首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The α proteobacter Rhodobacter sphaeroides accumulates two cytochrome c oxidases (CcO) in its cytoplasmic membrane during aerobic growth: a mitochondrial-like aa3-type CcO containing a di-copper CuA center and mono-copper CuB, plus a cbb3-type CcO that contains CuB but lacks CuA. Three copper chaperones are located in the periplasm of R. sphaeroides, PCuAC, PrrC (Sco) and Cox11. Cox11 is required to assemble CuB of the aa3-type but not the cbb3-type CcO. PrrC is homologous to mitochondrial Sco1; Sco proteins are implicated in CuA assembly in mitochondria and bacteria, and with CuB assembly of the cbb3-type CcO. PCuAC is present in many bacteria, but not mitochondria. PCuAC of Thermus thermophilus metallates a CuA center in vitro, but its in vivo function has not been explored. Here, the extent of copper center assembly in the aa3- and cbb3-type CcOs of R. sphaeroides has been examined in strains lacking PCuAC, PrrC, or both. The absence of either chaperone strongly lowers the accumulation of both CcOs in the cells grown in low concentrations of Cu2 +. The absence of PrrC has a greater effect than the absence of PCuAC and PCuAC appears to function upstream of PrrC. Analysis of purified aa3-type CcO shows that PrrC has a greater effect on the assembly of its CuA than does PCuAC, and both chaperones have a lesser but significant effect on the assembly of its CuB even though Cox11 is present. Scenarios for the cellular roles of PCuAC and PrrC are considered. The results are most consistent with a role for PrrC in the capture and delivery of copper to CuA of the aa3-type CcO and to CuB of the cbb3-type CcO, while the predominant role of PCuAC may be to capture and deliver copper to PrrC and Cox11. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.  相似文献   

2.
In the uropathogenic Escherichia coli strain F11, in silico genome analysis revealed the dicistronic iron uptake operon fetMP, which is under iron-regulated control mediated by the Fur regulator. The expression of fetMP in a mutant strain lacking known iron uptake systems improved growth under iron depletion and increased cellular iron accumulation. FetM is a member of the iron/lead transporter superfamily and is essential for iron uptake by the Fet system. FetP is a periplasmic protein that enhanced iron uptake by FetM. Recombinant FetP bound Cu(II) and the iron analog Mn(II) at distinct sites. The crystal structure of the FetP dimer reveals a copper site in each FetP subunit that adopts two conformations: CuA with a tetrahedral geometry composed of His44, Met90, His97, and His127, and CuB, a second degenerate octahedral geometry with the addition of Glu46. The copper ions of each site occupy distinct positions and are separated by ∼1.3 Å. Nearby, a putative additional Cu(I) binding site is proposed as an electron source that may function with CuA/CuB displacement to reduce Fe(III) for transport by FetM. Together, these data indicate that FetMP is an additional iron uptake system composed of a putative iron permease and an iron-scavenging and potentially iron-reducing periplasmic protein.  相似文献   

3.
Freya A. Bundschuh  Klaus Hoffmeier 《BBA》2008,1777(10):1336-1343
Biogenesis of cytochrome c oxidase (COX) relies on a large number of assembly proteins, one of them being Surf1. In humans, the loss of Surf1 function is associated with Leigh syndrome, a fatal neurodegenerative disorder. In the soil bacterium Paracoccus denitrificans, homologous genes specifying Surf1 have been identified and located in two operons of terminal oxidases: surf1q is the last gene of the qox operon (coding for a ba3-type ubiquinol oxidase), and surf1c is found at the end of the cta operon (encoding subunits of the aa3-type cytochrome c oxidase). We introduced chromosomal single and double deletions for both surf1 genes, leading to significantly reduced oxidase activities in membrane. Our experiments on P. denitrificans surf1 single deletion strains show that both Surf1c and Surf1q are functional and act independently for the aa3-type cytochrome c oxidase and the ba3-type quinol oxidase, respectively. This is the first direct experimental evidence for the involvement of a Surf1 protein in the assembly of a quinol oxidase. Analyzing the heme content of purified cytochrome c oxidase, we conclude that Surf1, though not indispensable for oxidase assembly, is involved in an early step of cofactor insertion into subunit I.  相似文献   

4.
5.
Very little is known about the processes used by acidophile organisms to preserve stability and function of respiratory pathways. Here, we reveal a potential strategy of these organisms for protecting and keeping functional key enzymes under extreme conditions. Using Acidithiobacillus ferrooxidans, we have identified a protein belonging to a new cupredoxin subfamily, AcoP, for “acidophile CcO partner,” which is required for the cytochrome c oxidase (CcO) function. We show that it is a multifunctional copper protein with at least two roles as follows: (i) as a chaperone-like protein involved in the protection of the CuA center of the CcO complex and (ii) as a linker between the periplasmic cytochrome c and the inner membrane cytochrome c oxidase. It could represent an interesting model for investigating the multifunctionality of proteins known to be crucial in pathways of energy metabolism.  相似文献   

6.
7.
Cellular copper homeostasis requires transmembrane transport and compartmental trafficking while maintaining the cell essentially free of uncomplexed Cu2+/+. In bacteria, soluble cytoplasmic and periplasmic chaperones bind and deliver Cu+ to target transporters or metalloenzymes. Transmembrane Cu+-ATPases couple the hydrolysis of ATP to the efflux of cytoplasmic Cu+. Cytosolic Cu+ chaperones (CopZ) interact with a structural platform in Cu+-ATPases (CopA) and deliver copper into the ion permeation path. CusF is a periplasmic Cu+ chaperone that supplies Cu+ to the CusCBA system for efflux to the extracellular milieu. In this report, using Escherichia coli CopA and CusF, direct Cu+ transfer from the ATPase to the periplasmic chaperone was observed. This required the specific interaction of the Cu+-bound form of CopA with apo-CusF for subsequent metal transfer upon ATP hydrolysis. As expected, the reverse Cu+ transfer from CusF to CopA was not observed. Mutation of CopA extracellular loops or the electropositive surface of CusF led to a decrease in Cu+ transfer efficiency. On the other hand, mutation of Met and Glu residues proposed to be part of the metal exit site in the ATPase yielded enzymes with lower turnover rates, although Cu+ transfer was minimally affected. These results show how soluble chaperones obtain Cu+ from transmembrane transporters. Furthermore, by explaining the movement of Cu+ from the cytoplasmic pool to the extracellular milieu, these data support a mechanism by which cytoplasmic Cu+ can be precisely directed to periplasmic targets via specific transporter-chaperone interactions.  相似文献   

8.
The terminal oxidases of Paracoccus denitrificans   总被引:4,自引:2,他引:2  
Three distinct types of terminal oxidases participate in the aerobic respiratory pathways of Paracoccus denitrificans. Two alternative genes encoding sub unit I of the aa3-type cytochrome c oxidase have been isolated before, namely ctaDI and ctaDII. Each of these genes can be expressed separately to complement a double mutant (ActaDI, ActaDII), indicating that they are isoforms of subunit I of the aa3-type oxidase. The genomic locus of a quinol oxidase has been isolated: cyoABC. Thisprotohaem-containing oxidase, called cytochrome bb3, is the oniy quinoi oxidase expressed under the conditions used, in a triple oxidase mutant (ActaDI, ActaDII, cyoB::KmR) an alternative cyto-chrome c oxidase has been characterized; this cbb3-type oxidase has been partially purified. Both cytochrome aa3 and cytochrome bb3 are redox-driven proton pumps. The proton-pumping capacity of cytochrome cbb3 has been analysed; arguments for and against the active transport of protons by this novel oxidase complex are discussed.  相似文献   

9.
The kinetics of single-electron injection into the oxidized nonrelaxed state (OH → EH transition) of the aberrant ba3 cytochrome oxidase from Thermus thermophilus, noted for its lowered efficiency of proton pumping, was investigated by time-resolved optical spectroscopy. Two main phases of intraprotein electron transfer were resolved. The first component (τ ∼ 17 μs) reflects oxidation of CuA and reduction of the heme groups (low-spin heme b and high-spin heme a3 in a ratio close to 50:50). The subsequent component (τ ∼ 420 μs) includes reoxidation of both hemes by CuB. This is in significant contrast to the OH → EH transition of the aa3-type cytochrome oxidase from Paracoccus denitrificans, where the fastest phase is exclusively due to transient reduction of the low-spin heme a, without electron equilibration with the binuclear center. On the other hand, the one-electron reduction of the relaxed O state in ba3 oxidase was similar to that in aa3 oxidase and only included rapid electron transfer from CuA to the low-spin heme b. This indicates a functional difference between the relaxed O and the pulsed OH forms also in the ba3 oxidase from T. thermophilus.  相似文献   

10.
In reoxidation experiments with cytochrome c oxidase (EC 1.9.3.1) in the presence of both reducing substrate and molecular oxygen, a new EPR signal from Cu2+ has been observed. The new signal corresponds to 0.45 Cu per functional unit. It is concluded that the new EPR signal originates from Cu2+B, the copper which is EPR-nondetectable in the resting enzyme.Optical absorption changes in the 500–700 nm region accompanies the decay of the new Cu2+ EPR signal.Based on the results in this investigation a catalytic cycle for cytochrome oxidase is proposed.  相似文献   

11.
The role(s) of copper in a bacterial cytochrome oxidase of the aa 3-type was investigated by growth of Paracoccus denitrificans NCIB 8944, in batch and steady state continuous culture, in a medium from which the bulk of the copper had been extracted. In a medium containing approximately 0.02 M copper, cellular copper content, cytochromes a+a 3 and cytochrome a 3 were reduced to 55%, 58% and 33% respectively of control values and there were also less marked decreases in cytochromes c+c 1 (to 85%) and a CO-binding b-type cytochrome, possibly cytochrome o (to 71%). Copper deficiency elicited in reduced minus oxidized difference spectra a shift to shorter wavelengths and narrowing of the band width of the -band of the oxidase, and loss of a (negative) band near 830 nm attributable to CuA (the copper functionally associated with haem a in the oxidase complex). The oxidase in copper-deficient cells reacted with oxygen to form the oxy Compound A at rates similar to that in control cells but CO recombination to ferrous haem a 3 was slowed 4-fold in the copper deficient case. The results are interpreted as indicating loss of CuA and changes in the proportions of haems a and a 3 with retention of catalytic activity. Titrations of respiration rates with antimycin suggested that copper deficiency did not result in diversion of electron flux through an antimycin A-insensitive, cytochrome o-terminated branch of the respiratory chain.  相似文献   

12.
In Paracoccusdenitrificans the aa3-type cytochrome c oxidase and the bb3-type quinol oxidase have previously been characterized in detail, both biochemically and genetically. Here we report on the isolation of a genomic locus that harbours the gene cluster ccoNOQP, and demonstrate that it encodes an alternative cbb3-type cytochrome c oxidase. This oxidase has previously been shown to be specifically induced at low oxygen tensions, suggesting that its expression is controlled by an oxygen-sensing mechanism. This view is corroborated by the observation that the ccoNOQP gene cluster is preceded by a gene that encodes an FNR homologue and that its promoter region contains an FNR-binding motif. Biochemical and physiological analyses of a set of oxidase mutants revealed that, at least under the conditions tested, cytochromes aa3, bb3. and cbb3 make up the complete set of terminal oxidases in P. denitrificans. Proton-translocation measurements of these oxidase mutants indicate that all three oxidase types have the capacity to pump protons. Previously, however, we have reported decreased H+/e coupling efficiencies of the cbb3-type  相似文献   

13.
Respiratory particles containing an aa3-type cytochrome oxidase were prepared from Anacystis nidulans, Synechocystis 6714, Synechococcus lividus, Anabaena variabilis, Nostoc sp. strain MAC, Nostoc muscorum, and Mastigocladus laminosus. Oxidation of c-type cytochromes by membrane preparations of the different blue-green algae was observed using purified cytochromes from horse heart, Candida krusei, tuna, Saccharomyces oviformis, Rhodospirillum rubrum, Rhodospirillum molischianum, Rhodopseudomonas palustris, Rhodocyclus purpureus, Paracoccus denitrificans, Anacystis nidulans, Anabaena variabilis, Euglena gracilis, and Scenedesmus obliquus. Rapid oxidations were consistently observed with the mitochondrial c-type cytochromes (horse heart cytochrome c reacts most rapidly) and with cytochromes c2 from Rhodopseudomonas palustris and Rhodocyclus purpureus; in contrast, the cytochrome c2 from Rhodospirillum rubrum and the plastidic cytochromes from E. gracilis and Scendesmus obliquus were inactive with all membrane preparations. All reactions were inhibited by low concentrations of KCN, NaN3, and CO, and they were activated by Tween 80, thus indicating participation of the terminal oxidase. The results are discussed in view of the spectral similarities between the terminal oxidase of blue-green algae and the mitochondrial aa3-type cytochrome oxidase of plants and other eukaryotes.  相似文献   

14.
《BBA》1985,810(2):174-183
Cytochrome c oxidase of Nitrosomonas europaea has been called cytochrome a1 by Erickson et al. (Erickson, R.H., Hooper, A.B. and Terry, K.R. (1972) Biochim. Biophys. Acta 283, 155–166) because the reduced form of their preparation had the α peak at 595 nm. In the present studies, the enzyme was purified to an electrophoretically almost homogeneous state and some of its properties were studied. The enzyme much resembled cytochrome aa3-type oxidase although its reduced form showed the α peak at 597 nm. (1) The absorption spectra of the CO compound of the reduced enzyme and CN compounds of the oxidized and reduced enzyme were similar to those of the respective compounds of cytochrome aa3, as well as the absorption spectrum of the intact enzyme resembled that of the cytochrome. (2) The enzyme possessed two molecules of haem a and 1–2 atoms of copper in the molecule. (3) The enzyme molecule was composed of two kinds of subunits of Mr 50000 and 33000, respectively, as are other bacterial cytochromes aa3. Although the enzyme resembled other bacterial cytochromes aa3 in many properties, it differed greatly in two properties; its CO compound was easily dissociated into the oxidized enzyme and CO in air, and 50% inhibition of its activity by CN required approx. 100 μM of the reagent. The enzyme oxidized 0.57, 1.6 and 1.8 mol horse, Candida krusei and N. europaea ferrocytochromes c per s per mol haem a, respectively, in 10 mM phosphate buffer, pH 6.0. The turnover numbers with eukaryotic ferrocytochromes c were increased to 32 and 14, respectively, by addition of cardiolipin (14 μ · ml−1).  相似文献   

15.
Bradyrhizobium japonicum possesses a mitochondria-like respiratory chain terminating with an aa 3-type cytochrome c oxidase. The gene for subunit I of this enzyme (coxA) had been identified and cloned previously via heterologous hybridization using a Paracoccus denitrificans DNA probe. In the course of these studies, another B. japonicum DNA region was discovered which apparently encoded a second terminal oxidase that was different from cytochrome aa 3 but also belonged to the superfamily of heme/copper oxidases. Nucleotide sequence analysis revealed a cluster of at least four genes, coxMNOP, organized most probably in an operon. The predicted coxM gene product shared significant similarity with subunit II of cytochrome c oxidases from other organisms: in particular, all of the proposed CuA ligands were conserved as well as three of the four acidic amino acid residues that might be involved in the binding of cytochrome c. The coxN gene encoded a polypeptide with about 40% sequence identity with subunit I representatives including the previously found CoxA protein: the six presumed histidine ligands of the prosthetic groups (two hemes and CuB) were strictly conserved. A remarkable feature of the DNA seqence was the presence of two genes, coxO and coxP, whose products were both homologous to subunit III proteins. A B.japonicum coxN mutant strain was created by marker exchange mutagenesis which, however, exhibited no obvious defects in free-living, aerobic growth or in root nodule symbiosis with soybean. This shows that the coxMNOP genes are not essential for respiration in the N2 fixing bacteroid.Abbreviations ORF open reading frame - TMPD N,N,N',N'-tetramethyl-p-phenylenediamine  相似文献   

16.
Two critical cysteine residues in the copper-A site (CuA) on subunit II (CoxB) of bacterial cytochrome c oxidase lie on the periplasmic side of the cytoplasmic membrane. As the periplasm is an oxidizing environment as compared with the reducing cytoplasm, the prediction was that a disulfide bond formed between these cysteines must be eliminated by reduction prior to copper insertion. We show here that a periplasmic thioredoxin (TlpA) acts as a specific reductant not only for the Cu2+ transfer chaperone ScoI but also for CoxB. The dual role of TlpA was documented best with high-resolution crystal structures of the kinetically trapped TlpA-ScoI and TlpA-CoxB mixed disulfide intermediates. They uncovered surprisingly disparate contact sites on TlpA for each of the two protein substrates. The equilibrium of CoxB reduction by TlpA revealed a thermodynamically favorable reaction, with a less negative redox potential of CoxB (E0 = −231 mV) as compared with that of TlpA (E0 = −256 mV). The reduction of CoxB by TlpA via disulfide exchange proved to be very fast, with a rate constant of 8.4 × 104 m−1 s−1 that is similar to that found previously for ScoI reduction. Hence, TlpA is a physiologically relevant reductase for both ScoI and CoxB. Although the requirement of ScoI for assembly of the CuA-CoxB complex may be bypassed in vivo by high environmental Cu2+ concentrations, TlpA is essential in this process because only reduced CoxB can bind copper ions.  相似文献   

17.
Arsenite oxidation by the facultative chemolithoautotroph NT-26 involves a periplasmic arsenite oxidase. This enzyme is the first component of an electron transport chain which leads to reduction of oxygen to water and the generation of ATP. Involved in this pathway is a periplasmic c-type cytochrome that can act as an electron acceptor to the arsenite oxidase. We identified the gene that encodes this protein downstream of the arsenite oxidase genes (aroBA). This protein, a cytochrome c552, is similar to a number of c-type cytochromes from the α-Proteobacteria and mitochondria. It was therefore not surprising that horse heart cytochrome c could also serve, in vitro, as an alternative electron acceptor for the arsenite oxidase. Purification and characterisation of the c552 revealed the presence of a single heme per protein and that the heme redox potential is similar to that of mitochondrial c-type cytochromes. Expression studies revealed that synthesis of the cytochrome c gene was not dependent on arsenite as was found to be the case for expression of aroBA.  相似文献   

18.
The iron oxidation system from sulfur-grown Acidithiobacillus ferrooxidans ATCC 23270 cells was reconstituted in vitro. Purified rusticyanin, cytochrome c, and aa3-type cytochrome oxidase were essential for reconstitution. The iron-oxidizing activity of the reconstituted system was 3.3-fold higher than that of the cell extract from which these components were purified.  相似文献   

19.
Transposon Tn5 was used to mutate Bradyrhizobium japonicum USDA 61N. From over 5000 clones containing Tn5, 12 were selected and purified using a chemical reaction to identify oxidase-deficient clones. Four classes of mutants were identified based on the alterations in cytochromes. Most of the mutants had alterations in more than one cytochrome. Southern hybridization analysis of restricted genomic DNA of a representative strain of each class demonstrated that each mutant had a single Tn5 insert. Thus a single Tn5 insert produced pleiotropic effects on cytochromes. One class, which was totally deficient in cytochromes aa3 and c, produced ineffective nodules on soybeans. Most of the strains representing the other classes produced effective nodules but exceptions were observed in each class. Bacteroids of the wild-type strain contained cytochrome aa3. Bacteroids from one class of mutants were totally devoid of cytochrome aa3. Several of these strains produced effective symbioses indicating that cytochrome aa3 is not required for an effective symbiosis in this DNA homology group II strain which normally has this terminal oxidase in bacteroids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号