首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both phenotypic plasticity and genetic determination can be important for understanding how plants respond to environmental change. However, little is known about the plastic response of leaf teeth and leaf dissection to temperature. This gap is critical because these leaf traits are commonly used to reconstruct paleoclimate from fossils, and such studies tacitly assume that traits measured from fossils reflect the environment at the time of their deposition, even during periods of rapid climate change. We measured leaf size and shape in Acer rubrum derived from four seed sources with a broad temperature range and grown for two years in two gardens with contrasting climates (Rhode Island and Florida). Leaves in the Rhode Island garden have more teeth and are more highly dissected than leaves in Florida from the same seed source. Plasticity in these variables accounts for at least 6–19 % of the total variance, while genetic differences among ecotypes probably account for at most 69–87 %. This study highlights the role of phenotypic plasticity in leaf-climate relationships. We suggest that variables related to tooth count and leaf dissection in A. rubrum can respond quickly to climate change, which increases confidence in paleoclimate methods that use these variables.  相似文献   

2.
The sizes and shapes (physiognomy) of fossil leaves are widely applied as proxies for paleoclimatic and paleoecological variables. However, significant improvements to leaf-margin analysis, used for nearly a century to reconstruct mean annual temperature (MAT), have been elusive; also, relationships between physiognomy and many leaf ecological variables have not been quantified. Using the recently developed technique of digital leaf physiognomy, correlations of leaf physiognomy to MAT, leaf mass per area, and nitrogen content are quantified for a set of test sites from North and Central America. Many physiognomic variables correlate significantly with MAT, indicating a coordinated, convergent evolutionary response of fewer teeth, smaller tooth area, and lower degree of blade dissection in warmer environments. In addition, tooth area correlates negatively with leaf mass per area and positively with nitrogen content. Multiple linear regressions based on a subset of variables produce more accurate MAT estimates than leaf-margin analysis (standard errors of ±2 vs. ±3°C); improvements are greatest at sites with shallow water tables that are analogous to many fossil sites. The multivariate regressions remain robust even when based on one leaf per species, and the model most applicable to fossils shows no more signal degradation from leaf fragmentation than leaf-margin analysis.  相似文献   

3.
Heteroblastic leaf development in Taraxacum officinale is compared between plants grown under ambient (350 ppm) vs. elevated (700 ppm) CO2 levels. Leaves of elevated CO2 plants exhibited more deeply incised leaf margins and relatively more slender leaf laminae than leaves of ambient CO2 plants. These differences were found to be significant in allometric analyses that controlled for differences in leaf size, as well as analyses that controlled for leaf developmental order. The effects of elevated CO2 on leaf shape were most pronounced when plants were grown individually, but detectable differences were also found in plants grown at high density. Although less dramatic than in Taraxacum, significant effects of elevated CO2 on leaf shape were also found in two other weedy rosette species, Plantago major and Rumex crispus. These observations support the long-standing hypothesis that leaf carbohydrate level plays an important role in regulating heteroblastic leaf development, though elevated C02 may also affect leaf development through direct hormonal interactions or increased leaf water potential. In Taraxacum, pronounced modifications of leaf shape were found at CO2 levels predicted to occur within the next century.  相似文献   

4.
The commonly observed negative relationship between stomatal density (SD) and atmospheric CO2 has led to SD being proposed as an indicator of atmospheric CO2 concentration. The use of SD as a proxy for CO2, however, has been hampered by an insufficient understanding of the intraspecific variation of this trait. We hypothesized that SD in Pinus sylvestris, a widely distributed conifer, varies geographically and that this variation is determined by major climatic variables. By sampling needles from naturally growing trees along a latitudinal range of 32.25°, equivalent to 13.7°C gradient of mean annual temperature (MAT) across Europe, we found that SD decreased from the warmest southern sites to the coldest sites in the north at a rate of 4 stomata per mm2 for each 1°C, with MAT explaining 44% of the variation. Additionally, samples from a provenance trial exhibited a positive relationship between SD and the MAT of the original localities, suggesting that high SD is an adaptation to warm temperature. Our study revealed one of the strongest intraspecific relationships between SD and climate in any woody species, supporting the utility of SD as a temperature, rather than direct CO2, proxy. In addition, our results predict the response of SD to climate warming.  相似文献   

5.
Few studies have investigated how tree species grown under elevated CO2 and elevated temperature alter the performance of leaf‐feeding insects. The indirect effects of an elevated CO2 concentration and temperature on leaf phytochemistry, along with potential direct effects on insect growth and consumption, may independently or interactively affect insects. To investigate this, we bagged larvae of the gypsy moth on leaves of red and sugar maple growing in open‐top chambers in four CO2/temperature treatment combinations: (i) ambient temperature, ambient CO2; (ii) ambient temperature, elevated CO2 (+ 300 μL L?1 CO2); (iii) elevated temperature (+ 3.5°C), ambient CO2; and (iv) elevated temperature, elevated CO2. For both tree species, leaves grown at elevated CO2 concentration were significantly reduced in leaf nitrogen concentration and increased in C: N ratio, while neither temperature nor its interaction with CO2 concentration had any effect. Depending on the tree species, leaf water content declined (red maple) and carbon‐based phenolics increased (sugar maple) on plants grown in an enriched CO2 atmosphere. The only observed effect of elevated temperature on leaf phytochemistry was a reduction in leaf water content of sugar maple leaves. Gypsy moth larval responses were dependent on tree species. Larvae feeding on elevated CO2‐grown red maple leaves had reduced growth, while temperature had no effect on the growth or consumption of larvae. No significant effects of either temperature or CO2 concentration were observed for larvae feeding on sugar maple leaves. Our data demonstrate strong effects of CO2 enrichment on leaf phytochemical constituents important to folivorous insects, while an elevated temperature largely has little effect. We conclude that alterations in leaf chemistry due to an elevated CO2 atmosphere are more important in this plant–folivorous insect system than either the direct short‐term effects of temperature on insect performance or its indirect effects on leaf chemistry.  相似文献   

6.
A new method for reconstructing paleoenvironments using the pavement cell characteristics of Middle Jurassic ginkgoalean fossils from the Yaojie and Baojishan basins, Gansu Province, China, is presented. Specifically, we use present-day relationships between the length-to-width (L/W) ratio of leaf pavement cells of Ginkgo biloba and mean annual temperature (MAT), mean annual precipitation (MAP), and relative humidity (RH). Primary analyses indicate that the L/W ratio of Ginkgo biloba pavement cells is negatively correlated with MAT, MAP, and RH, and linear regression equations can be established. Based on these equations, paleoclimatic parameters were inferred using the ginkgoalean fossil data. The estimated paleotemperatures in the Yaojie and Baojishan basins during the Middle Jurassic are approximately 6 °C higher than those of the present day, which is consistent with the results of the currently used stomata ratio method and the global CO2 prediction model. We deduce that paleoprecipitation in the basins was approximately 460 mm higher and paleohumidity approximately 20% higher than current conditions and thus the two basins exhibited humid subtropical conditions during the Middle Jurassic. Fossil flora and spore-pollen assemblage data from the study areas corroborate the new observations.  相似文献   

7.
Little SA  Kembel SW  Wilf P 《PloS one》2010,5(12):e15161
Present-day correlations between leaf physiognomic traits (shape and size) and climate are widely used to estimate paleoclimate using fossil floras. For example, leaf-margin analysis estimates paleotemperature using the modern relation of mean annual temperature (MAT) and the site-proportion of untoothed-leaf species (NT). This uniformitarian approach should provide accurate paleoclimate reconstructions under the core assumption that leaf-trait variation principally results from adaptive environmental convergence, and because variation is thus largely independent of phylogeny it should be constant through geologic time. Although much research acknowledges and investigates possible pitfalls in paleoclimate estimation based on leaf physiognomy, the core assumption has never been explicitly tested in a phylogenetic comparative framework. Combining an extant dataset of 21 leaf traits and temperature with a phylogenetic hypothesis for 569 species-site pairs at 17 sites, we found varying amounts of non-random phylogenetic signal in all traits. Phylogenetic vs. standard regressions generally support prevailing ideas that leaf-traits are adaptively responding to temperature, but wider confidence intervals, and shifts in slope and intercept, indicate an overall reduced ability to predict climate precisely due to the non-random phylogenetic signal. Notably, the modern-day relation of proportion of untoothed taxa with mean annual temperature (NT-MAT), central in paleotemperature inference, was greatly modified and reduced, indicating that the modern correlation primarily results from biogeographic history. Importantly, some tooth traits, such as number of teeth, had similar or steeper slopes after taking phylogeny into account, suggesting that leaf teeth display a pattern of exaptive evolution in higher latitudes. This study shows that the assumption of convergence required for precise, quantitative temperature estimates using present-day leaf traits is not supported by empirical evidence, and thus we have very low confidence in previously published, numerical paleotemperature estimates. However, interpreting qualitative changes in paleotemperature remains warranted, given certain conditions such as stratigraphically closely-spaced samples with floristic continuity.  相似文献   

8.
Soybeans were grown at three CO2 concentrations in outdoor growth chambers and at two concentrations in controlled-environment growth chambers to investigate the interactive effects of CO2, temperature and leaf-to-air vapour pressure difference (LAVPD) on stomatal conductance. The decline in stomatal conductance with CO2 was a function of both leaf temperature and LAVPD. In the field measurements, stomatal conductance was more sensitive to LAVPD at low CO2 at 30 °C but not at 35 °C. There was also a direct increase in conductance with temperature, which was greater at the two elevated carbon dioxide concentrations. Environmental growth chamber results showed that the relative stomatal sensitivity to LAVPD decreased with both leaf temperature and CO2. Measurements in the environmental growth chamber were also performed at the opposing CO2, and these experiments indicate that the stomatal sensitivity to LAVPD was determined more by growth CO2 than by measurement CO2. Two models that describe stomatal responses to LAVPD were compared with the outdoor data to evaluate whether these models described adequately the interactive effects of CO2, LAVPD and temperature.  相似文献   

9.
Williams RS  Lincoln DE  Norby RJ 《Oecologia》2003,137(1):114-122
Predicted increases in atmospheric CO2 and global mean temperature may alter important plant-insect associations due to the direct effects of temperature on insect development and the indirect effects of elevated temperature and CO2 enrichment on phytochemicals important for insect success. We investigated the effects of CO2 and temperature on the interaction between gypsy moth (Lymantria dispar L.) larvae and red maple (Acer rubrum L.) saplings by bagging first instar larvae within open-top chambers at four CO2/temperature treatments: (1) ambient temperature, ambient CO2, (2) ambient temperature, elevated CO2 (+300 l l-1 CO2), (3) elevated temperature (+3.5°C), ambient CO2, and (4) elevated temperature, elevated CO2. Larvae were reared to pupation and leaf samples taken biweekly to determine levels of total N, water, non-structural carbohydrates, and an estimate of defensive phenolic compounds in three age classes of foliage: (1) immature, (2) mid-mature and (3) mature. Elevated growth temperature marginally reduced (P <0.1) leaf N and significantly reduced (P <0.05) leaf water across CO2 treatments in mature leaves, whereas leaves grown at elevated CO2 concentration had a significant decrease in leaf N and a significant increase in the ratio of starch:N and total non-structural carbohydrates:N. Leaf N and water decreased and starch:N and total non-structural carbohydrates:N ratios increased as leaves aged. Phenolics were unaffected by CO2 or temperature treatment. There were no interactive effects of CO2 and temperature on any phytochemical measure. Gypsy moth larvae reached pupation earlier at the elevated temperature (female =8 days, P <0.07; male =7.5 days, P <0.03), whereas mortality and pupal fresh weight of insects were unrelated to either CO2, temperature or their interaction. Our data show that CO2 or temperature-induced alterations in leaf constituents had no effect on insect performance; instead, the long-term exposure to a 3.5°C increase in temperature shortened insect development but had no effect on pupal weight. It appears that in some tree-herbivorous insect systems the direct effects of an increased global mean temperature may have greater consequences for altering plant-insect interactions than the indirect effects of an increased temperature or CO2 concentration on leaf constituents.  相似文献   

10.
* Variation in the size and shape (physiognomy) of leaves has long been correlated to climate, and paleobotanists have used these correlations to reconstruct paleo-climate. Most studies focus on site-level means of largely nonoverlapping species sets. The sensitivity of leaf shape to climate within species is poorly known, which limits our general understanding of leaf-climate relationships and the value of intraspecific patterns for paleoclimate reconstructions. * The leaf physiognomy of two species whose native North American ranges span large climatic gradients (Acer rubrum and Quercus kelloggii) was quantified and correlated to mean annual temperature (MAT). Quercus kelloggii was sampled across a wide elevation range, but A. rubrum was sampled in strictly lowland areas. * Within A. rubrum, leaf shape correlates with MAT in a manner that is largely consistent with previous site-level studies; leaves from cold climates are toothier and more highly dissected. By contrast, Q. kelloggii is largely insensitive to MAT; instead, windy conditions with ample plant-available water may explain the preponderance of small teeth at high elevation sites, independent of MAT. * This study highlights the strong correspondence between leaf form and climate within some species, and demonstrates that intraspecific patterns may contribute useful information towards reconstructing paleoclimate.  相似文献   

11.
Two herbaceous perennials, alfalfa (Medicago sativa L. cv. Arc) and orchard grass (Dactylus glomerata L. cv. Potomac), were grown at ambient (367 μmol mol−1) and elevated (729 μmol mol−1) CO2 concentrations at constant temperatures of 15, 20, 25 and 30°C in order to examine direct and indirect changes in nighttime CO2 efflux rate (respiration) of single leaves. Direct (biochemical) effects of CO2 on nighttime respiration were determined for each growth condition by brief (<30 min) exposure to each CO2 concentration. If no direct inhibition of respiration was observed, then long-term reductions in CO2 efflux between CO2 treatments were presumed to be due to indirect inhibition, probably related to long-term changes in leaf composition. By this criterion, indirect effects of CO2 on leaf respiration were observed at 15 and 20°C for M. sativa on a weight basis, but not on a leaf area or protein basis. Direct effects however, were observed at 15, 20 and 25°C in D. glomerata; therefore the observed reductions in respiration for leaves grown and measured at elevated relative to ambient CO2 concentrations could not be distinguished as indirect inhibition. No inhibition of respiration at elevated CO2 was observed at the highest growth temperature (30°C) in either species. CO2 efflux increased with measurement and growth temperature for M. sativa at both CO2 concentrations; however, CO2 efflux in D. glomerata showed complete acclimation to growth temperature. Stimulation of leaf area and weight by elevated CO2 levels declined with growth temperature in both species. Data from the present study suggest that both direct and indirect inhibition of respiration are possible with future increases in atmospheric CO2, and that the degree of each type of respiratory inhibition is a function of growth temperature.  相似文献   

12.
Why the leaves of cold temperate deciduous and moisture-loving angiosperms are so often toothed has long puzzled biologists because the functional consequences of teeth remain poorly understood. Here we provide functional and structural evidence that marginal leaf teeth of Chloranthus japonicus, an understory herb, enable the release of guttation sap during root pressure. When guttation from teeth hydathodes was experimentally blocked, we found that the leaf intercellular airspaces became flooded. Measurements of chlorophyll a fluorescence revealed that internal flooding resulted in an inhibition of photosynthesis, most likely through the formation of a film of water within the leaf that reduced CO2 diffusion. Comparing a developmental series of leaves with and without teeth experimentally covered with wax, we found that teeth did not affect overall leaf stomatal conductance and CO2 uptake. However, maximal and effective light-saturation PSII quantum yields of teeth were found to be lower or equal to the surrounding lamina throughout leaf ontogeny. Collectively, our results suggest hydathodes and their development on teeth apices enable the avoidance of mesophyll flooding by root pressure. We discuss how these new findings bear on the potential physiological interpretations of models that apply leaf marginal traits to infer ancient climates.  相似文献   

13.
The anatomical features of leaves in 11 species of plants grown in a temperature gradient and a temperature + CO2 gradient were studied. The palisade parenchyma thickness, the spongy parenchyma thickness and the total leaf thickness were measured and analyzed to investigate the effects of elevated temperature and CO2 on the anatomical characteristics of the leaves. Our results show that with the increase of temperature, the leaf thickness of C4 species increased while the leaf thickness of C3 species showed no constant changes. With increased CO2, seven out of nine C3 species exhibited increased total leaf thickness. In C4 species, leaf thickness decreased. As for the trend on the multi-grades, the plants exhibited linear or non-linear changes. With the increase of temperature or both temperature and CO2 for the 11 species investigated, leaf thickness varied greatly in different plants (species) and even in different branches on the same plant. These results demonstrated that the effect of increasing CO2 and temperature on the anatomical features of the leaves were species-specific. Since plant structures are correlated with plant functions, the changes in leaf anatomical characteristics in elevated temperature and CO2 may lead to functional differences.  相似文献   

14.
Despite mounting evidence showing that C4 plants can accumulate more biomass at elevated CO2 partial pressure (p(CO2)), the underlying mechanisms of this response are still largely unclear. In this paper, we review the current state of knowledge regarding the response of C4 plants to elevated p(CO2) and discuss the likely mechanisms. We identify two main routes through which elevated p(CO2) can stimulate the growth of both well-watered and water-stressed C4 plants. First, through enhanced leaf CO2 assimilation rates due to increased intercellular p(CO2). Second, through reduced stomatal conductance and subsequently leaf transpiration rates. Reduced transpiration rates can stimulate leaf CO2 assimilation and growth rates by conserving soil water, improving shoot water relations and increasing leaf temperature. We argue that bundle sheath leakiness, direct CO2 fixation in the bundle sheath or the presence of C3-like photosynthesis in young C4 leaves are unlikely explanations for the high CO2-responsiveness of C4 photosynthesis. The interactions between elevated p(CO2), leaf temperature and shoot water relations on the growth and photosynthesis of C4 plants are identified as key areas needing urgent research.  相似文献   

15.
Abstract Plants grown under elevated carbon dioxide (CO2) experience physiological changes that influence their suitability as food for insects. To determine the effects of living on soybean (Glycine max Linnaeus) grown under elevated CO2, population growth of the soybean aphid (Aphis glycines Matsumura) was determined at the SoyFACE research site at the University of Illinois, Urbana‐Champaign, Illinois, USA, grown under elevated (550 μL/L) and ambient (370 μL/L) levels of CO2. Growth of aphid populations under elevated CO2 was significantly greater after 1 week, with populations attaining twice the size of those on plants grown under ambient levels of CO2. Soybean leaves grown under elevated levels of CO2 were previously demonstrated at SoyFACE to have increased leaf temperature caused by reduced stomatal conductance. To separate the increased leaf temperature from other effects of elevated CO2, air temperature was lowered while the CO2 level was increased, which lowered overall leaf temperatures to those measured for leaves grown under ambient levels of CO2. Aphid population growth on plants grown under elevated CO2 and reduced air temperature was not significantly greater than on plants grown under ambient levels of CO2. By increasing Glycine max leaf temperature, elevated CO2 may increase populations of Aphis glycines and their impact on crop productivity.  相似文献   

16.
The anatomical features of leaves in 11 species of plants grown in a temperature gradient and a temperature + CO2 gradient were studied. The palisade parenchyma thickness, the spongy parenchyma thickness and the total leaf thickness were measured and analyzed to investigate the effects of elevated temperature and CO2 on the anatomical characteristics of the leaves. Our results show that with the increase of temperature, the leaf thickness of C4 species increased while the leaf thickness of C3 species showed no constant changes. With increased CO2, seven out of nine C3 species exhibited increased total leaf thickness. In C4 species, leaf thickness decreased. As for the trend on the multi-grades, the plants exhibited linear or non-linear changes. With the increase of temperature or both temperature and CO2 for the 11 species investigated, leaf thickness varied greatly in different plants (species) and even in different branches on the same plant. These results demonstrated that the effect of increasing CO2 and temperature on the anatomical features of the leaves were species-specific. Since plant structures are correlated with plant functions, the changes in leaf anatomical characteristics in elevated temperature and CO2 may lead to functional differences. Translated from Acta Ecologica Sinica, 2006, 26(2): 326–333 [译自: 生态学报]  相似文献   

17.
We measured the short‐term direct and long‐term indirect effects of elevated CO2 on leaf dark respiration of loblolly pine (Pinus taeda) and sweetgum (Liquidambar styraciflua) in an intact forest ecosystem. Trees were exposed to ambient or ambient + 200 µmol mol?1 atmospheric CO2 using free‐air carbon dioxide enrichment (FACE) technology. After correcting for measurement artefacts, a short‐term 200 µmol mol?1 increase in CO2 reduced leaf respiration by 7–14% for sweetgum and had essentially no effect on loblolly pine. This direct suppression of respiration was independent of the CO2 concentration under which the trees were grown. Growth under elevated CO2 did not appear to have any long‐term indirect effects on leaf maintenance respiration rates or the response of respiration to changes in temperature (Q10, R0). Also, we found no relationship between mass‐based respiration rates and leaf total nitrogen concentrations. Leaf construction costs were unaffected by growth CO2 concentration, although leaf construction respiration decreased at elevated CO2 in both species for leaves at the top of the canopy. We conclude that elevated CO2 has little effect on leaf tissue respiration, and that the influence of elevated CO2 on plant respiratory carbon flux is primarily through increased biomass.  相似文献   

18.
Rainfall and temperature are the primary limiting factors for optimum quality and yield of cultivated jujube (Ziziphus jujuba Mill.). Adaptation to arid and cool environments has been and remains an important goal of many jujube improvement programs. This study summarized the survey results of 116 Chinese jujube varieties grown at 33 sites in China. The objective was to identify the environmental factors that influence leaf morphology, and the implications for breeding and introduction of new jujube varieties. Jujube leaf morphological traits were evaluated for their potential relationships with mean annual temperature (MAT) and mean annual precipitation (MAP). The results showed that many leaf morphological traits had a strong linear relationship with local precipitation and temperature. Longer veins per unit area (VLA) and reduced leaf area and leaf perimeter were typical of arid areas. VLA was inversely related to MAT and MAP at the centers of origin of jujube. There was a positive relationship between leaf shape (perimeter2/area) and both MAT and MAP. These results indicated that leaf vein traits of Chinese jujubes might have resulted from their adaptation to environmental factors in the course of long-term evolution. Principal component analysis allocated the 116 jujube varieties to three different groups, differentiated on the basis of morphological and physiological leaf characteristics. Jujube varieties from the Hebei, Shandong, Henan, southern Shanxi and central Shaanxi provinces were closely related, as were varieties from northwest Shanxi and northeast Shaanxi provinces, and varieties from the Gansu and Ningxia provinces. These close relationships were partially attributed to the frequent exchanges of varieties within each group. Leaf venation characteristics might be used as reference indices for jujube variety introduction between different locations.Influences of Environmental Factors on Leaf Morphology of Chinese Jujubes  相似文献   

19.
Doubling of the current atmospheric CO2 concentration, and an increase in global mean annual temperatures of 1.5–6 °C, have been predicted to occur by the end of this century. Whilst the separate effects of CO2 and temperature on plant–insect interactions have been examined in a number of studies, few have investigated their combined impact. We carried out a factorial experiment to explore the effect of a doubling of CO2 concentration and a 3 °C temperature increase on the development of a complete generation of the leaf‐miner, Dialectica scalariella, in the host plant Paterson's Curse, Echium plantagineum. Elevated CO2 increased biomass, reduced leaf N and increased C:N ratios in the host plants. Leaf thickness also increased under elevated CO2, but only in the high‐temperature treatment. Female D. scalariella did not discriminate between plants grown at the different CO2 levels when ovipositing, despite the reduction in foliage quality under elevated CO2. Overall, the negative response of D. scalariella to elevated CO2 was greater than for many species of free‐living insects, presumably because of the limited mobility imposed by the leaf‐mining habit. Development was accelerated at the high temperature and slowed under elevated CO2. The net result was a reduction in development time of ~14 days in the elevated CO2/high temperature treatment, compared to the ambient CO2/low temperature treatment. Larval survivorship and adult moth weight were both affected by a significant interaction between CO2 and temperature. At the low temperature, CO2 had little effect on survivorship, but at the high temperature, survivorship was significantly reduced under elevated CO2. Similarly, elevated CO2 had a stronger negative effect on adult moth weight when combined with the high‐temperature treatment. A possible explanation for these results is that the high temperature accelerated insect development to such an extent that the larvae did not have sufficient feeding time to compensate for the poorer quality of the foliage. The frequency with which interactions between CO2 and temperature affected both plant and insect performance in this study highlights the need for caution when predicting the effects of future climate change on plant–insect interactions from single‐factor experiments.  相似文献   

20.
Photosynthetic gas exchange properties of leaves of the mangrove, Rhizophora stylosa Griff., were investigated in order to assess its productivity and gain some insight into the constraints set upon it by the saline habitat. Mature trees of this dominant species were studied in their natural, tidal-forest environment at Hinchinbrook Is., North Queensland for two periods during the dry season. Individual leaves were enclosed in a chamber wherein environmental conditions were varied. CO2 assimilation, transpiration and environmental parameters were monitored during daylight hours by instrumentation housed in a mobile laboratory mounted on a barge. Analysis of the daily course of leaf gas exchange revealed a CO2 assimilation capacity comparable with that of many glycophytic trees. Photosynthesis was strongly influenced by leaf temperature as well as photon flux density. There was a strong and steadily increasing inhibition of gas exchange as leaf temperatures and, consequently, the leaf to air VPD increased. CO2 assimilation rates and leaf conductances to water vapour diffusion were strongly correlated, resulting in nearly constant internal CO2 concentrations in the leaves under the full range of conditions. The effect of leaf orientation in minimizing the leaf-to-air temperature difference was striking. The close coordination between stomatal conductance and CO2 assimilation rate in this mangrove results in high water use efficiency. This sparing use of water may be an important factor underlying the high salinity tolerance of mangroves.Contribution No. 254 from the Australian Institute of Marine Science  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号