首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The ever increasing discovery of non-coding RNAs leads to unprecedented demand for the accurate modeling of RNA folding, including the predictions of two-dimensional (base pair) and three-dimensional all-atom structures and folding stabilities. Accurate modeling of RNA structure and stability has far-reaching impact on our understanding of RNA functions in human health and our ability to design RNA-based therapeutic strategies.

Results

The Vfold server offers a web interface to predict (a) RNA two-dimensional structure from the nucleotide sequence, (b) three-dimensional structure from the two-dimensional structure and the sequence, and (c) folding thermodynamics (heat capacity melting curve) from the sequence. To predict the two-dimensional structure (base pairs), the server generates an ensemble of structures, including loop structures with the different intra-loop mismatches, and evaluates the free energies using the experimental parameters for the base stacks and the loop entropy parameters given by a coarse-grained RNA folding model (the Vfold model) for the loops. To predict the three-dimensional structure, the server assembles the motif scaffolds using structure templates extracted from the known PDB structures and refines the structure using all-atom energy minimization.

Conclusions

The Vfold-based web server provides a user friendly tool for the prediction of RNA structure and stability. The web server and the source codes are freely accessible for public use at “http://rna.physics.missouri.edu”.  相似文献   

2.
Cao S  Chen SJ 《RNA (New York, N.Y.)》2005,11(12):1884-1897
Based on the virtual bond representation for the nucleotide backbone, we develop a reduced conformational model for RNA. We use the experimentally measured atomic coordinates to model the helices and use the self-avoiding walks in a diamond lattice to model the loop conformations. The atomic coordinates of the helices and the lattice representation for the loops are matched at the loop-helix junction, where steric viability is accounted for. Unlike the previous simplified lattice-based models, the present virtual bond model can account for the atomic details of realistic three-dimensional RNA structures. Based on the model, we develop a statistical mechanical theory for RNA folding energy landscapes and folding thermodynamics. Tests against experiments show that the theory can give much more improved predictions for the native structures, the thermal denaturation curves, and the equilibrium folding/unfolding pathways than the previous models. The application of the model to the P5abc region of Tetrahymena group I ribozyme reveals the misfolded intermediates as well as the native-like intermediates in the equilibrium folding process. Moreover, based on the free energy landscape analysis for each and every loop mutation, the model predicts five lethal mutations that can completely alter the free energy landscape and the folding stability of the molecule.  相似文献   

3.
We propose a novel method of calculation of free energy for coarse grained models of proteins by combining our newly developed multibody potentials with entropies computed from elastic network models of proteins. Multi-body potentials have been of much interest recently because they take into account three dimensional interactions related to residue packing and capture the cooperativity of these interactions in protein structures. Combining four-body non-sequential, four-body sequential and pairwise short range potentials with optimized weights for each term, our coarse-grained potential improved recognition of native structure among misfolded decoys, outperforming all other contact potentials for CASP8 decoy sets and performance comparable to the fully atomic empirical DFIRE potentials. By combing statistical contact potentials with entropies from elastic network models of the same structures we can compute free energy changes and improve coarse-grained modeling of protein structure and dynamics. The consideration of protein flexibility and dynamics should improve protein structure prediction and refinement of computational models. This work is the first to combine coarse-grained multibody potentials with an entropic model that takes into account contributions of the entire structure, investigating native-like decoy selection.  相似文献   

4.
The prediction of the three-dimensional structures of the native states of proteins from the sequences of their amino acids is one of the most important challenges in molecular biology. An essential task for solving this problem within coarse-grained models is the deduction of effective interaction potentials between the amino acids. Over the years, several techniques have been developed to extract potentials that are able to discriminate satisfactorily between the native and nonnative folds of a preassigned protein sequence. In general, when these potentials are used in actual dynamical folding simulations, they lead to a drift of the native structure outside the quasinative basin. In this article, we present and validate an approach to overcome this difficulty. By exploiting several numerical and analytical tools, we set up a rigorous iterative scheme to extract potentials satisfying a prerequisite of any viable potential: the stabilization of proteins within their native basin (less than 3-4 A RMSD). The scheme is flexible and is demonstrated to be applicable to a variety of parameterizations of the energy function, and it provides in each case the optimal potentials.  相似文献   

5.
We develop coarse-grained, distance- and orientation-dependent statistical potentials from the growing protein structural databases. For protein structural classes (alpha, beta, and alpha/beta), a substantial number of backbone-backbone and backbone-side-chain contacts stabilize the native folds. By taking into account the importance of backbone interactions with a virtual backbone interaction center as the 21st anisotropic site, we construct a 21 x 21 interaction scheme. The new potentials are studied using spherical harmonics analysis (SHA) and a smooth, continuous version is constructed using spherical harmonic synthesis (SHS). Our approach has the following advantages: (1) The smooth, continuous form of the resulting potentials is more realistic and presents significant advantages for computational simulations, and (2) with SHS, the potential values can be computed efficiently for arbitrary coordinates, requiring only the knowledge of a few spherical harmonic coefficients. The performance of the new orientation-dependent potentials was tested using a standard database of decoy structures. The results show that the ability of the new orientation-dependent potentials to recognize native protein folds from a set of decoy structures is strongly enhanced by the inclusion of anisotropic backbone interaction centers. The anisotropic potentials can be used to develop realistic coarse-grained simulations of proteins, with direct applications to protein design, folding, and aggregation.  相似文献   

6.
In prediction of a protein main-chain structure into which a query sequence of amino acids folds, one evaluates the relative stability of a candidate structure against reference structures. We developed a statistical theory for calculating the energy distribution over a main-chain structure ensemble, only with an amino acid composition given as a single argument. Then, we obtained a statistical formulae of the ensemble mean and ensemble variance V[E] of the reference structural energies, as explicit functions of the amino acid composition. The mean and the variance V[E] calculated from the formulae were well or roughly consistent with those resulting from a gapless threading simulation. We can use the formulae not only to perform the high-through-put screening of sequences in the inverse folding problem, but also to handle the problem analytically.  相似文献   

7.
The approach described in this paper on the prediction of folding nuclei in globular proteins with known three dimensional structures is based on a search of the lowest saddle points through the barrier separating the unfolded state from the native structure on the free-energy landscape of protein chain. This search is performed by a dynamic programming method. Comparison of theoretical results with experimental data on the folding nuclei of two dozen of proteins shows that our model provides good phi value predictions for proteins whose structures have been determined by X-ray analysis, with a less limited success for proteins whose structures have been determined by NMR techniques only. Consideration of a full ensemble of transition states results in more successful prediction than consideration of only the transition states with the minimal free energy. In conclusion we have predicted the localization of folding nuclei for three dimensional protein structures for which kinetics of folding is studied now but the localization of folding nuclei is still unknown.  相似文献   

8.
Cellular processes involve large numbers of RNA molecules. The functions of these RNA molecules and their binding to molecular machines are highly dependent on their 3D structures. One of the key challenges in RNA structure prediction and modeling is predicting the spatial arrangement of the various structural elements of RNA. As RNA folding is generally hierarchical, methods involving coarse-grained models hold great promise for this purpose. We present here a novel coarse-grained method for sampling, based on game theory and knowledge-based potentials. This strategy, GARN (Game Algorithm for RNa sampling), is often much faster than previously described techniques and generates large sets of solutions closely resembling the native structure. GARN is thus a suitable starting point for the molecular modeling of large RNAs, particularly those with experimental constraints. GARN is available from: http://garn.lri.fr/.  相似文献   

9.
An approach to predicting folding nuclei in globular proteins with known three-dimensional structures is proposed. This approach is based on the pinpointing of the lowest saddle points on the barrier between the unfolded state and native structure on the free-energy landscape of a protein chain; the proposed technique uses the dynamic programming method. A comparison of calculation results with experimental data on the folding nuclei of 21 proteins shows that the model provides good Φ value predictions for protein structures determined by X-ray analysis and, less successfully, in structures determined by nuclear magnetic resonance. Consideration of the whole ensemble of transition states provides a better prediction of folding nuclei than consideration of only transition states with lowest free energies. In addition, we predict the location of folding nuclei in three-dimensional structures of some proteins whose folding kinetics is being studied, but there is no experimental evidence concerning their folding nuclei.  相似文献   

10.
RNA molecules play integral roles in gene regulation, and understanding their structures gives us important insights into their biological functions. Despite recent developments in template-based and parameterized energy functions, the structure of RNA--in particular the nonhelical regions--is still difficult to predict. Knowledge-based potentials have proven efficient in protein structure prediction. In this work, we describe two differentiable knowledge-based potentials derived from a curated data set of RNA structures, with all-atom or coarse-grained representation, respectively. We focus on one aspect of the prediction problem: the identification of native-like RNA conformations from a set of near-native models. Using a variety of near-native RNA models generated from three independent methods, we show that our potential is able to distinguish the native structure and identify native-like conformations, even at the coarse-grained level. The all-atom version of our knowledge-based potential performs better and appears to be more effective at discriminating near-native RNA conformations than one of the most highly regarded parameterized potential. The fully differentiable form of our potentials will additionally likely be useful for structure refinement and/or molecular dynamics simulations.  相似文献   

11.
RNA secondary structure is often predicted from sequence by free energy minimization. Over the past two years, advances have been made in the estimation of folding free energy change, the mapping of secondary structure and the implementation of computer programs for structure prediction. The trends in computer program development are: efficient use of experimental mapping of structures to constrain structure prediction; use of statistical mechanics to improve the fidelity of structure prediction; inclusion of pseudoknots in secondary structure prediction; and use of two or more homologous sequences to find a common structure.  相似文献   

12.
We describe a method for predicting the three-dimensional (3-D) structure of proteins from their sequence alone. The method is based on the electrostatic screening model for the stability of the protein main-chain conformation. The free energy of a protein as a function of its conformation is obtained from the potentials of mean force analysis of high-resolution x-ray protein structures. The free energy function is simple and contains only 44 fitted coefficients. The minimization of the free energy is performed by the torsion space Monte Carlo procedure using the concept of hierarchic condensation. The Monte Carlo minimization procedure is applied to predict the secondary, super-secondary, and native 3-D structures of 12 proteins with 28–110 amino acids. The 3-D structures of the majority of local secondary and super-secondary structures are predicted accurately. This result suggests that control in forming the native-like local structure is distributed along the entire protein sequence. The native 3-D structure is predicted correctly for 3 of 12 proteins composed mainly from the α-helices. The method fails to predict the native 3-D structure of proteins with a predominantly β secondary structure. We suggest that the hierarchic condensation is not an appropriate procedure for simulating the folding of proteins made up primarily from β-strands. The method has been proved accurate in predicting the local secondary and super-secondary structures in the blind ab initio 3-D prediction experiment. Proteins 31:74–96, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
2-Aminopurine (2AP) is a fluorescent adenine analog that probes mainly base stacking in nucleic acids. We labeled the loop or the stem of the RNA hairpin gacUACGguc with 2AP to study folding thermodynamics and kinetics at both loci. Thermal melts and fast laser temperature jumps detected by 2AP fluorescence monitored the stability and folding/unfolding kinetics. The observed thermodynamic and kinetic traces of the stem and loop mutants, though strikingly different at a first glance, can be fitted to the same free-energy landscape. The differences between the two probe locations arise because base stacking decreases upon unfolding in the stem, whereas it increases in the loop. We conclude that 2AP is a conservative adenine substitution for mapping out the contributions of different RNA structural elements to the overall folding process. Molecular dynamics (MD) totaling 0.6 μsec were performed to look at the conformations populated by the RNA at different temperatures. The combined experimental data, and MD simulations lead us to propose a minimal four-state free-energy landscape for the RNA hairpin. Analysis of this landscape shows that a sequential folding model is a good approximation for the full folding dynamics. The frayed state formed initially from the native state is a heterogeneous ensemble of structures whose stem is frayed either from the end or from the loop.  相似文献   

14.
15.
RNA molecules are important cellular components involved in many fundamental biological processes. Understanding the mechanisms behind their functions requires knowledge of their tertiary structures. Though computational RNA folding approaches exist, they often require manual manipulation and expert intuition; predicting global long-range tertiary contacts remains challenging. Here we develop a computational approach and associated program module (RNAJAG) to predict helical arrangements/topologies in RNA junctions. Our method has two components: junction topology prediction and graph modeling. First, junction topologies are determined by a data mining approach from a given secondary structure of the target RNAs; second, the predicted topology is used to construct a tree graph consistent with geometric preferences analyzed from solved RNAs. The predicted graphs, which model the helical arrangements of RNA junctions for a large set of 200 junctions using a cross validation procedure, yield fairly good representations compared to the helical configurations in native RNAs, and can be further used to develop all-atom models as we show for two examples. Because junctions are among the most complex structural elements in RNA, this work advances folding structure prediction methods of large RNAs. The RNAJAG module is available to academic users upon request.  相似文献   

16.
We have developed a new combined approach for ab initio protein structure prediction. The protein conformation is described as a lattice chain connecting C(alpha) atoms, with attached C(beta) atoms and side-chain centers of mass. The model force field includes various short-range and long-range knowledge-based potentials derived from a statistical analysis of the regularities of protein structures. The combination of these energy terms is optimized through the maximization of correlation for 30 x 60,000 decoys between the root mean square deviation (RMSD) to native and energies, as well as the energy gap between native and the decoy ensemble. To accelerate the conformational search, a newly developed parallel hyperbolic sampling algorithm with a composite movement set is used in the Monte Carlo simulation processes. We exploit this strategy to successfully fold 41/100 small proteins (36 approximately 120 residues) with predicted structures having a RMSD from native below 6.5 A in the top five cluster centroids. To fold larger-size proteins as well as to improve the folding yield of small proteins, we incorporate into the basic force field side-chain contact predictions from our threading program PROSPECTOR where homologous proteins were excluded from the data base. With these threading-based restraints, the program can fold 83/125 test proteins (36 approximately 174 residues) with structures having a RMSD to native below 6.5 A in the top five cluster centroids. This shows the significant improvement of folding by using predicted tertiary restraints, especially when the accuracy of side-chain contact prediction is >20%. For native fold selection, we introduce quantities dependent on the cluster density and the combination of energy and free energy, which show a higher discriminative power to select the native structure than the previously used cluster energy or cluster size, and which can be used in native structure identification in blind simulations. These procedures are readily automated and are being implemented on a genomic scale.  相似文献   

17.
A computer program is presented which determines the secondary structure of linear RNA molecules by simulating a hypothetical process of folding. This process implies the concept of 'nucleation centres', regions in RNA which locally trigger the folding. During the simulation, the RNA is allowed to fold into pseudoknotted structures, unlike all other programs predicting RNA secondary structure. The simulation uses published, experimentally determined free energy values for nearest neighbour base pair stackings and loop regions, except for new extrapolated values for loops larger than seven nucleotides. The free energy value for a loop arising from pseudoknot formation is set to a single, estimated value of 4.2 kcal/mole. Especially in the case of long RNA sequences, our program appears superior to other secondary structure predicting programs described so far, as tests on tRNAs, the LSU intron of Tetrahymena thermophila and a number of plant viral RNAs show. In addition, pseudoknotted structures are often predicted successfully. The program is written in mainframe APL and is adapted to run on IBM compatible PCs, Atari ST and Macintosh personal computers. On an 8 MHz 8088 standard PC without coprocessor, using STSC APL, it folds a sequence of 700 nucleotides in one and a half hour.  相似文献   

18.
《Biophysical journal》2020,118(6):1370-1380
Experiments have compared the folding of proteins with different amino acid sequences but the same basic structure, or fold. Results indicate that folding is robust to sequence variations for proteins with some nonlocal folds, such as all-β, whereas the folding of more local, all-α proteins typically exhibits a stronger sequence dependence. Here, we use a coarse-grained model to systematically study how variations in sequence perturb the folding energy landscapes of three model sequences with 3α, 4β + α, and β-barrel folds, respectively. These three proteins exhibit folding features in line with experiments, including expected rank order in the cooperativity of the folding transition and stability-dependent shifts in the location of the free-energy barrier to folding. Using a generalized-ensemble simulation approach, we determine the thermodynamics of around 2000 sequence variants representing all possible hydrophobic or polar single- and double-point mutations. From an analysis of the subset of stability-neutral mutations, we find that folding is perturbed in a topology-dependent manner, with the β-barrel protein being the most robust. Our analysis shows, in particular, that the magnitude of mutational perturbations of the transition state is controlled in part by the size or “width” of the underlying conformational ensemble. This result suggests that the mutational robustness of the folding of the β-barrel protein is underpinned by its conformationally restricted transition state ensemble, revealing a link between sequence and topological effects in protein folding.  相似文献   

19.
In its natural context, the hairpin ribozyme is constructed around a four-way helical junction. This presents the two loops that interact to form the active site on adjacent arms, requiring rotation into an antiparallel structure to bring them into proximity. In the present study we have compared the folding of this form of the ribozyme and subspecies lacking either the loops or the helical junction using fluorescence resonance energy transfer. The complete ribozyme as a four-way junction folds into an antiparallel structure by the cooperative binding of magnesium ions, requiring 20-40 microM for half-maximal extent of folding ([Mg2+]1/2) and a Hill coefficient n = 2. The isolated junction (lacking the loops) also folds into a corresponding antiparallel structure, but does so noncooperatively (n = 1) at a higher magnesium ion concentration ([Mg2+]1/2 = 3 mM). Introduction of a G + 1A mutation into loop A of the ribozyme results in a species with very similar folding to the simple junction, and complete loss of ribozyme activity. Removal of the junction from the ribozyme, replacing it either with a strand break (serving as a hinge) or a GC5 bulge, results in greatly impaired folding, with [Mg2+]1/2 > 20 mM. The results indicate that the natural form of the ribozyme undergoes ion-induced folding by the cooperative formation of an antiparallel junction and loop-loop interaction to generate the active form of the ribozyme. The four-way junction thus provides a scaffold in the natural RNA that facilitates the folding of the ribozyme into the active form.  相似文献   

20.
Predicting Ion Binding Properties for RNA Tertiary Structures   总被引:1,自引:0,他引:1  
Recent experiments pointed to the potential importance of ion correlation for multivalent ions such as Mg2+ ions in RNA folding. In this study, we develop an all-atom model to predict the ion electrostatics in RNA folding. The model can treat ion correlation effects explicitly by considering an ensemble of discrete ion distributions. In contrast to the previous coarse-grained models that can treat ion correlation, this new model is based on all-atom nucleic acid structures. Thus, unlike the previous coarse-grained models, this new model allows us to treat complex tertiary structures such as HIV-1 DIS type RNA kissing complexes. Theory-experiment comparisons for a variety of tertiary structures indicate that the model gives improved predictions over the Poisson-Boltzmann theory, which underestimates the Mg2+ binding in the competition with Na+. Further systematic theory-experiment comparisons for a series of tertiary structures lead to a set of analytical formulas for Mg2+/Na+ ion-binding to various RNA and DNA structures over a wide range of Mg2+ and Na+ concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号