首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Feng YX  Li T  Campbell S  Rein A 《Journal of virology》2002,76(22):11757-11762
Recombinant human immunodeficiency virus type 1 (HIV-1) Gag protein can assemble into virus-like particles (VLPs) in suitable buffer conditions with nucleic acid. We have explored the role of nucleic acid in this assembly process. HIV-1 nucleocapsid protein, a domain of Gag, can bind to oligodeoxynucleotides with the sequence d(TG)(n) with more salt resistance than to d(A)(n) oligonucleotides. We found that assembly of VLPs on d(TG)(n) oligonucleotides was more salt resistant than assembly on d(A)(n); thus, the oligonucleotides do not simply neutralize basic residues in Gag but provide a binding surface upon which Gag molecules assemble into VLPs. We also found that Gag molecules could be "trapped" on internal d(TG)(n) sequences within 40-base oligonucleotides, rendering them unable to take part in assembly. Thus, assembly on oligonucleotides requires that Gag proteins bind near the ends of the nucleic acid, and binding of Gag to internal d(TG)(n) sequences is apparently cooperative. Finally, we showed that nucleic acids in VLPs can exchange with nucleic acids in solution; there is a hierarchy of preferences in these exchange reactions. The results are consistent with an equilibrium model of in vitro assembly and may help to explain how Gag molecules in vivo select genomic RNA despite the presence in the cell of a vast excess of cellular mRNA molecules.  相似文献   

2.
Expression of the retroviral Gag protein leads to formation of virus-like particles in mammalian cells. In vitro and in vivo experiments show that nucleic acid is also required for particle assembly. However, several studies have demonstrated that chimeric proteins in which the nucleocapsid domain of Gag is replaced by a leucine zipper motif can also assemble efficiently in mammalian cells. We have now analyzed assembly by chimeric proteins in which nucleocapsid of human immunodeficiency virus type 1 (HIV-1) Gag is replaced by either a dimerizing or a trimerizing zipper. Both proteins assemble well in human 293T cells; the released particles lack detectable RNA. The proteins can coassemble into particles together with full-length, wild-type Gag. We purified these proteins from bacterial lysates. These recombinant “Gag-Zipper” proteins are oligomeric in solution and do not assemble unless cofactors are added; either nucleic acid or inositol phosphates (IPs) can promote particle assembly. When mixed with one equivalent of IPs (which do not support assembly of wild-type Gag), the “dimerizing” Gag-Zipper protein misassembles into very small particles, while the “trimerizing” protein assembles correctly. However, addition of both IPs and nucleic acid leads to correct assembly of all three proteins; the “dimerizing” Gag-Zipper protein also assembles correctly if inositol hexakisphosphate is supplemented with other polyanions. We suggest that correct assembly requires both oligomeric association at the C terminus of Gag and neutralization of positive charges near its N terminus.Expression of a single retroviral protein, Gag, in mammalian cells is sufficient for assembly of virus-like particles (VLPs). RNA seems to play an essential role, however, in both the assembly and structure of VLPs. Thus, retrovirus particles always contain RNA; in the absence of genomic RNA, cellular mRNAs replace it in the virus particle (46). RNase treatment of immature murine leukemia virus disrupts the particles (37). Finally, nucleic acid is required for assembly in defined in vitro assembly systems (8, 9).The contribution of nucleic acid to the assembly and structure of retrovirus particles is not yet understood. As one approach to further understanding the role that nucleic acid binding plays in the assembly process, Zhang et al. (59) replaced the principal nucleic acid-binding domain of the HIV-1 Gag protein, nucleocapsid (NC), with a leucine zipper domain. This chimeric protein was able to assemble efficiently in mammalian cells as evidenced through immunoblotting of released VLPs. This observation was extended by Johnson et al. (28), who used Gag-leucine zipper (dimerizing) chimeras of Rous sarcoma virus and studied the morphologies of the resulting particles. The particles assembled from the chimeric proteins were similar, although not identical, to those formed by wild-type (WT) Gag. The fact that NC could be functionally replaced (with respect to particle assembly) with the dimerizing leucine zipper motif led these investigators to propose that the function of nucleic acid in assembly is to promote dimerization. Additional support for this hypothesis comes from the fact that the minimum length of nucleic acid needed to promote assembly is roughly enough to accommodate two molecules of Gag (30, 31).Further studies in which the NC domain of HIV-1 Gag has been replaced by leucine zipper motifs have been presented by Accola et al. (1). Interestingly, they found that a Gag-Zipper (Gag-Z) chimera containing a trimeric zipper motif also assembles efficiently. However, these VLPs, as well as those formed by a chimera containing a dimeric zipper motif, were not characterized morphologically.In the present work, we have extended the analysis of the assembly properties of these HIV-1 Gag-Z chimeras. This study includes the first analysis of recombinant Gag-Z proteins in vitro, as well as detailed characterization of the VLPs formed in mammalian cells. The in vitro assembly results suggest that Gag oligomerization alone is not sufficient to induce particle formation. We raise the possibility here that normal HIV-1 assembly requires neutralization of positive charges in matrix (MA) in addition to nucleic acid-induced oligomerization at the C terminus of the protein.  相似文献   

3.
Human immunodeficiency virus type 1 (HIV-1) normally assembles into particles of 100 to 120 nm in diameter by budding through the plasma membrane of the cell. The Gag polyprotein is the only viral protein that is required for the formation of these particles. We have used an in vitro assembly system to examine the assembly properties of purified, recombinant HIV-1 Gag protein and of Gag missing the C-terminal p6 domain (Gag Δp6). This system was used previously to show that the CA-NC fragment of HIV-1 Gag assembled into cylindrical particles. We now report that both HIV-1 Gag and Gag Δp6 assemble into small, 25- to 30-nm-diameter spherical particles in vitro. The multimerization of Gag Δp6 into units larger than dimers and the formation of spherical particles required nucleic acid. Removal of the nucleic acid with NaCl or nucleases resulted in the disruption of the multimerized complexes. We conclude from these results that (i) N-terminal extension of HIV-1 CA-NC to include the MA domain results in the formation of spherical, rather than cylindrical, particles; (ii) nucleic acid is required for the assembly and maintenance of HIV-1 Gag Δp6 virus-like particles in vitro and possibly in vivo; (iii) a wide variety of RNAs or even short DNA oligonucleotides will support assembly; (iv) protein-protein interactions within the particle must be relatively weak; and (v) recombinant HIV-1 Gag Δp6 and nucleic acid are not sufficient for the formation of normal-sized particles.  相似文献   

4.
Wang SW  Aldovini A 《Journal of virology》2002,76(23):11853-11865
The nucleocapsid (NC) domain of retroviruses plays a critical role in specific viral RNA packaging and virus assembly. RNA is thought to facilitate viral particle assembly, but the results described here with NC mutants indicate that it also plays a critical role in particle integrity. We investigated the assembly and integrity of particles produced by the human immunodeficiency virus type 1 M1-2/BR mutant virus, in which 10 of the 13 positive residues of NC have been replaced with alanines and incorporation of viral genomic RNA is virtually abolished. We found that the mutations in the basic residues of NC did not disrupt Gag assembly at the cell membrane. The mutant Gag protein can assemble efficiently at the cell membrane, and viral proteins are detected outside the cell as efficiently as they are for the wild type. However, only approximately 10% of the Gag molecules present in the supernatant of this mutant sediment at the correct density for a retroviral particle. The reduction of positive charge in the NC basic domain of the M1-2/BR virus adversely affects both the specific and nonspecific RNA binding properties of NC, and thus the assembled Gag polyprotein does not bind significant amounts of viral or cellular RNA. We found a direct correlation between the percentage of Gag associated with sedimented particles and the amount of incorporated RNA. We conclude that RNA binding by Gag, whether the RNA is viral or not, is critical to retroviral particle integrity after cell membrane assembly and is less important for Gag-Gag interactions during particle assembly and release.  相似文献   

5.
Expression of a retroviral protein, Gag, in mammalian cells is sufficient for assembly of immature virus-like particles (VLPs). VLP assembly is mediated largely by interactions between the capsid (CA) domains of Gag molecules but is facilitated by binding of the nucleocapsid (NC) domain to nucleic acid. We have investigated the role of SP1, a spacer between CA and NC in HIV-1 Gag, in VLP assembly. Mutational analysis showed that even subtle changes in the first 4 residues of SP1 destroy the ability of Gag to assemble correctly, frequently leading to formation of tubes or other misassembled structures rather than proper VLPs. We also studied the conformation of the CA-SP1 junction region in solution, using both molecular dynamics simulations and circular dichroism. Consonant with nuclear magnetic resonance (NMR) studies from other laboratories, we found that SP1 is nearly unstructured in aqueous solution but undergoes a concerted change to an α-helical conformation when the polarity of the environment is reduced by addition of dimethyl sulfoxide (DMSO), trifluoroethanol, or ethanol. Remarkably, such a coil-to-helix transition is also recapitulated in an aqueous medium at high peptide concentrations. The exquisite sensitivity of SP1 to mutational changes and its ability to undergo a concentration-dependent structural transition raise the possibility that SP1 could act as a molecular switch to prime HIV-1 Gag for VLP assembly. We suggest that changes in the local environment of SP1 when Gag oligomerizes on nucleic acid might trigger this switch.  相似文献   

6.
The Mason-Pfizer monkey virus (M-PMV) Gag protein possesses the ability to assemble into an immature capsid when synthesized in a reticulocyte lysate translation system. In contrast, the human immunodeficiency virus (HIV) Gag protein is incapable of assembly in parallel assays. To enable the assembly of HIV Gag, we have combined or inserted regions of M-PMV Gag into HIV Gag. By both biochemical and morphological criteria, several of these chimeric Gag molecules are capable of assembly into immature capsid-like structures in this in vitro system. Chimeric species containing large regions of M-PMV Gag fused to HIV Gag sequences failed to assemble, while species consisting of only the M-PMV p12 region, and its internal scaffold domain (ISD), fused to HIV Gag were capable of assembly, albeit at reduced kinetics compared to M-PMV Gag. The ability of the ISD to induce assembly of HIV Gag, which normally assembles at the plasma membrane, suggests a common requirement for a concentrating factor in retrovirus assembly. Despite the dramatic effect of the ISD on chimera assembly, the function of HIV Gag domains in that process was found to remain essential, since an assembly-defective mutant of HIV CA, M185A, abolished assembly when introduced into the chimera. This continued requirement for HIV Gag domain function in the assembly of chimeric molecules will allow this in vitro system to be used for the analysis of potential inhibitors of HIV immature particle assembly.  相似文献   

7.
As also found for other retroviruses, the Rous sarcoma virus structural protein Gag is necessary and sufficient for formation of virus-like particles (VLPs). Purified polypeptide fragments comprising most of Gag spontaneously assemble in vitro at pH 6.5 into VLPs lacking a membrane, a process that requires nucleic acid. We showed previously that the minimum length of a DNA oligonucleotide that can support efficient assembly is 16 nucleotides (nt), twice the protein's binding site size. This observation suggests that the essential role of nucleic acid in assembly is to promote the formation of Gag dimers. In order to gain further insight into the role of dimerization, we have studied the assembly properties of two proteins, a nearly full-length Gag (deltaMBDdeltaPR) capable of proper in vitro assembly and a smaller Gag fragment (CTD-NC) capable of forming only irregular aggregates but with the same pH and oligonucleotide length requirements as for assembly with the larger protein. In analyses by sedimentation velocity and by cross-linking, both proteins remained monomeric in the absence of oligonucleotides or in the presence of an oligonucleotide of length 8 nt (GT8). At pH 8, which does not support assembly, binding to GT16 induced the formation of dimers of deltaMBDdeltaPR but not of CTD-NC, implying that dimerization requires the N-terminal domain of the capsid moiety of Gag. Assembly of VLPs was induced by shifting the pH of dimeric complexes of deltaMBDdeltaPR and GT16 from 8 to 6.5. An analogue of GT16 with a ribonucleotide linkage in the middle also supported dimer formation at pH 8. Even after quantitative cleavage of the oligonucleotide by treatment of the complex with RNase, these dimers could be triggered to undergo assembly by pH change. This result implies that protein-protein interactions stabilize the dimer. We propose that binding of two adjacent Gag molecules on a stretch of nucleic acid leads to protein-protein interactions that create a Gag dimer and that this species has an exposed surface not present in monomers which allows polymerization of the dimers into a spherical shell.  相似文献   

8.
9.
The interaction of the HIV Gag polyprotein with nucleic acid is a critical step in the assembly of viral particles. The Gag polyprotein is composed of the matrix (MA), capsid (CA), and nucleocapsid (NC) domains. The NC domain is required for nucleic acid interactions, and the CA domain is required for Gag-Gag interactions. Previously, we have investigated the binding of the NC protein to d(TG)(n) oligonucleotides using surface plasmon resonance (SPR) spectroscopy. We found a single NC protein is able to bind to more than one immobilized oligonucleotide, provided that the oligonucleotides are close enough together. As NC is believed to be the nucleic acid binding domain of Gag, we might expect Gag to show the same complex behavior. We wished to analyze the stoichiometry of Gag binding to oligonucleotides without this complication due to tertiary complex formation. We have therefore analyzed Gag binding to extremely low oligonucleotide density on SPR chips. Such low densities of oligonucleotides are difficult to accurately quantitate. We have determined by Fourier transform ion cyclotron (FTICR) mass spectrometry that four molecules of NC bind to d(TG)(10) (a 20-base oligonucleotide). We developed a method of calibrating low-density surfaces using NC calibration injections. Knowing the maximal response and the stoichiometry of binding, we can precisely determine the amount of oligonucleotide immobilized at these very-low-density surfaces (<1 Response Unit). Using this approach, we have measured the binding of Gag to d(TG)(10). Gag binds to a 20-mer with a stoichiometry of greater than 4. This suggests that once Gag is bound to the immobilized oligonucleotide, additional Gag molecules can bind to this complex.  相似文献   

10.
Mason-Pfizer monkey virus (M-PMV), the prototypical type D retrovirus, assembles immature capsids within the cytoplasm of the cell prior to plasma membrane interaction. Several mutants of M-PMV Gag have been described which display altered transport, assembly, or both. In this report, we describe the use of an in vitro synthesis and assembly system to distinguish between defects in intracellular transport and the process of assembly itself for two previously described gag gene mutants. Matrix domain mutant R55W converts the type D morphogenesis of M-PMV particles into type C and has been hypothesized to alter the transport of Gag, redirecting it to the plasma membrane where assembly subsequently occurs. We show here that R55W can assemble in both the in vitro translation-assembly system and within inclusion bodies in bacteria and thus has retained the capacity to assemble in the cytoplasm. This supports the concept that R55 is located within a domain responsible for the transport of Gag to an intracellular site for assembly. In contrast, deletions within the p12 domain of M-PMV Gag had previously been shown to affect the efficiency of particle formation such that under low-level expression conditions, Gag would fail to assemble. We demonstrate here that the efficiency of assembly in the in vitro system mirrors that seen in cells under expression conditions similar to that of an infection. These results argue that the p12 domain of this D-type retrovirus plays a critical role in the membrane-independent assembly of immature capsids.  相似文献   

11.
Gag-FP (fluorescent protein) fusion constructs are commonly used to study human immunodeficiency virus type 1 assembly, yielding diffuse signals throughout the cytoplasm along with punctate signals routinely described as virus-like particles (VLPs) representing assembled but unprocessed Gag. However, these particles cannot be accurately described as VLPs, since fluorescence microscopy cannot provide structural resolution. We demonstrate here that the inability of a monoclonal p24 antibody to bind its cognate epitope when unprocessed Gag is assembled distinguishes VLPs from unassembled, monomeric Gag. Furthermore, we show that assembled and unassembled Gag punctate signals travel along microtubules. These monoclonal antibody studies provide a new tool for examining retroviral assembly.  相似文献   

12.
Purified retrovirus Gag proteins or Gag protein fragments are able to assemble into virus-like particles (VLPs) in vitro in the presence of RNA. We have examined the role of nucleic acid and of the NC domain in assembly of VLPs from a Rous sarcoma virus (RSV) Gag protein and have characterized these VLPs using transmission electron microscopy (TEM), scanning TEM (STEM), and cryoelectron microscopy (cryo-EM). RNAs of diverse sizes, single-stranded DNA oligonucleotides as small as 22 nucleotides, double-stranded DNA, and heparin all promoted efficient assembly. The percentages of nucleic acid by mass, in the VLPs varied from 5 to 8%. The mean mass of VLPs, as determined by STEM, was 6.5 x 10(7) Da for both RNA-containing and DNA oligonucleotide-containing particles, corresponding to a stoichiometry of about 1,200 protein molecules per VLP, slightly lower than the 1,500 Gag molecules estimated previously for infectious RSV. By cryo-EM, the VLPs showed the characteristic morphology of immature retroviruses, with discernible regions of high density corresponding to the two domains of the CA protein. In spherically averaged density distributions, the mean radial distance to the density corresponding to the C-terminal domain of CA was 33 nm, considerably smaller than that of equivalent human immunodeficiency virus type 1 particles. Deletions of the distal portion of NC, including the second Zn-binding motif, had little effect on assembly, but deletions including the charged residues between the two Zn-binding motifs abrogated assembly. Mutation of the cysteine and histidine residues in the first Zn-binding motif to alanine did not affect assembly, but mutation of the basic residues between the two Zn-binding motifs, or of the basic residues in the N-terminal portion of NC, abrogated assembly. Together, these findings establish VLPs as a good model for immature virions and establish a foundation for dissection of the interactions that lead to assembly.  相似文献   

13.
A single protein, termed Gag, is responsible for retrovirus particle assembly. After the assembled virion is released from the cell, Gag is cleaved at several sites by the viral protease (PR). The cleavages catalyzed by PR bring about a wide variety of physical changes in the particle, collectively termed maturation, and convert the particle into an infectious virion. In murine leukemia virus (MLV) maturation, Gag is cleaved at three sites, resulting in formation of the matrix (MA), p12, capsid (CA), and nucleocapsid (NC) proteins. We introduced mutations into MLV that inhibited cleavage at individual sites in Gag. All mutants had lost the intensely staining ring characteristic of immature particles; thus, no single cleavage event is required for this feature of maturation. Mutant virions in which MA was not cleaved from p12 were still infectious, with a specific infectivity only approximately 10-fold below that of the wild type. Particles in which p12 and CA could not be separated from each other were noninfectious and lacked a well-delineated core despite the presence of dense material in their interiors. In both of these mutants, the dimeric viral RNA had undergone the stabilization normally associated with maturation, suggesting that this change may depend upon the separation of CA from NC. Alteration of the C-terminal end of CA blocked CA-NC cleavage but also reduced the efficiency of particle formation and, in some cases, severely disrupted the ability of Gag to assemble into regular structures. This observation highlights the critical role of this region of Gag in assembly.  相似文献   

14.
The retroviral Gag polyprotein mediates viral assembly. The Gag protein has been shown to interact with other Gag proteins, with the viral RNA, and with the cell membrane during the assembly process. Intrinsically disordered regions linking ordered domains make characterization of the protein structure difficult. Through small-angle scattering and molecular modeling, we have previously shown that monomeric human immunodeficiency virus type 1 (HIV-1) Gag protein in solution adopts compact conformations. However, cryo-electron microscopic analysis of immature virions shows that in these particles, HIV-1 Gag protein molecules are rod shaped. These differing results imply that large changes in Gag conformation are possible and may be required for viral formation. By recapitulating key interactions in the assembly process and characterizing the Gag protein using neutron scattering, we have identified interactions capable of reversibly extending the Gag protein. In addition, we demonstrate advanced applications of neutron reflectivity in resolving Gag conformations on a membrane. Several kinds of evidence show that basic residues found on the distal N- and C-terminal domains enable both ends of Gag to bind to either membranes or nucleic acid. These results, together with other published observations, suggest that simultaneous interactions of an HIV-1 Gag molecule with all three components (protein, nucleic acid, and membrane) are required for full extension of the protein.  相似文献   

15.
In contrast to other retroviruses, Mason-Pfizer monkey virus (M-PMV) assembles immature capsids in the cytoplasm. We have compared the ability of minimal assembly-competent domains from M-PMV and human immunodeficiency virus type 1 (HIV-1) to assemble in vitro into virus-like particles in the presence and absence of nucleic acids. A fusion protein comprised of the capsid and nucleocapsid domains of Gag (CANC) and its N-terminally modified mutant (DeltaProCANC) were used to mimic the assembly of the viral core and immature particles, respectively. In contrast to HIV-1, where CANC assembled efficiently into cylindrical structures, the same domains of M-PMV were assembly incompetent. The addition of RNA or oligonucleotides did not complement this defect. In contrast, the M-PMV DeltaProCANC molecule was able to assemble into spherical particles, while that of HIV-1 formed both spheres and cylinders. For M-PMV, the addition of purified RNA increased the efficiency with which DeltaProCANC formed spherical particles both in terms of the overall amount and the numbers of completed spheres. The amount of RNA incorporated was determined, and for both rRNA and MS2-RNA, quantities similar to that of genomic RNA were encapsidated. Oligonucleotides also stimulated assembly; however, they were incorporated into DeltaProCANC spherical particles in trace amounts that could not serve as a stoichiometric structural component for assembly. Thus, oligonucleotides may, through a transient interaction, induce conformational changes that facilitate assembly, while longer RNAs appear to facilitate the complete assembly of spherical particles.  相似文献   

16.
The core of human immunodeficiency virus type 1 is derived from two precursor polyproteins, Pr55gag and Pr160gag-pol. The Gag precursor can assemble into immature virus-like particles when expressed by itself, while the Gag-Pol precursor lacks particle-forming ability. We have shown previously that the Gag precursor is able to "rescue" the Gag-Pol precursor into virus-like particles when the two polyproteins are expressed in the same cell by using separate simian virus 40-based plasmid expression vectors. To understand this interaction in greater detail, we have made deletion mutations in the capsid-coding regions of Gag- and Gag-Pol-expressing plasmids and assayed for the abilities of these precursors to assemble into virus-like particles. When we tested the abilities of Gag-Pol precursors to be incorporated into particles of Gag by coexpressing the precursors, we found that mutant Gag-Pol precursors lacking a conserved region in retroviral capsid proteins, the major homology region (MHR), were excluded from wild-type Gag particles. Mutant precursors lacking MHR were also less efficient in processing the Gag precursor in trans. These results suggest that the MHR is critical for interactions between Gag and Gag-Pol molecules. In contrast to these results, expression of mutated Gag precursors alone showed that deletions in the capsid region, including those which removed the MHR, reduced the efficiency of particle formation by only 40 to 50%. The mutant particles, however, were clearly lighter than the wild type in sucrose density gradients. These results indicate that the requirements for Gag particle formation differ from the ones essential for efficient incorporation of the Gag-Pol precursor into these particles.  相似文献   

17.
Retrovirus assembly involves a complex series of events in which a large number of proteins must be targeted to a point on the plasma membrane where immature viruses bud from the cell. Gag polyproteins of most retroviruses assemble an immature capsid on the cytoplasmic side of the plasma membrane during the budding process (C-type assembly), but a few assemble immature capsids deep in the cytoplasm and are then transported to the plasma membrane (B- or D-type assembly), where they are enveloped. With both assembly phenotypes, Gag polyproteins must be transported to the site of viral budding in either a relatively unassembled form (C type) or a completely assembled form (B and D types). The molecular nature of this transport process and the host cell factors that are involved have remained obscure. During the development of a recombinant baculovirus/insect cell system for the expression of both C-type and D-type Gag polyproteins, we discovered an insect cell line (High Five) with two distinct defects that resulted in the reduced release of virus-like particles. The first of these was a pronounced defect in the transport of D-type but not C-type Gag polyproteins to the plasma membrane. High Five cells expressing wild-type Mason-Pfizer monkey virus (M-PMV) Gag precursors accumulate assembled immature capsids in large cytoplasmic aggregates similar to a transport-defective mutant (MA-A18V). In contrast, a larger fraction of the Gag molecules encoded by the M-PMV C-type morphogenesis mutant (MA-R55W) and those of human immunodeficiency virus were transported to the plasma membrane for assembly and budding of virions. When pulse-labeled Gag precursors from High Five cells were fractionated on velocity gradients, they sedimented more rapidly, indicating that they are sequestered in a higher-molecular-mass complex. Compared to Sf9 insect cells, the High Five cells also demonstrate a defect in the release of C-type virus particles. These findings support the hypothesis that host cell factors are important in the process of Gag transport and in the release of enveloped viral particles.  相似文献   

18.
Human immunodeficiency virus type 1 Gag protein is cotranslationally myristoylated at the N terminus and targeted to the plasma membrane, where virus particle assembly occurs. Particle assembly requires the ordered multimerization of Gag proteins, yet there is little direct evidence of intermediates of the reaction or of the domains that lead to each stage of the oligomerization process. In this study, following the expression in insect cells of C-terminally truncated Gag proteins and their purification, both the multimeric nature of each Gag protein and the ability to form Gag virus-like particles (VLP) were analyzed. Our results show that (i) the matrix (MA) domain forms a trimer and contributes to a similar level of oligomerization of the assembly-competent Gag; (ii) the p2 domain, located at the capsid/nucleocapsid junction, is essential for a higher order of multimerization (>1,000 kDa); (iii) the latter multimerization is accompanied by a change in Gag assembly morphology from tubes to spheres and results in VLP production; and (iv) N-terminal myristoylation is not required for either of the multimerization stages but plays a key role in conversion of these multimers to Gag VLP. We suggest that the Gag trimer and the > 1,000-kDa multimer are intermediates in the assembly reaction and form before Gag targeting to the plasma membrane. Our data identify a minimum of three stages for VLP development and suggest that each stage involves a separate domain, MA, p2, or N-terminal myristoylation, each of which contributes to HIV particle assembly.  相似文献   

19.
Ono A  Demirov D  Freed EO 《Journal of virology》2000,74(11):5142-5150
The human immunodeficiency virus type 1 (HIV-1) Gag precursor, Pr55(Gag), is necessary and sufficient for the assembly and release of viruslike particles. Binding of Gag to membrane and Gag multimerization are both essential steps in virus assembly, yet the domains responsible for these events have not been fully defined. In addition, the relationship between membrane binding and Gag-Gag interaction remains to be elucidated. To investigate these issues, we analyzed, in vivo, the membrane-binding and assembly properties of a series of C-terminally truncated Gag mutants. Pr55(Gag) was truncated at the C terminus of matrix (MAstop), between the N- and C-terminal domains of capsid (CA146stop), at the C terminus of capsid (p41stop), at the C terminus of p2 (p43stop), and after the N-terminal 35 amino acids of nucleocapsid (NC35stop). The ability of these truncated Gag molecules to assemble and release viruslike particles and their capacity to copackage into particles when coexpressed with full-length Gag were determined. We demonstrate that the amount of truncated Gag incorporated into particles is incrementally increased by extension from CA146 to NC35, suggesting that multiple sites in this region are involved in Gag multimerization. Using membrane flotation centrifugation, we observe that MA shows significantly reduced membrane binding relative to full-length Gag but that CA146 displays steady-state membrane-binding properties comparable to those of Pr55(Gag). The finding that the CA146 mutant, which contains only matrix and the N-terminal domain of capsid, exhibits levels of steady-state membrane binding equivalent to those of full-length Gag indicates that strong Gag-Gag interaction domains are not required for the efficient binding of HIV-1 Gag to membrane.  相似文献   

20.
Genetic Determinants of Rous Sarcoma Virus Particle Size   总被引:6,自引:6,他引:0       下载免费PDF全文
The Gag proteins of retroviruses are the only viral products required for the release of membrane-enclosed particles by budding from the host cell. Particles released when these proteins are expressed alone are identical to authentic virions in their rates of budding, proteolytic processing, and core morphology, as well as density and size. We have previously mapped three very small, modular regions of the Rous sarcoma virus (RSV) Gag protein that are necessary for budding. These assembly domains constitute only 20% of RSV Gag, and alterations within them block or severely impair particle formation. Regions outside of these domains can be deleted without any effect on the density of the particles that are released. However, since density and size are independent parameters for retroviral particles, we employed rate-zonal gradients and electron microscopy in an exhaustive study of mutants lacking the various dispensable segments of Gag to determine which regions would be required to constrain or define the particle dimensions. The only sequence found to be absolutely critical for determining particle size was that of the initial capsid cleavage product, CA-SP, which contains all of the CA sequence plus the spacer peptides located between CA and NC. Some regions of CA-SP appear to be more important than others. In particular, the major homology region does not contribute to defining particle size. Further evidence for interactions among CA-SP domains was obtained from genetic complementation experiments using mutant ΔNC, which lacks the RNA interaction domains in the NC sequence but retains a complete CA-SP sequence. This mutant produces low-density particles heterogeneous in size. It was rescued into particles of normal size and density, but only when the complementing Gag molecules contained the complete CA-SP sequence. We conclude that CA-SP functions during budding in a manner that is independent of the other assembly domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号