and feeding sites, resulting in frequent road-kills. The flattened, desiccated toad carcasses remain highly toxic despite being heated daily to >40°C for many months during the tropical dry-season. In controlled laboratory experiments, native tadpoles (Cyclorana australis, Litoria rothii), fishes (Mogurnda mogurnda) and leeches (Family Erpobdellidae) died rapidly when we added fragments of sun-dried toad to their water, even if the native animals had no physical access to the carcass. Given the opportunity, native tadpoles and fishes strongly avoided the vicinity of dried toad fragments. Hence, long-dead toads may contaminate roadside ponds formed by early wet-season rains and induce avoidance and/or mortality of native anuran larvae, fishes and invertebrates. Our studies show that the toxicity of this invasive species does not end with the toad’s death, and that methods for disposing of toad carcasses (e.g., after culling operations) need to recognize the persistent danger posed by those carcasses.  相似文献   

9.
The frequency and severity of wildfires are increasing due to anthropogenic modifications to habitats and to climate. Post-fire landscapes may advantage invasive species via multiple mechanisms, including changes to host–parasite interactions. We surveyed the incidence of endoparasitic lungworms (Rhabdias pseudosphaerocephala) in invasive cane toads (Rhinella marina) in near-coastal sites of eastern Australia, a year after extensive fires in this region. Both the prevalence of infection and number of worms in infected toads increased with toad body size in unburned areas. By contrast, parasite load decreased with toad body size in burned areas. By killing moisture-dependent free-living lungworm larvae, the intense fires may have liberated adult cane toads from a parasite that can substantially reduce the viability of its host. Smaller toads, which are restricted to moist environments, did not receive this benefit from fires.  相似文献   

10.
Behavioural flexibility plays a key role in facilitating the ability of invasive species to exploit anthropogenically‐created resources. In Australia, invasive cane toads (Rhinella marina) often gather around commercial beehives (apiaries), whereas native frogs do not. To document how toads use this resource, we spool‐tracked cane toads in areas containing beehives and in adjacent natural habitat without beehives, conducted standardized observations of toad feeding behaviour, and ran prey‐manipulation trials to compare the responses of cane toads versus native frogs to honeybees as potential prey. Toads feeding around beehives travelled shorter distances per night, and hence used different microhabitats, than did toads from nearby control sites without beehives. The toads consumed live bees from the hive entrance (rather than dead bees from the ground), often climbing on top of one another to gain access to the hive entrance. Prey manipulation trials confirm that bee movement is the critical stimulus that elicits the toads’ feeding response; and in standardized trials, native frogs consumed bees less frequently than did toads. In summary, cane toads flexibly modify their movements, foraging behaviour and dietary composition to exploit the nutritional opportunities created by commercial beehives, whereas native anurans do not.  相似文献   

11.
Biological invasions can expose native predators to novel prey which may be less nutritious or detrimental to predators. The introduction and subsequent spread of cane toads (Bufo marinus) through Australia has killed many anuran-eating snakes unable to survive the toad’s toxins. However, one native species, the keelback snake (Tropidonophis mairii), is relatively resistant to toad toxins and remains common in toad-infested areas. Is the keelback’s ability to coexist with toads a function of its ancestral Asian origins, or a consequence of rapid adaptation since cane toads arrived in Australia? And does the snake’s feeding preference for frogs rather than toads reflect an innate or learned behaviour? We compared keelback populations long sympatric with toads with a population that has encountered toads only recently. Unlike toad-vulnerable snake species, sympatry with toads has not affected keelback toxin tolerances or feeding responses: T. mairii from toad-sympatric and toad-naïve populations show a similar sensitivity to toad toxin, and a similar innate preference for frogs rather than toads. Feeding responses of neonatal keelbacks demonstrate that learning plays little or no role in the snake’s aversion to toads. Thus, behavioural aversion to B. marinus as prey, and physiological tolerance to toad toxins are pre-existing innate characteristics of Australian keelbacks rather than adaptations to the cane toad’s invasion of Australia. Such traits were most likely inherited from ancestral keelbacks that adapted to the presence of bufonids in Asia. Our results suggest that the impact of invasive species on native taxa may be strongly influenced by the biogeographic histories of the species involved.  相似文献   

12.
Many biological invasions do not occur as a gradual expansion along a continuous front, but result from the expansion of satellite populations that become established at 'invasion hubs'. Although theoretical studies indicate that targeting control efforts at invasion hubs can effectively contain the spread of invasions, few studies have demonstrated this in practice. In arid landscapes worldwide, humans have increased the availability of surface water by creating artificial water points (AWPs) such as troughs and dams for livestock. By experimentally excluding invasive cane toads (Bufo marinus) from AWP, we show that AWP provide a resource subsidy for non-arid-adapted toads and serve as dry season refuges and thus invasion hubs for cane toads in arid Australia. Using data on the distribution of permanent water in arid Australia and the dispersal potential of toads, we predict that systematically excluding toads from AWP would reduce the area of arid Australia across which toads are predicted to disperse and colonize under average climatic conditions by 38 per cent from 2,242,000 to 1,385,000 km(2). Our study shows how human modification of hydrological regimes can create a network of invasion hubs that facilitates a biological invasion, and confirms that targeted control at invasion hubs can reduce landscape connectivity to contain the spread of an invasive vertebrate.  相似文献   

13.
The success of a biological invasion can depend upon other invasions; and in some cases, an earlier invader may fail to spread until facilitated by a second invader. Our study documents a case whereby an invasive parasite has remained patchily distributed for decades due to the fragmented nature of available hosts; but the recent arrival of a broadly distributed alternative invasive host species provides an opportunity for the parasite to expand its range considerably. At least 20 years ago, endoparasitic pentastomids (Raillietiella frenata) were brought with their native host, the invasive Asian house gecko Hemidactylus frenatus, to the port city of Darwin in tropical Australia. These geckos rarely disperse away from human habitation, restricting the transmission of their parasites to urban environments – and thus, their pentastomids have remained patchily distributed and have only been recorded in scant localities, primarily surrounding Darwin. The recent range expansion of the invasive cane toad Rhinella marina into the Darwin area has provided an alternative host for this pentastomid. Our results show that the cane toad is a competent host for Ra. frenata– toads shed fully embryonated pentastomid eggs in their faeces – and that pentastomids are now common in cane toads near Darwin. Likely reflecting the tendency for the parasite's traditional definitive host (the Asian house gecko) and only known intermediate host (the cockroach) to reside around buildings, we found the prevalence of this parasite follows an urban distribution. Because cane toads are widely distributed through urban and rural habitat and can shed viable pentastomid eggs, the toad invasion is likely to facilitate the parasite's spread across the tropics, into areas (and additional susceptible hosts) that were previously inaccessible to it.  相似文献   

14.
The ways in which invasive organisms influence native ecosystems remain poorly understood. For example, feral cane toads Bufo marinus have spread extensively through tropical Australia over the last 70 years, but assessments of their ecological impact remain largely anecdotal. We conducted experimental trials to examine the effect of cane toad presence on invertebrate fauna in relatively small (2.4 × 1.2 m) outdoor enclosures on a floodplain near Darwin in the wet–dry tropics. Toads significantly reduced invertebrate abundance and species richness, but only to about the same degree as did an equivalent biomass of native anurans. Thus, if toads simply replaced native anurans, the offtake of invertebrates might not be substantially different from that due to native anurans before toad invasion. However, our field surveys suggest that toads cause a massive (fourfold) increase in total amphibian biomass. The end result is that cane toads act as a massive nutrient sink in the floodplain ecosystem because they consume vast numbers of invertebrates but (unlike native frogs) are largely invulnerable to predation by frog-eating predators.  相似文献   

15.
Parasites that are carried by invasive species can infect native taxa, with devastating consequences. In Australia, invading cane toads (Rhinella marina) carry lungworm parasites (Rhabdias pseudosphaerocephala) that (based on previous laboratory studies) can infect native treefrogs (Litoria caerulea and L. splendida). To assess the potential of parasite transmission from the invader to the native species (and from one infected native frog to another), we used surveys and radiotelemetry to quantify anuran microhabitat use, and proximity to other anurans, in two sites in tropical Australia. Unsurprisingly, treefrogs spent much of their time off the ground (especially by day, and in undisturbed forests) but terrestrial activity was common at night (especially in anthropogenically modified habitats). Microhabitat overlap between cane toads and frogs was generally low, except at night in disturbed areas, whereas overlap between the two frog species was high. The situations of highest overlap, and hence with the greatest danger of parasite transmission, involve aggregations of frogs within crevices by day, and use of open ground by all three anuran species at night. Overall, microhabitat divergence between toads and frogs should reduce, but not eliminate, the transmission of lungworms from invasive toads to vulnerable native frogs.  相似文献   

16.
Continued range expansion into physiologically challenging environments requires invasive species to maintain adaptive phenotypic performance. The adrenocortical stress response, governed in part by glucocorticoid hormones, influences physiological and behavioural responses of vertebrates to environmental stressors. However, any adaptive role of this response in invasive populations that are expanding into extreme environments is currently unclear. We experimentally manipulated the adrenocortical stress response of invasive cane toads (Rhinella marina) to investigate its effect on phenotypic performance and fitness at the species'' range front in the Tanami Desert, Australia. Here, toads are vulnerable to overheating and dehydration during the annual hot–dry season and display elevated plasma corticosterone levels indicative of severe environmental stress. By comparing unmanipulated control toads with toads whose adrenocortical stress response was manipulated to increase acute physiological stress responsiveness, we found that control toads had significantly reduced daily evaporative water loss and higher survival relative to the experimental animals. The adrenocortical stress response hence appears essential in facilitating complex phenotypic performance and setting fitness trajectories of individuals from invasive species during range expansion.  相似文献   

17.
Abstract Interactions between invasive species and native fauna afford a unique opportunity to examine interspecific encounters as they first occur, without the complications introduced by coevolution. In northern Australia, the continuing invasion of the highly toxic cane toad Bufo marinus poses a threat to many frog‐eating predators. Can predators learn to distinguish the novel toxic prey item from native prey (and thus, avoid being poisoned), or are longer‐term genetically based changes to attack behaviour needed before predators can coexist with toads? To predict the short‐term impact of cane toads on native predators, we need to know the proportion of individuals that will attack toads, the proportion surviving the encounter, and whether surviving predators learn to avoid toads. We quantified these traits in a dasyurid (common planigale, Planigale maculata) that inhabits tropical floodplains across northern Australia. Although 90% of naïve planigales attacked cane toads, 83% of these animals survived because they either rejected the toad unharmed, or killed and consumed the prey snout‐first (thereby avoiding the toxin‐laden parotoid glands). Most planigales showed one‐trial learning and subsequently refused to attack cane toads for long time periods (up to 28 days). Toad‐exposed planigales also avoided native frogs for up to 9 days, thereby providing an immediate benefit to native anurans. However, the predators gradually learnt to use chemical cues to discriminate between frogs and toads. Collectively, our results suggest that generalist predators can learn to distinguish and avoid novel toxic prey very rapidly – and hence, that small dasyurid predators can rapidly adapt to the cane toad invasion. Indeed, it may be feasible to teach especially vulnerable predators to avoid cane toads before the toads invade, by deploying low‐toxicity baits that stimulate taste‐aversion learning.  相似文献   

18.
Far from their native ranges in the Americas, two invasive species come into contact in Australian waterbodies. Cane toads (Rhinella marina) fatally poison many anurophagous predators, whereas eastern mosquito fish (Gambusia holbrooki) voraciously consume anuran larvae. As cane toads spread south along Australia’s east coast, they are colonizing areas where mosquito fish are abundant. What happens when these two American invaders encounter each other in Australia? We tested the responses to toad tadpoles of mosquito fish from populations that were sympatric versus allopatric with cane toads. Toad-sympatric fish generally ignored toad tadpoles. Toad-allopatric fish initially consumed a few tadpoles, but rapidly developed an aversion to these toxic prey items. The laboratory-reared progeny of toad-allopatric fishes were more likely to approach toad tadpoles than were the offspring of toad-sympatric fishes, but the two groups learned toad-avoidance at similar rates. Thus, mosquito fish show an innate aversion to cane toad tadpoles (perhaps reflecting coevolution with North American bufonid taxa), as well as an ability to rapidly learn taste-aversion. Our comparisons among populations suggest that several decades of toad-free existence in Australia caused a decline in the fishes’ innate (heritable) aversion to toads, but did not affect the fishes’ capacity to learn toad-avoidance after an initial exposure. Any impact of mosquito fish on cane toads thus is likely to be transitory. The rapid (<100-year) time frame of these shifts (the initial weakening of the fishes’ response during toad-allopatry, and its recovery after secondary contact) emphasizes the dynamic nature of faunal responses during biological invasions, and the interplay between adaptation and phenotypic plasticity.  相似文献   

19.
Body size at metamorphosis is a key trait in species (such as many anurans) with biphasic life-histories. Experimental studies have shown that metamorph size is highly plastic, depending upon larval density and environmental conditions (e.g. temperature, food supply, water quality, chemical cues from conspecifics, predators and competitors). To test the hypothesis that this developmental plasticity is adaptive, or to determine if inducing plasticity can be used to control an invasive species, we need to know whether or not a metamorphosing anuran’s body size influences its subsequent viability. For logistical reasons, there are few data on this topic under field conditions. We studied cane toads (Rhinella marina) within their invasive Australian range. Metamorph body size is highly plastic in this species, and our laboratory studies showed that larger metamorphs had better locomotor performance (both on land and in the water), and were more adept at catching and consuming prey. In mark-recapture trials in outdoor enclosures, larger body size enhanced metamorph survival and growth rate under some seasonal conditions. Larger metamorphs maintained their size advantage over smaller siblings for at least a month. Our data support the critical but rarely-tested assumption that all else being equal, larger body size at metamorphosis is likely to enhance an individual’s long term viability. Thus, manipulations to reduce body size at metamorphosis in cane toads may help to reduce the ecological impact of this invasive species.  相似文献   

20.
The water‐permeable skin of amphibians renders them highly sensitive to climatic conditions, and interspecific correlations between environmental moisture levels and rates of water exchange across the skin suggest that natural selection adapts hydroregulatory mechanisms to local challenges. How quickly can such mechanisms shift when a species encounters novel moisture regimes? Cutaneous resistance to water loss and gain in wild‐caught cane toads (Rhinella marina) from Brazil, USA (Hawai''i) and Australia exhibited strong geographic variation. Cutaneous resistance was low in native‐range (Brazilian) toads and in Hawai''ian populations (where toads were introduced in 1932) but significantly higher in toads from eastern Australia (where toads were introduced in 1935). Toads from recently invaded areas in western Australia exhibited cutaneous resistance to water loss similar to the native‐range populations, possibly because toads are restricted to moist sites within this highly arid landscape. Rates of rehydration exhibited significant but less extreme geographic variation, being higher in the native range than in invaded regions. Thus, in less than a century, cane toads invading areas that impose different climatic challenges have diverged in the capacity for hydroregulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号