首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
我们使用Clonetech的同源重组酶连接人TSC1、TSC2全长蛋白编码eDNA0RF到pBudCE4.1真核细胞双元表达载体上,用脂质体Lipofectamine2000介导重组质粒pBudCE4.1/TSC2/TSC1导入293T细胞,用含125μg/mLzeocin的培养基筛选稳定表达TSC1/TSC2蛋白的细胞株,并用Westemblot方法鉴定稳转细胞株的稳定性。该实验成功建立了稳定表达TSC1/TSC2蛋白的293T细胞系,从而为今后研究TSC1/TSC2蛋白的结构与功能提供实验基础。  相似文献   

4.
Han JM  Sahin M 《FEBS letters》2011,585(7):973-980
Over the past several years, the study of a hereditary tumor syndrome, tuberous sclerosis complex (TSC), has shed light on the regulation of cellular proliferation and growth. TSC is an autosomal dominant disorder that is due to inactivating mutations in TSC1 or TSC2 and characterized by benign tumors (hamartomas) involving multiple organ systems. The TSC1/2 complex has been found to play a crucial role in an evolutionarily-conserved signaling pathway that regulates cell growth: the mTORC1 pathway. This pathway promotes anabolic processes and inhibits catabolic processes in response to extracellular and intracellular factors. Findings in cancer biology have reinforced the critical role for TSC1/2 in cell growth and proliferation. In contrast to cancer cells, in the CNS, the TSC1/2 complex not only regulates cell growth/proliferation, but also orchestrates an intricate and finely tuned system that has distinctive roles under different conditions, depending on cell type, stage of development, and subcellular localization. Overall, TSC1/2 signaling in the CNS, via its multi-faceted roles, contributes to proper neural connectivity. Here, we will review the TSC signaling in the CNS.  相似文献   

5.
TORC2 is a serine-threonine kinase complex conserved through evolution that recently emerged as a new regulator of actin dynamics and cell migration. However, knockout in mice of its core components Sin1 and Rictor is embryonic lethal, which has limited in vivo analyses. Here, we analysed TORC2 function during early zebrafish development, using a morpholino-mediated loss of function of sin1. Sin1 appears required during gastrulation for migration of the prechordal plate, the anterior most mesoderm. In absence of Sin1, cells migrate both slower and less persistently, which can be correlated to a reduction in actin-rich protrusions and a randomisation of the remaining protrusions. These results demonstrate that, as established in vitro, the TORC2 component Sin1 controls actin dynamics and cell migration in vivo. We furthermore establish that Sin1 is required for protrusion formation downstream of PI3K, and is acting upstream of the GTPase Rac1, since expression of an activated form of Rac1 is sufficient to rescue sin1 loss of function.  相似文献   

6.
Trypanosoma cruzi (T. cruzi) is an intracellular protozoan parasite and the etiological agent of Chagas disease, a chronic infectious illness that affects millions of people worldwide. Although the role of TLR and Nod1 in the control of T. cruzi infection is well-established, the involvement of inflammasomes remains to be elucidated. Herein, we demonstrate for the first time that T. cruzi infection induces IL-1β production in an NLRP3- and caspase-1-dependent manner. Cathepsin B appears to be required for NLRP3 activation in response to infection with T. cruzi, as pharmacological inhibition of cathepsin B abrogates IL-1β secretion. NLRP3−/− and caspase1−/− mice exhibited high numbers of T. cruzi parasites, with a magnitude of peak parasitemia comparable to MyD88−/− and iNOS−/− mice (which are susceptible models for T. cruzi infection), indicating the involvement of NLRP3 inflammasome in the control of the acute phase of T. cruzi infection. Although the inflammatory cytokines IL-6 and IFN-γ were found in spleen cells from NLRP3−/− and caspase1−/− mice infected with T. cruzi, these mice exhibited severe defects in nitric oxide (NO) production and an impairment in macrophage-mediated parasite killing. Interestingly, neutralization of IL-1β and IL-18, and IL-1R genetic deficiency demonstrate that these cytokines have a minor effect on NO secretion and the capacity of macrophages to control T. cruzi infection. In contrast, inhibition of caspase-1 with z-YVAD-fmk abrogated NO production by WT and MyD88−/− macrophages and rendered them as susceptible to T. cruzi infection as NLRP3−/− and caspase-1−/− macrophages. Taken together, our results demonstrate a role for the NLRP3 inflammasome in the control of T. cruzi infection and identify NLRP3-mediated, caspase-1-dependent and IL-1R-independent NO production as a novel effector mechanism for these innate receptors.  相似文献   

7.
Y Yu  Y Sun  S He  C Yan  L Rui  W Li  Y Liu 《Molecular and cellular biology》2012,32(18):3610-3623
The Cbl family proteins function as both E3 ubiquitin ligases and adaptor proteins to regulate various cellular signaling events, including the insulin/insulin-like growth factor 1 (IGF1) and epidermal growth factor (EGF) pathways. These pathways play essential roles in growth, development, metabolism, and survival. Here we show that in Drosophila melanogaster, Drosophila Cbl (dCbl) regulates longevity and carbohydrate metabolism through downregulating the production of Drosophila insulin-like peptides (dILPs) in the brain. We found that dCbl was highly expressed in the brain and knockdown of the expression of dCbl specifically in neurons by RNA interference increased sensitivity to oxidative stress or starvation, decreased carbohydrate levels, and shortened life span. Insulin-producing neuron-specific knockdown of dCbl resulted in similar phenotypes. dCbl deficiency in either the brain or insulin-producing cells upregulated the expression of dilp genes, resulting in elevated activation of the dILP pathway, including phosphorylation of Drosophila Akt and Drosophila extracellular signal-regulated kinase (dERK). Genetic interaction analyses revealed that blocking Drosophila epidermal growth factor receptor (dEGFR)-dERK signaling in pan-neurons or insulin-producing cells by overexpressing a dominant-negative form of dEGFR abolished the effect of dCbl deficiency on the upregulation of dilp genes. Furthermore, knockdown of c-Cbl in INS-1 cells, a rat β-cell line, also increased insulin biosynthesis and glucose-stimulated secretion in an ERK-dependent manner. Collectively, these results suggest that neuronal dCbl regulates life span, stress responses, and metabolism by suppressing dILP production and the EGFR-ERK pathway mediates the dCbl action. Cbl suppression of insulin biosynthesis is evolutionarily conserved, raising the possibility that Cbl may similarly exert its physiological actions through regulating insulin production in β cells.  相似文献   

8.

Objective

Individuals with the neurofibromatosis type 2 (NF2) cancer predisposition syndrome develop spinal cord glial tumors (ependymomas) that likely originate from neural progenitor cells. Whereas many spinal ependymomas exhibit indolent behavior, the only treatment option for clinically symptomatic tumors is surgery. In this regard, medical therapies are unfortunately lacking due to an incomplete understanding of the critical growth control pathways that govern the function of spinal cord (SC) neural progenitor cells (NPCs).

Methods

To identify potential therapeutic targets for these tumors, we leveraged primary mouse Nf2-deficient spinal cord neural progenitor cells.

Results

We demonstrate that the Nf2 protein, merlin, negatively regulates spinal neural progenitor cell survival and glial differentiation in an ErbB2-dependent manner, and that NF2-associated spinal ependymomas exhibit increased ErbB2 activation. Moreover, we show that Nf2-deficient SC NPC ErbB2 activation results from Rac1-mediated ErbB2 retention at the plasma membrane.

Significance

Collectively, these findings establish ErbB2 as a potential rational therapeutic target for NF2-associated spinal ependymoma.  相似文献   

9.
The DISC1 protein is implicated in major mental illnesses including schizophrenia, depression, bipolar disorder, and autism. Aberrant mitochondrial dynamics are also associated with major mental illness. DISC1 plays a role in mitochondrial transport in neuronal axons, but its effects in dendrites have yet to be studied. Further, the mechanisms of this regulation and its role in neuronal development and brain function are poorly understood. Here we have demonstrated that DISC1 couples to the mitochondrial transport and fusion machinery via interaction with the outer mitochondrial membrane GTPase proteins Miro1 and Miro2, the TRAK1 and TRAK2 mitochondrial trafficking adaptors, and the mitochondrial fusion proteins (mitofusins). Using live cell imaging, we show that disruption of the DISC1-Miro-TRAK complex inhibits mitochondrial transport in neurons. We also show that the fusion protein generated from the originally described DISC1 translocation (DISC1-Boymaw) localizes to the mitochondria, where it similarly disrupts mitochondrial dynamics. We also show by super resolution microscopy that DISC1 is localized to endoplasmic reticulum contact sites and that the DISC1-Boymaw fusion protein decreases the endoplasmic reticulum-mitochondria contact area. Moreover, disruption of mitochondrial dynamics by targeting the DISC1-Miro-TRAK complex or upon expression of the DISC1-Boymaw fusion protein impairs the correct development of neuronal dendrites. Thus, DISC1 acts as an important regulator of mitochondrial dynamics in both axons and dendrites to mediate the transport, fusion, and cross-talk of these organelles, and pathological DISC1 isoforms disrupt this critical function leading to abnormal neuronal development.  相似文献   

10.
11.
12.
Regulation of TORC1 by Rag GTPases in nutrient response   总被引:2,自引:0,他引:2  
TORC1 (target of rapamycin complex 1) has a crucial role in the regulation of cell growth and size. A wide range of signals, including amino acids, is known to activate TORC1. Here, we report the identification of Rag GTPases as activators of TORC1 in response to amino acid signals. Knockdown of Rag gene expression suppressed the stimulatory effect of amino acids on TORC1 in Drosophila melanogaster S2 cells. Expression of constitutively active (GTP-bound) Rag in mammalian cells activated TORC1 in the absence of amino acids, whereas expression of dominant-negative Rag blocked the stimulatory effects of amino acids on TORC1. Genetic studies in Drosophila also show that Rag GTPases regulate cell growth, autophagy and animal viability during starvation. Our studies establish a function of Rag GTPases in TORC1 activation in response to amino acid signals.  相似文献   

13.
Atypical protein kinase C (aPKC) isoforms have been implicated in cell polarisation and migration through association with Cdc42 and Par6. In distinct migratory models, the Exocyst complex has been shown to be involved in secretory events and migration. By RNA interference (RNAi) we show that the polarised delivery of the Exocyst to the leading edge of migrating NRK cells is dependent upon aPKCs. Reciprocally we demonstrate that aPKC localisation at the leading edge is dependent upon the Exocyst. The basis of this inter-dependence derives from two-hybrid, mass spectrometry, and co-immunoprecipitation studies, which demonstrate the existence of an aPKC–Exocyst interaction mediated by Kibra. Using RNAi and small molecule inhibitors, the aPKCs, Kibra, and the Exocyst are shown to be required for NRK cell migration and it is further demonstrated that they are necessary for the localized activation of JNK at the leading edge. The migration associated control of JNK by aPKCs determines JNK phosphorylation of the plasma membrane substrate Paxillin, but not the phosphorylation of the nuclear JNK substrate, c-jun. This plasma membrane localized JNK cascade serves to control the stability of focal adhesion complexes, regulating migration. The study integrates the polarising behaviour of aPKCs with the pro-migratory properties of the Exocyst complex, defining a higher order complex associated with the localised activation of JNK at the leading edge of migrating cells that determines migration rate.  相似文献   

14.
15.
Target of rapamycin complex 1 (TORC1) is a master regulator of metabolism in eukaryotes that integrates information from multiple upstream signaling pathways. In yeast, the Nitrogen permease regulators 2 and 3 (Npr2 and Npr3) mediate an essential response to amino-acid limitation upstream of TORC1. In mammals, the Npr2 ortholog, Nprl2, is a putative tumor suppressor gene that inhibits cell growth and enhances sensitivity to numerous anticancer drugs including cisplatin. However, the precise role of Nprl2 and Nprl3 in the regulation of metabolism in metazoans remains poorly defined. Here we demonstrate that the central importance of Nprl2 and Nprl3 in the response to amino-acid starvation has been conserved from single celled to multicellular animals. We find that in Drosophila Nprl2 and Nprl3 physically interact and are targeted to lysosomes and autolysosomes. Using oogenesis as a model system, we show that Nprl2 and Nprl3 inhibit TORC1 signaling in the female germline in response to amino-acid starvation. Moreover, the inhibition TORC1 by Nprl2/3 is critical to the preservation of female fertility during times of protein scarcity. In young egg chambers the failure to downregulate TORC1 in response to amino-acid limitation triggers apoptosis. Thus, our data suggest the presence of a metabolic checkpoint that initiates a cell death program when TORC1 activity remains inappropriately high during periods of amino-acid and/or nutrient scarcity in oogenesis. Finally, we demonstrate that Nprl2/3 work in concert with the TORC1 inhibitors Tsc1/2 to fine tune TORC1 activity during oogenesis and that Tsc1 is a critical downstream effector of Akt1 in the female germline.In Drosophila, egg production is an energy intensive process that occurs continuously throughout the lifetime of the female. Thus, to ensure that energy reserves remain sufficient to support the viability of the female and her progeny during times of food scarcity, Drosophila oogenesis is highly sensitive to nutritional inputs.1, 2, 3 The Drosophila ovary is comprised of approximately 15 ovarioles that contain strings of egg chambers in successively older stages of development.4 Each egg chamber contains a 16-cell interconnected germline syncytium comprised of 15 polyploid nurse cells and a single oocyte. Each ovarian cyst is surrounded by a somatically derived monolayer of cells called follicle cells. At the tip of the ovariole lies the germarium that contains both germline and somatic stem cells, allowing for the continuous production of new egg chambers throughout the life of the female. In mid-oogenesis, egg chambers begin the energy intensive process of yolk uptake, known as vitellogenesis, which is followed by a short period of rapid growth in late oogenesis prior to the eggs being laid.Faced with insufficient protein, the Drosophila ovary initiates a complex series of adaptive responses.2, 3, 5, 6, 7, 8 Egg chambers in mid-oogenesis (stages 8–9), which have begun vitellogenesis, undergo apoptosis as do a fraction of early ovarian cysts before their packing by follicle cells in the germarium.2 In contrast, young egg chambers (stages 2–7) remain intact, but sharply reduce their growth rates and rearrange their cytoskeletal network.2, 5 After shutting down oogenesis during a period of starvation, these young dormant egg chambers can be used to rapidly restart egg production when nutrients are reintroduced.2, 5 Thus, protecting young egg chambers from the ravages of starvation is important for maximizing fecundity in an environment with uneven food availability.Recent evidence implicates the Target of Rapamycin Complex 1 (TORC1) in the regulation of growth and nutritional response during Drosophila oogenesis.6, 9, 10, 11 TORC1 contains the nutrient sensitive kinase Target of Rapamycin (TOR) and regulates cell growth and metabolism in response to multiple inputs including amino-acid availability and intracellular energy status.12, 13, 14, 15, 16 In the presence of sufficient nutrients and appropriate growth signals, the Ragulator and the Rag GTPases target TORC1 to lysosomal membranes where it comes in contact with its activator, the small GTPase Rheb.17, 18, 19 The downregulation of TORC1 activity under conditions of nutrient stress triggers catabolic metabolism and autophagy.20 Autophagy involves the lysosomal degradation of cellular components to ensure adequate nutrients to support cellular survival during times of nutrient stress. Thus, the ability to downregulate TORC1 activity in response to environmental conditions is critical to cell survival.In both budding and fission yeast, Npr2 and Npr3 inhibit TORC1 activity in response to amino-acid scarcity.21, 22 The downregulation of TORC1 by Npr2 and Npr3 is essential to the adaptive response that allows these single-cell eukaryotes to grow on a poor nitrogen source. Recent evidence indicates that Npr2 and Npr3, and their respective mammalian orthologs Nitrogen permease regulator like 2 (Nprl2) and Nitrogen permease regulator like 3 (Nprl3), function as GTPase-activating proteins (GAP) that inhibit TORC1 activity by inactivating the Rag GTPases.23, 24 As is observed with other genes that inhibit TORC1 kinase activity, Npr2/Nprl2 is a putative tumor suppressor gene that is deleted in multiple cancers and cancer cell lines.24, 25 Yet, while Nprl2/3 have been shown to downregulate TORC1 activity in response to amino-acid starvation in tissue culture cells,24 the precise physiological requirement for Nprl2 and Nprl3 in the response to nutrient stress remains undefined in metazoans.Here we demonstrate that in Drosophila Nprl2 and Nprl3 mediate an adaptive response to amino-acid scarcity that is essential to the maintenance of female fertility. We find that in nprl2 and nprl3 germline knockdowns, young egg chambers fail to adapt to amino-acid scarcity and undergo apoptosis. Feeding females the TORC1 inhibitor rapamycin prevents this apoptotic response. Thus, in Drosophila the failure to downregulate TORC1 activity during periods of nutrient stress triggers programmed cell death in early oogenesis. Finally, we demonstrate that the two TORC1 inhibitory complexes Nprl2/3 and Tsc1/2 both contribute to the regulation of TORC1 activity in the female germline.  相似文献   

16.
Highlights? Glucose and glutamine feed back to promote mTORC1 signaling through ATP production ? Energetic stress prevents mTOR lysosomal localization independently of AMPK and Rag ? ATP-dependent TTT-RUVBL complex is disassembled and repressed by energetic stress ? TTT-RUVBL is required for mTORC1 functional assembly and lysosomal localization  相似文献   

17.
18.
Stem cell populations are maintained through self-renewing divisions in which one daughter cell commits to a specific fate while the other retains the multipotent characteristics of its parent. The p53 tumor suppressor, in conjunction with its interacting partner protein Numb, preserves this asymmetry and functions as a vital barrier against the unchecked expansion of tumor stem cell pools; however, little is known about the biological control of the Numb-p53 interaction. We show here that Numb and p53 are the constituents of a high molecular mass complex, which is disintegrated upon activation of aPKCζ, a Numb kinase. Using large-scale affinity purification and tandem mass spectrometry, we identify TBC1D15 as a Numb-associated protein and demonstrate that its amino-terminal domain disengages p53 from Numb, triggering p53 proteolysis and promoting self-renewal and pluripotency. Cellular levels of TBC1D15 are diminished upon acute nutrient deprivation through autophagy-mediated degradation, indicating that TBC1D15 serves as a conduit through which cellular metabolic status is linked to self-renewal. The profound deregulation of TBC1D15 expression exhibited in a diverse array of patient tumors underscores its proposed function as an oncoprotein.  相似文献   

19.
PRAS40 has recently been identified as a protein that couples insulin/IGF signaling (IIS) to TORC1 activation in cell culture; however, the physiological function of PRAS40 is not known. In this study, we investigate flies lacking PRAS40. Surprisingly, we find both biochemically and genetically that PRAS40 couples IIS to TORC1 activation in a tissue-specific manner, regulating TORC1 activity in ovaries but not in other tissues of the animal. PRAS40 thereby regulates fertility but not growth of the fly, allowing distinct physiological functions of TORC1 to be uncoupled. We also show that the main function of PRAS40 in vivo is to regulate TORC1 activity, and not to act as a downstream target and effector of TORC1. Finally, this work sheds some light on the question of whether TORC1 activity is coupled to IIS in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号