首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although helping behavior is ubiquitous throughout the animal kingdom, actual rescue activity is particularly rare. Nonetheless, here we report the first experimental evidence that ants, Cataglyphis cursor, use precisely directed rescue behavior to free entrapped victims; equally important, they carefully discriminate between individuals in distress, offering aid only to nestmates. Our experiments simulate a natural situation, which we often observed in the field when collecting Catagyphis ants, causing sand to collapse in the process. Using a novel experimental technique that binds victims experimentally, we observed the behavior of separate, randomly chosen groups of 5 C. cursor nestmates under one of six conditions. In five of these conditions, a test stimulus (the “victim”) was ensnared with nylon thread and held partially beneath the sand. The test stimulus was either (1) an individual from the same colony; (2) an individual from a different colony of C cursor; (3) an ant from a different ant species; (4) a common prey item; or, (5) a motionless (chilled) nestmate. In the final condition, the test stimulus (6) consisted of the empty snare apparatus. Our results demonstrate that ants are able to recognize what, exactly, holds their relative in place and direct their behavior to that object, the snare, in particular. They begin by excavating sand, which exposes the nylon snare, transporting sand away from it, and then biting at the snare itself. Snare biting, a behavior never before reported in the literature, demonstrates that rescue behavior is far more sophisticated, exact and complexly organized than the simple forms of helping behavior already known, namely limb pulling and sand digging. That is, limb pulling and sand digging could be released directly by a chemical call for help and thus result from a very simple mechanism. However, it''s difficult to see how this same releasing mechanism could guide rescuers to the precise location of the nylon thread, and enable them to target their bites to the thread itself.  相似文献   

2.
In social insects behavioral consequences of shortened life expectancy include, among others, increased risk proneness and social withdrawal. We investigated the impact of experimental shortening of life expectancy of foragers of the ant Formica cinerea achieved by their exposure to carbon dioxide on the expression of rescue behavior, risky pro-social behavior, tested by means of two bioassays during which a single worker (rescuer) was confronted with a nestmate (victim) attacked by a predator (antlion larva capture bioassay) or immobilized by an artificial snare (entrapment bioassay). Efficacy of carbon dioxide poisoning in shortening life expectancy was confirmed by the analysis of ant mortality. Rescue behavior observed during behavioral tests involved digging around the victim, transport of the sand covering the victim, pulling the limbs/antennae/mandibles of the victim, direct attack on the antlion (in antlion larva capture tests), and snare biting (in entrapment tests). The rate of occurrence of rescue behavior was lower in ants with shortened life expectancy, but that effect was significant only in the case of the entrapment bioassay. Similarly, only in the case of the entrapment bioassay ants with shortened life expectancy displayed rescue behavior after a longer latency and devoted less time to that behavior than ants from the control groups. Our results demonstrated that in ant workers shortened life expectancy may lead to reduced propensity for rescue behavior, most probably as an element of the social withdrawal syndrome that had already been described in several studies on behavior of moribund ants and honeybees.  相似文献   

3.
The efficient investment of resources is often the route to ecological success, and the adaptability of resource investment may play a critical role in promoting biodiversity. The ants of the “hyperdiverse” genus Pheidole produce two discrete sterile castes, soldiers and minor workers. Within Pheidole, there is tremendous interspecific variation in proportion of soldiers. The causes and correlates of caste ratio variation among species of Pheidole remain enigmatic. Here we test whether a body size threshold model accounts for interspecific variation in caste ratio in Pheidole, such that species with larger body sizes produce relatively fewer soldiers within their colonies. We evaluated the caste ratio of 26 species of Pheidole and found that the body size of workers accounts for interspecific variation in the production of soldiers as we predicted. Twelve species sampled from one forest in Costa Rica yielded the same relationship as found in previously published data from many localities. We conclude that production of soldiers in the most species-rich group of ants is regulated by a body size threshold mechanism, and that the great variation in body size and caste ratio in Pheidole plays a role in niche divergence in this rapidly evolving taxon.  相似文献   

4.
The foraging behavior of the arboreal turtle ant, Cephalotes goniodontus, was studied in the tropical dry forest of western Mexico. The ants collected mostly plant-derived food, including nectar and fluids collected from the edges of wounds on leaves, as well as caterpillar frass and lichen. Foraging trails are on small pieces of ephemeral vegetation, and persist in exactly the same place for 4–8 days, indicating that food sources may be used until they are depleted. The species is polydomous, occupying many nests which are abandoned cavities or ends of broken branches in dead wood. Foraging trails extend from trees with nests to trees with food sources. Observations of marked individuals show that each trail is travelled by a distinct group of foragers. This makes the entire foraging circuit more resilient if a path becomes impassable, since foraging in one trail can continue while a different group of ants forms a new trail. The colony’s trails move around the forest from month to month; from one year to the next, only one colony out of five was found in the same location. There is continual searching in the vicinity of trails: ants recruited to bait within 3 bifurcations of a main foraging trail within 4 hours. When bait was offered on one trail, to which ants recruited, foraging activity increased on a different trail, with no bait, connected to the same nest. This suggests that the allocation of foragers to different trails is regulated by interactions at the nest.  相似文献   

5.
Biocontrol of caterpillars by ants is highly variable, and we investigate how the strength of the trophic relationship between ants and an important outbreaking forest pest depends on phenological synchrony and on social foraging. We test the hypothesis that early spring foraging by ants, coupled with eusocial recruitment behavior, could undermine the caterpillar's strategies to achieve either enemy-free space or predator satiation.We use a series of field surveys and experiments in trembling aspen stands (Populus tremuloides) in the boreal forest of eastern Canada to assess the role of ants in early-instar mortality of the outbreaking, gregarious forest tent caterpillar (Malacosoma disstria). We also investigate individual-level mechanisms related to phenology and social behavior that underlie the effectiveness of ants as biocontrol on caterpillars. Our results show that ants climb trees early in the spring and harvest young forest tent caterpillars, suggesting that early phenology does not provide an entirely enemy-free space for caterpillars. Our findings further show that recruitment-based social foraging enables ants to deplete groups of gregarious prey, suggesting that these eusocial insects are particularly effective at generating predation pressure on gregarious herbivores since they do not satiate easily. Finally, a manipulative predator exclusion experiment confirms that ant predation is a significant mortality source for early-instar forest tent caterpillars. Taken together, these results suggest that phenology and sociality could modulate the role of ants as effective caterpillar predators and thus showcase the importance of considering natural history and behavioral traits when studying trophic interactions and their role in population dynamics.  相似文献   

6.
Polyethism was quantified in post-emergence colonies of the primitively eusocial wasp,Polistes instabilis, and compared to polyethism in a sympatric advanced eusocial wasp,Polybia occidentalis. Like P.occidentalis, P. instabilis foragers collected food (nectar and prey) and nest materials (wood pulp and water).P. instabilis foragers showed some evidence of specialization with respect to which materials they gathered, but most foragers, divided their effort among food and nest materials, a pattern that is rarely seen inP. occidentalis. In colonies of both species, more foragers collected nectar than any other material; in contrast, most water foraging was performed by one or two workers. Upon returning to the nest,P. instabilis foragers gave up part or all of most nectar, prey, and pulp loads to nestmates, while water was rarely partitioned. Prey loads were most likely to be given up entirely.P. instabilis workers show evidence of conflict over the handling of materials at the nest. The frequency with which workers took portions of nectar loads from forgers was positively correlated with their frequency of aggressive dominant behavior, and with their frequency of taking other foraged materials. Compared to polyethism inP. occidentalis P. instabilis showed less individual specialization on foraging tasks and less partitioning of foraged materials with nestmates, suggesting that these characteristics of polyethism have been modified during the evolution of advanced insect societies.  相似文献   

7.
Summary Understanding the foraging behavior of an animal is critically dependent upon knowledge of the constraints on that animal. In this study, I tested whether fidelity to foraging direction acts as a behavioral constraint to foraging western harvester ants, Pogonomyrmex occidentalis. Individual P. occidentalis foragers showed strong fidelity to foraging route and direction. Directional fidelity in this population was not related to trunk trail use, food specialization, colony activity levels, or mortality risks. Directional fidelity constrained individual foraging decisions; when colonies were offered seeds of different quality in 2 directions, individuals did not switch directions to obtain the energetically more rewarding seeds. Colony-level recruitment was increased for energetically more profitable seeds, indicating that colonial responses may compensate for the constraints of directional fidelity on individual foragers.  相似文献   

8.
Social organization in highly eusocial bees relies upon two important processes: caste differentiation in female larvae, and age polyethism in adult workers. Juvenile Hormone (JH) is a key regulator of both processes. Here we investigated the expression of two genes involved in JH metabolism - mfe (biosynthesis) and jhe (degradation) - in the context of social organization in the stingless bee Melipona interrupta. We found evidence that the expression of mfe and jhe genes is related to changes in JH levels during late larval development, where caste determination occurs. Also, both mfe and jhe were upregulated when workers engage in intranidal tasks, but only jhe expression was downregulated at the transition from nursing to foraging activities. This relation is different than expected, considering recent reports of lower JH levels in foragers than nurses in the closely related species Melipona scutellaris. Our findings suggest that highly eusocial bees have different mechanisms to regulate JH and, thus, to maintain their level of social organization.  相似文献   

9.
Animals must contend with an ever-changing environment. Social animals, especially eusocial insects such as ants and bees, rely heavily on communication for their success. However, in a changing environment, communicated information can become rapidly outdated. This is a particular problem for pheromone trail using ants, as once deposited pheromones cannot be removed. Here, we study the response of ant foragers to an environmental change. Ants were trained to one feeder location, and the feeder was then moved to a different location. We found that ants responded to an environmental change by strongly upregulating pheromone deposition immediately after experiencing the change. This may help maintain the colony''s foraging flexibility, and allow multiple food locations to be exploited simultaneously. Our treatment also caused uncertainty in the foragers, by making their memories less reliable. Ants which had made an error but eventually found the food source upregulated pheromone deposition when returning to the nest. Intriguingly, ants on their way towards the food source downregulated pheromone deposition if they were going to make an error. This may suggest that individual ants can measure the reliability of their own memories and respond appropriately.  相似文献   

10.
In most eusocial insects, the division of labor results in relatively few individuals foraging for the entire colony. Thus, the survival of the colony depends on its efficiency in meeting the nutritional needs of all its members. Here, we characterize the network topology of a eusocial insect to understand the role and centrality of each caste in this network during the process of food dissemination. We constructed trophallaxis networks from 34 food-exchange experiments in black garden ants (Lasius niger). We tested the influence of brood and colony size on (i) global indices at the network level (i.e., efficiency, resilience, centralization, and modularity) and (ii) individual values (i.e., degree, strength, betweenness, and the clustering coefficient). Network resilience, the ratio between global efficiency and centralization, was stable with colony size but increased in the presence of broods, presumably in response to the nutritional needs of larvae. Individual metrics highlighted the major role of foragers in food dissemination. In addition, a hierarchical clustering analysis suggested that some domestics acted as intermediaries between foragers and other domestics. Networks appeared to be hierarchical rather than random or centralized exclusively around foragers. Finally, our results suggested that networks emerging from social insect interactions can improve group performance and thus colony fitness.  相似文献   

11.
Social insect colonies use interactions among workers to regulate collective behavior. Harvester ant foragers interact in a chamber just inside the nest entrance, here called the ''entrance chamber''. Previous studies of the activation of foragers in red harvester ants show that an outgoing forager inside the nest experiences an increase in brief antennal contacts before it leaves the nest to forage. Here we compare the interaction rate experienced by foragers that left the nest and ants that did not. We found that ants in the entrance chamber that leave the nest to forage experienced more interactions than ants that descend to the deeper nest without foraging. Additionally, we found that the availability of foragers in the entrance chamber is associated with the rate of forager return. An increase in the rate of forager return leads to an increase in the rate at which ants descend to the deeper nest, which then stimulates more ants to ascend into the entrance chamber. Thus a higher rate of forager return leads to more available foragers in the entrance chamber. The highest density of interactions occurs near the nest entrance and the entrances of the tunnels from the entrance chamber to the deeper nest. Local interactions with returning foragers regulate both the activation of waiting foragers and the number of foragers available to be activated.  相似文献   

12.
In social insects, groups of workers perform various tasks such as brood care and foraging. Transitions in workers from one task to another are important in the organization and ecological success of colonies. Regulation of genetic pathways can lead to plasticity in social insect task behaviour. The colony organization of advanced eusocial insects evolved independently in ants, bees, and wasps and it is not known whether the genetic mechanisms that influence behavioural plasticity are conserved across species. Here we show that a gene associated with foraging behaviour is conserved across social insect species, but the expression patterns of this gene are not. We cloned the red harvester ant (Pogonomyrmex barbatus) ortholog (Pbfor) to foraging, one of few genes implicated in social organization, and found that foraging behaviour in harvester ants is associated with the expression of this gene; young (callow) worker brains have significantly higher levels of Pbfor mRNA than foragers. Levels of Pbfor mRNA in other worker task groups vary among harvester ant colonies. However, foragers always have the lowest expression levels compared to other task groups. The association between foraging behaviour and the foraging gene is conserved across social insects but ants and bees have an inverse relationship between foraging expression and behaviour.  相似文献   

13.
  1. Hormones are extensively known to be physiological mediators of energy mobilization and allow animals to adjust behavioral performance in response to their environment, especially within a foraging context.
  2. Few studies, however, have narrowed focus toward the consistency of hormonal patterns and their impact on individual foraging behavior. Describing these relationships can further our understanding of how individuals cope with heterogeneous environments and exploit different ecological niches.
  3. To address this, we measured between‐ and within‐individual variation of basal cortisol (CORT), thyroid hormone T3, and testosterone (TEST) levels in wild adult female Galápagos sea lions (Zalophus wollebaeki) and analyzed how these hormones may be associated with foraging strategies. In this marine predator, females exhibit one of three spatially and temporally distinct foraging patterns (i.e., “benthic,” “pelagic,” and “night” divers) within diverse habitat types.
  4. Night divers differentiated from other strategies by having lower T3 levels. Considering metabolic costs, night divers may represent an energetically conservative strategy with shorter dive durations, depths, and descent rates to exploit prey which migrate up the water column based on vertical diel patterns.
  5. Intriguingly, CORT and TEST levels were highest in benthic divers, a strategy characterized by congregating around limited, shallow seafloors to specialize on confined yet reliable prey. This pattern may reflect hormone‐mediated behavioral responses to specific risks in these habitats, such as high competition with conspecifics, prey predictability, or greater risks of predation.
  6. Overall, our study highlights the collective effects of hormonal and ecological variation on marine foraging. In doing so, we provide insights into how mechanistic constraints and environmental pressures may facilitate individual specialization in adaptive behavior in wild populations.
  相似文献   

14.
Foraging on flowers in low light at dusk and dawn comes at an additional cost for insect pollinators with diurnal vision. Nevertheless, some species are known to be frequently active at these times. To explore how early and under which light levels colonies of bumblebees, Bombus terrestris, initiate their foraging activity, we tracked foragers of different body sizes using RFID over 5 consecutive days during warm periods of the flowering season. Bees that left the colony at lower light levels and earlier in the day were larger in size. This result extends the evidence for alloethism in bumblebees and shows that foragers differ in their task specialization depending on body size. By leaving the colony earlier to find and exploit flowers in low light, larger‐sized foragers are aided by their more sensitive eyes and can effectively increase their contributions to the colony''s food influx. The decision to leave the colony early seems to be further facilitated by knowledge about profitable food resources in specific locations. We observed that experience accrued over many foraging flights determined whether a bee started foraging under lower light levels and earlier in the morning. Larger‐sized bees were not more experienced than smaller‐sized bees, confirming earlier observations of wide size ranges among active foragers. Overall, we found that most foragers left at higher light levels when they could see well and fly faster. Nevertheless, a small proportion of foragers left the colony shortly after the onset of dawn when light levels were below 10 lux. Our observations suggest that bumblebee colonies have the potential to balance the benefits of deploying large‐sized or experienced foragers during dawn against the risks and costs of foraging under low light by regulating the onset of their activity at different stages of the colony''s life cycle and in changing environmental conditions.  相似文献   

15.
The nectivorous ant Camponotus mus shows a broad size variation within the worker caste. Large ants can ingest faster and larger loads than small ones. Differences in physiological abilities in fluid ingestion due to the insect size could be related to differences in decision-making according to ant size during nectar foraging. Sucrose solutions of different levels of sugar concentration (30% or 60%w/w), viscosity (high or low) or flow rate (ad libitum or 1microl/min) were offered in combination to analyse the behavioural responses to each of these properties separately. Differences were found depending on ant body size and the property compared. A regulated flow produced smaller crop loads for medium and large ants compared to the same solution given ad libitum. All foragers remained longer times feeding at the regulated flow source but larger ants often made longer interruptions. When sugar concentration was constant but viscosity was high, only large ants increased feeding time. Constant viscosity with different sugar concentration determined longer feeding time and bigger loads for the most concentrated solution for small but not for large ants. Small ants reached similar crop loads in a variety of conditions while large ants did not. These differences could be evidence of a possible specialization for nectar foraging based on ant body size.  相似文献   

16.
Summary The structure of a foraging area in Formica s. str. is maintained by specific foraging roads and by experienced ants familiar with the foraging area, namely foragers and observer ants which used to be foragers. After all the foragers have been removed, observer ants of a F. rufa nest experimental column resume foraging, rapidly restoring the initial structure of the foraging area. For a nest population to lose completely information of the foraging area of a column, not only foragers but also observer ants must be removed and direct access from the nest to experimental road blocked.
Les fourmis observatrices: des stockeuses d'informations sur l'aire d'affouragement chez Formica rufa L.
Resume La structure de l'aire d'affouragement chezFormica rufa est maintenue grâce à des pistes d'affouragement spécifiques et des Fourmis expérimentées qui sont familiarisées avec l'aire d'affouragement: des fourrageuses et des observatrices qui sont habituellement des fourrageuses. Lorsque toutes les fourrageuses sont enlevées, les observatrices d'un nid expérimental deFormica rufa reprennent l'affouragement et rétablissent rapidement la structure initiale de l'aire d'affouragement. Pour que la population d'un nid perde toute information sur l'aire d'affouragement d'une colonne, il faut que non seulement les fourrageuses mais aussi les observatrices soient enlevées et que l'accès du nid à la piste soit empêché.
  相似文献   

17.
Summary Ropalidia rufoplagiata Cameron (Hymenoptera: Vespidae), a polistine species from penisular India, appears to be unique among all known primitively eusocial wasps. A total of 33 out of 46 identified females from an observed colony were found to oviposit on 1–17 occasions. No single predominant egg-layer could be identified during the 45-day period. Of the 17 dissected egg-layers, 12 were mated. All egg-layers showed several oviposition-related behavioural patterns including systematic, but indiscriminate, cannibalism of eggs and larvae, cleaning of empty cells, and guarding of freshly-laid eggs. There was no correlation between the egg-laying activity of the females (whether mated or not), oophagy, and their position in the dominance hierarchy. All nest-maintenance activities were performed exclusively by the egg-layers, while the non-egg-layers were mainly involved in the extranidal task of foraging. No significant morphometric differences between egg-layers and foragers could be discerned. Almost all the older individuals in the colony were egg-layers, while foragers were mainly younger animals. Such a temporal differentiation in reproductive labour suggests the absence of a permanent reproductive caste in this species.  相似文献   

18.
We examined how queens of the primitively eusocial wasp, Polistes fuscatus, stimulate foraging by workers in 10 small, post-worker-emergence field colonies. We experimentally increased colony needs, including needs of the brood, by removing a colony's most active foragers (thereby decreasing the colony's foraging rate), and found that the queen significantly increased both her level of activity and rate of aggressive interactions. Most aggressive interactions were directed at dominant workers. Removal of a colony's least active foragers, however, produced no such effect. Our results, together with those of Reeve & Gamboa (1983, 1987), indicate that queens are sensitive to brood needs, and that they behaviorally regulate worker foraging to match brood needs by increasing their level of activity and rate of aggressive interactions.  相似文献   

19.
A comparative analysis of the behavior of Formica polyctena Först during interaction with different symbionts (free-living aphids Aphis grossulariae Kalt. and hidden larvae of the sawfly Blasticotoma filiceti Klug) was carried out. Red wood ants demonstrate different levels of functional differentiation in relatively constant groups of foragers collecting honeydew. A deep “professional” specialization with clear division of a number of tasks among foragers was studied in groups of ants tending aphids. Four professional groups of foragers with different tasks were revealed: “shepherds,” “guards,” “transporters,” and “scouts” (or “coordinators”). The groups of foragers caring for sawfly larvae mainly consist of unspecialized ants. Only few ants (about 5%) remain on duty on the fern plant near B. filiceti larvae and protect the food resource from competitors, especially from other ants. In addition, the ants demonstrate simpler behavior while collecting the larval excretion, resembling that at the sugar feeders. On the whole, the behavior of red wood ants is rather flexible. The level of functional differentiation in groups of foragers collecting honeydew is determined not only by the colony size and requirements but by the nature of their interaction with trophobionts, particularly, by the possibility of direct contact.  相似文献   

20.
Heterogeneity in social interactions can have important consequences for the spread of information and diseases and consequently conservation and invasive species management. Common carp (Cyprinus carpio) are a highly social, ubiquitous, and invasive freshwater fish. Management strategies targeting foraging carp may be ideal because laboratory studies have suggested that carp can learn, have individual personalities, a unique diet, and often form large social groups. To examine social feeding behaviors of wild carp, we injected 344 carp with passive integrated transponder (PIT) tags and continuously monitored their feeding behaviors at multiple sites in a natural lake in Minnesota, USA. The high‐resolution, spatio‐temporal data were analyzed using a Gaussian mixture model (GMM). Based on these associations, we analyzed group size, feeding bout duration, and the heterogeneity and connectivity of carp social networks at foraging sites. Wild carp responded quickly to bait, forming aggregations most active from dusk to dawn. During the 2020 baiting period (20 days), 133 unique carp were detected 616,593 times. There was some evidence that feeding at multiple sites was constrained by basin geography, but not distance alone. GMM results suggested that feeding bouts were short, with frequent turnover of small groups. Individual foraging behavior was highly heterogeneous with Gini coefficients of 0.79 in 2020 and 0.66 in 2019. “Superfeeders”—those contributing to 80% of total cumulative detections (top 18% and top 29% of foragers in 2020 and 2019 respectively)—were more likely to be detected earlier at feeding stations, had larger body sizes, and had higher network measures of degree, weighted degree, and betweenness than non‐superfeeders. Overall, our results indicate that wild carp foraging is social, easily induced by bait, dominated by large‐bodied individuals, and potentially predictable, which suggests social behaviors could be leveraged in management of carp, one of the world''s most recognizable and invasive fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号