首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Development of human embryonic stem cell (hESC)-based therapy requires derivation of in vitro expandable cell populations that can readily differentiate to specified cell types and engraft upon transplantation. Here, we report that hESCs can differentiate into skeletal muscle cells without genetic manipulation. This is achieved through the isolation of cells expressing a mesodermal marker, platelet-derived growth factor receptor-α (PDGFRA), following embryoid body (EB) formation. The ESC-derived cells differentiated into myoblasts in vitro as evident by upregulation of various myogenic genes, irrespective of the presence of serum in the medium. This result is further corroborated by the presence of sarcomeric myosin and desmin, markers for terminally differentiated cells. When transplanted in vivo, these pre-myogenically committed cells were viable in tibialis anterior muscles 14 days post-implantation. These hESC-derived cells, which readily undergo myogenic differentiation in culture medium containing serum, could be a viable cell source for skeletal muscle repair and tissue engineering to ameliorate various muscle wasting diseases.  相似文献   

2.

Background

Due to their self-renewal, embryonic stem cells (ESCs) are attractive cells for applications in regenerative medicine and tissue engineering. Although ESC differentiation has been used as a platform for generating bone in vitro and in vivo, the results have been unsatisfactory at best. It is possible that the traditional culture methods, which have been used, are not optimal and that other approaches must be explored.

Methodology/Principal Findings

ESCs were differentiated into osteoblast lineage using a micro-mass approach. In response to osteogenic differentiation medium, many cells underwent apoptosis, while others left the micro-mass, forming small aggregates in suspension. These aggregates were cultured in three different culture conditions (adhesion, static suspension, and stirred suspension), then examined for osteogenic potential in vitro and in vivo. In adhesion culture, ESCs primed to become osteoblasts recommitted to the adipocyte lineage in vitro. In a static suspension culture, resulting porous aggregates expressed osteoblasts markers and formed bone in vivo via intermembranous ossification. In a stirred suspension culture, resulting non-porous aggregates suppressed osteoblast differentiation in favor of expanding progenitor cells.

Conclusions/Significance

We demonstrate that microenvironment modulates cell fate and subsequent tissue formation during ESC differentiation. For effective tissue engineering using ESCs, it is important to develop optimized cell culture/differentiation conditions based upon the influence of microenvironment.  相似文献   

3.
胚胎干细胞起源的探讨   总被引:1,自引:0,他引:1  
杨炜峰  华进联  于海生  窦忠英 《遗传》2006,28(8):1037-1042
目前胚胎干细胞(ESCs)建系的取材来源包括桑椹胚的卵裂球、囊胚的内细胞团(ICM)、上胚层细胞和原始生殖细胞(PGCs),甚至从新生鼠睾丸细胞也分离得到类ES样细胞系。这就提出了一个问题,什么是ESCs最接近的体内细胞来源。传统观念常常把ESCs等同于ICM细胞,也有学者认为ESCs更象上胚层细胞,而在已知的分子标记基因方面,ESCs所具有的特征更接近体内早期生殖细胞。不清楚ESCs最接近的体内细胞来源,可能是制约许多品系小鼠和大多哺乳类动物建系成功率提高的原因之一。ESCs系与EG细胞系的分离条件不同表明,加强对ESCs多能性维持基因调控研究具有重要意义。本文从ESCs的经典概念及其发展,早期胚胎细胞和生殖细胞发育规律,早期胚胎细胞、早期生殖细胞和ESCs的关系等方面进行综合分析,认为ESCs可能有多种接近的体内细胞来源。进一步应通过对ESCs建系不同的取材细胞和不同品系的ESCs间进行比较研究,以便弄清ESCs的来源和转化机制,为提高不同物种ESCs建系效率提供理论支持。  相似文献   

4.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is an endogenous Ca2+ mobilizing nucleotide presented in various species. NAADP mobilizes Ca2+ from acidic organelles through two pore channel 2 (TPC2) in many cell types and it has been previously shown that NAADP can potently induce neuronal differentiation in PC12 cells. Here we examined the role of TPC2 signaling in the neural differentiation of mouse embryonic stem (ES) cells. We found that the expression of TPC2 was markedly decreased during the initial ES cell entry into neural progenitors, and the levels of TPC2 gradually rebounded during the late stages of neurogenesis. Correspondingly, TPC2 knockdown accelerated mouse ES cell differentiation into neural progenitors but inhibited these neural progenitors from committing to neurons. Overexpression of TPC2, on the other hand, inhibited mouse ES cell from entering the early neural lineage. Interestingly, TPC2 knockdown had no effect on the differentiation of astrocytes and oligodendrocytes of mouse ES cells. Taken together, our data indicate that TPC2 signaling plays a temporal and differential role in modulating the neural lineage entry of mouse ES cells, in that TPC2 signaling inhibits ES cell entry to early neural progenitors, but is required for late neuronal differentiation.  相似文献   

5.
Generation of new cardiomyocytes is critical for cardiac repair following myocardial injury, but which kind of stimuli is most important for cardiomyocyte regeneration is still unclear. Here we explore if apoptotic stimuli, manifested through caspase activation, influences cardiac progenitor up-regulation and cardiomyocyte differentiation. Using mouse embryonic stem cells as a cellular model, we show that sublethal activation of caspases increases the yield of cardiomyocytes while concurrently promoting the proliferation and differentiation of c-Kit+/α-actininlow cardiac progenitor cells. A broad-spectrum caspase inhibitor blocked these effects. In addition, the caspase inhibitor reversed the mRNA expression of genes expressed in cardiomyocytes and their precursors. Our study demonstrates that sublethal caspase-activation has an important role in cardiomyocyte differentiation and may have significant implications for promoting cardiac regeneration after myocardial injury involving exogenous or endogenous cell sources.  相似文献   

6.

Background

Lamins are structural proteins that are the major determinants of nuclear architecture and play important roles in various nuclear functions including gene regulation and cell differentiation. Mutations in the human lamin A gene cause a spectrum of genetic diseases that affect specific tissues. Most available mouse models for laminopathies recapitulate disease symptoms for muscle diseases and progerias. However, loss of human lamin A/C also has highly deleterious effects on fetal development. Hence it is important to understand the impact of lamin A/C expression levels on embryonic differentiation pathways.

Methodology and Principal Findings

We have investigated the differentiation potential of mouse embryonic stem cells containing reduced levels of lamin A/C by detailed lineage analysis of embryoid bodies derived from these cells by in vitro culture. We initially carried out a targeted disruption of one allele of the mouse lamin A/C gene (Lmna). Undifferentiated wild-type and Lmna+/− embryonic stem cells showed similar expression of pluripotency markers and cell cycle profiles. Upon spontaneous differentiation into embryoid bodies, markers for visceral endoderm such as α-fetoprotein were highly upregulated in haploinsufficient cells. However, neuronal markers such as β-III tubulin and nestin were downregulated. Furthermore, we observed a reduction in the commitment of Lmna+/− cells into the myogenic lineage, but no discernible effects on cardiac, adipocyte or osteocyte lineages. In the next series of experiments, we derived embryonic stem cell clones expressing lamin A/C short hairpin RNA and examined their differentiation potential. These cells expressed pluripotency markers and, upon differentiation, the expression of lineage-specific markers was altered as observed with Lmna+/− embryonic stem cells.

Conclusions

We have observed significant effects on embryonic stem cell differentiation to visceral endoderm, neuronal and myogenic lineages upon depletion of lamin A/C. Hence our results implicate lamin A/C level as an important determinant of lineage-specific differentiation during embryonic development.  相似文献   

7.
8.
胚胎干细胞(ESC)建系取材包括桑椹胚的卵裂球、囊胚的内细胞团(ICM)、上胚层细胞和原始生殖细胞(PGCs),甚至从新生鼠睾丸细胞也分离得到ES样细胞.传统观念常常把ESC等同于ICM细胞,也有学者认为ESC更像上胚层细胞,而在已知的基因标记方面,ESC所具有的特征更接近体内早期生殖细胞.不清楚ESC最接近的体内细胞类型与本质,可能是制约许多品系小鼠和大多哺乳类动物建系成功率提高的原因之一.综述了胚胎多能性细胞、早期生殖细胞和ESC的研究进展及相互关系,发现ESC可源于多种细胞类型.目前仍难以确定ESC最接近的体内细胞类型,进一步应通过研究不同体内细胞类型源ESC系间的差异,以弄清ESC本质,为提高ESC建系效率提供理论支持.  相似文献   

9.
韩嵘  苏平  尚克刚 《遗传学报》2001,28(9):816-821,T001
虽然ES细胞技术的应用十分广泛,对ES细胞多能性本质的研究还不是很深入,体外培养的ES细胞群体的不均一性加大了这方面研究的难度,报道了对ES细胞中特异表达的基因,将报告基因βgeo插入oct-基因转录元件中构建了标记载体pG18NG,转染ES细胞MESPU22和MESPU13后获得了稳定整合的细胞克隆,经体外培养、诱导分化、嵌入体制作等实验,证明利用该载体对ES细胞中的未分化细胞成功进行了标记,该标记在体内、体外都是有效的。  相似文献   

10.
11.
Researching the technology for in vitro differentiation of embryonic stem cells (ESCs) into neural lineages is very important in developmental biology, regenerative medicine, and cell therapy. Thus, studies on in vitro differentiation of ESCs into neural lineages by co-culture are expected to improve our understanding of this process. A co-culture system has long been used to study interactions between cell populations, improve culture efficiency, and establish synthetic interactions between populations. In this study, we investigated the effect of a co-culture of ESCs with neural stem cells (NSCs) in two-dimensional (2D) or three-dimensional (3D) culture conditions. Furthermore, we examined the effect of an NSC-derived conditioned medium (CM) on ESC differentiation. OG2-ESCs lost the specific morphology of colonies and Oct4-GFP when co-cultured with NSC. Additionally, real-time PCR analysis showed that ESCs co-cultured with NSCs expressed higher levels of ectoderm markers Pax6 and Sox1 under both co-culture conditions. However, the differentiation efficiency of CM was lower than that of the non-conditioned medium. Collectively, our results show that co-culture with NSCs promotes the differentiation of ESCs into the ectoderm.  相似文献   

12.
Glutamate is an excitatory neurotransmitter implicated in learning and memory processes, but at high concentrations it acts as an excitotoxin causing degeneration and neuronal death. The aim of this work was to determine the excitotoxic effect of glutamate and the regulation of metabotropic glutamate receptors (mGluR) during excitotoxicity in neurons and C6 glioma cells. Results show that glutamate causes excitotoxic damage only in cortical neurons. Loss of cell viability in neurons was glutamate concentration- and time-dependent. Total mGluR levels were significantly reduced in these cells when exposed to glutamate. However, in C6 cells, which have been used as a model of glial cells, these receptors were regulated in a biphasic manner, decreased after 6 h, and increased after 24/48 h of treatment. Results show a cell dependent mGluR regulation by glutamate exposure which could mediate the vulnerability or not to glutamate mediated excitotoxicity.  相似文献   

13.
无饲养层培养人胚胎干细胞方法的建立   总被引:3,自引:2,他引:3  
人胚胎干细胞(human embryonic stem cell,hES细胞)是当前医学研究的热点之一.然而hES细胞培养条件苛刻,通常需要采用鼠胚胎成纤维细胞(mouse embryonic fibroblast,MEFs)饲养层来维持其未分化状态,成为目前hES细胞研究的瓶颈之一、本实验成功地将hES细胞接种在细胞外基质包被的六孔板上培养,传代20次后细胞仍然保持良好的未分化状态,各种hES细胞生物学特性(如表面标志物SSEA-3、SSEA-4、TRA-1-60和TRA-1-8l,OCT-4,碱性磷酸酶及体内外分化潜能等)均无改变;其冻存、复苏效果与生长在饲养层上的hES细胞无明显差异.因此,该无饲养层培养体系可以用于培养hES细胞,并为hES细胞转基因研究及大规模培养打下良好的基础.  相似文献   

14.
造血干细胞移植已成为治疗白血病、再生障碍性贫血、重症免疫缺陷征、地中海贫血、急性放射病、某些恶性实体瘤和淋巴瘤等造血及免疫系统功能障碍性疾病的成熟技术和重要手段,另外这一技术还被尝试用于治疗艾滋病,已取得积极的效果。但是由于移植需要配型相同的供体,并且过程复杂,使得造血干细胞移植因缺少配型相同的供体来源以及费用昂贵而不能被广泛应用。胚胎干细胞是一种能够在体外保持未分化状态并且能进行无限增殖的细胞,在适合条件下能够分化为体内各种类型的细胞,研究胚胎干细胞分化为造血干细胞,不仅可作为研究动物的早期造血发生的模型,而且可以增加造血干细胞的来源,还可以通过基因剔除、治疗性克隆等方法来解决移植排斥的问题,从而为造血干细胞移植的发展扫除了障碍,因此有着重要的研究价值和应用前景。现对胚胎干细胞体外分化为造血干细胞的诱导方法,诱导过程中的调控机制,并对胚胎干细胞分化为造血干细胞的存在问题和发展前景进行讨论。  相似文献   

15.
核移植胚胎干细胞的研究及其应用前景   总被引:4,自引:0,他引:4  
随着核移植技术和干细胞技术的逐渐成熟,目前已获得牛、小鼠核移植胚胎干细胞,以及人 - 兔异种间核移植胚胎干细胞,这些细胞在体外可分化成多种细胞形态 . 已经进行的实验性动物克隆性治疗,显示了诱人的潜力,但人核移植胚胎干细胞研究还面临着许多问题,如建系效率低、卵母细胞来源有限以及伦理学和安全性问题等 . 长远地看,随着克隆效率的提高,在道德与法律之间达成共识,核移植胚胎干细胞必将造福人类 .  相似文献   

16.
小鼠胚胎干细胞的培养   总被引:1,自引:0,他引:1  
目的:建立小鼠胚胎干细胞(embryonic stem cells,ES)的培养方法。方法:制备G418抗性的原代小鼠胚胎成纤维细胞,经丝裂霉素C处理后成滋养层细胞,将小鼠胚胎干细胞复苏后,应用含白血病抑制因子的ES细胞培养液,培养小鼠ES细胞,观察集落的生长情况,并在光镜下观察细胞形态。结果:小鼠胚胎成纤维细胞生长良好,ES细胞呈克隆状生长,且保持未分化状态。结论:建立了小鼠胚胎干细胞培养的有效方法,为下一步基因打靶奠定基础。  相似文献   

17.
人胚胎干细胞(human embryonic stem cell,hESCs)是早期胚胎或原始性腺中分离出来的一类细胞,它具有无限增殖、自我更新和全能分化的特性。无论在体内还是体外环境,人胚胎干细胞都能分化为机体几乎所有类型的细胞。基于其全能分化性,胚胎干细胞成为治疗各种退行性疾病的理想细胞来源。然而,在目前培养条件下所建立的胚胎干细胞株,仍然存在动物源性物质潜在污染的问题。因此,更优化的建株及培养条件十分重要。  相似文献   

18.
19.
饲养层及细胞因子对胚胎干细胞的影响   总被引:4,自引:0,他引:4  
不同动物胚胎干细胞的生长条件不同,因此筛选合适的饲养层细胞建立适宜的培养体系是胚胎干细胞培养中的关键环节。本文就不同的饲养层细胞及各种外源细胞因子的作用做了简要论述。  相似文献   

20.
白血病抑制因子与胚胎干细胞   总被引:3,自引:0,他引:3  
白血病抑制因子对细胞的生长和分化有多种作用,通过与其受体结合传导信号,gp130与LIF受体β链的结合激活JAK激酶(JAK1和JAK2),JAK激酶磷酸化STAT信号转录子,STAT3的磷酸化对于阻止体外培养的干细胞的分化具有十分重要的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号