首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human and porcine coagulation factor VIII (fVIII) display a biosynthetic efficiency differential that is being exploited for the development of new protein and gene transfer-based therapies for hemophilia A. The cellular and/or molecular mechanism(s) responsible for this phenomenon have yet to be uncovered, although it has been temporally localized to post-translational biosynthetic steps. The unfolded protein response (UPR) is a cellular adaptation to structurally distinct (e.g. misfolded) or excess protein in the endoplasmic reticulum and is known to be induced by heterologous expression of recombinant human fVIII. Therefore, it is plausible that the biosynthetic differential between human and porcine fVIII results from differential UPR activation. In the current study, UPR induction was examined in the context of ongoing fVIII expression. UPR activation was greater during human fVIII expression when compared with porcine fVIII expression as determined by ER response element (ERSE)-luciferase reporter activity, X-box-binding protein 1 (XBP1) splicing, and immunoglobulin-binding protein (BiP) up-regulation. Immunofluorescence microscopy of fVIII expressing cells revealed that human fVIII was notably absent in the Golgi apparatus, confirming that endoplasmic reticulum to Golgi transport is rate-limiting. In contrast, a significant proportion of porcine fVIII was localized to the Golgi indicating efficient transit through the secretory pathway. Overexpression of BiP, an integral UPR protein, reduced the secretion of human fVIII by 50%, but had no effect on porcine fVIII biosynthesis. In contrast, expression of BiP shRNA increased human fVIII expression levels. The current data support the model of differential engagement of UPR by human and porcine fVIII as a non-traditional mechanism for regulation of gene product biosynthesis.  相似文献   

2.
Development of inhibitory antibodies to coagulation factor VIII (fVIII) is the primary obstacle to the treatment of hemophilia A in the developed world. This adverse reaction occurs in 20–30% of persons with severe hemophilia A treated with fVIII-replacement products and is characterized by the development of a humoral and neutralizing immune response to fVIII. Patients with inhibitory anti-fVIII antibodies are treated with bypassing agents including recombinant factor VIIa (rfVIIa). However, some patients display poor hemostatic response to bypass therapy and improved treatment options are needed. Recently, we demonstrated that fVIII inhibitors display widely variable kinetics of inhibition that correlate with their respective target epitopes. Thus, it was hypothesized that for antibodies that display slow rates of inhibition, supplementation of rfVIIa with fVIII would result in improved thrombin generation and be predictive of clinical responses to this novel treatment regimen. In order to test this hypothesis, 10 murine monoclonal antibodies (MAbs) with non-overlapping epitopes spanning fVIII, differential inhibition titers, and inhibition kinetics were studied using a thrombin generation assay. Of the 3 MAbs with high inhibitory titers, only the one with fast and complete (classically defined as “type I”) kinetics displayed significant inhibition of thrombin generation with no improvement upon supplementation of rfVIIa with fVIII. The other two MAbs that displayed incomplete (classically defined as “type II”) inhibition did not suppress the potentiation of thrombin generation by fVIII. All antibodies that did not completely inhibit fVIII activity demonstrated potentiation of thrombin generation by the addition of fVIII as compared to rfVIIa alone. In conclusion, fVIII alone or in combination with rfVIIa corrects the thrombin generation defect produced by the majority of anti-fVIII MAbs better than single agent rfVIIa. Therefore, combined fVIII/rfVIIa therapy may provide better hemostatic control than current therapy in some patients with anti-fVIII inhibitors.  相似文献   

3.
The stability of activated human and porcine factor VIII (fVIII) differ, but a direct comparison of their structural and functional properties has not been made. Highly purified, heterodimeric human recombinant and porcine plasma-derived fVIII were exchanged into a common buffer and some minor contaminants were removed by anion-exchange chromatography. The activations of human and porcine fVIII by thrombin were studied by a two-stage coagulation assay using human citrated plasma as the standard. The peak activation of porcine fVIII was 10-fold greater than human fVIII (1.1 x 10(6) unit/mg versus 1.1 x 10(5) unit/mg). The proteolytic fragmentation of fVIII by thrombin was evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and was not different between human and porcine fVIII, yielding previously identified bands corresponding to fragments A1, A2, A3-C1-C2, and the B domain. Following activation by thrombin, human fVIII was subjected to cation-exchange (Mono S) high performance liquid chromatography at pH 6.0 under conditions that yields stable, heterotrimeric (A1/A2/A3-C1-C2) porcine fVIIIaIIa (Lollar, P., and Parker, C.G. (1990) Biochemistry 28, 666-674). Coagulant activity was recovered in a single peak that was less than 0.5% that of porcine fVIIIaIIa (1.2 x 10(4) unit/mg versus 2.6 x 10(6) unit/mg). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the peak fraction revealed bands corresponding to the A3-C1-C2 and A1 fragments but only trace levels of the A2 fragment. In contrast, activation of human fVIII by thrombin followed by Mono S HPLC at pH 5.0 produced a peak with 10-fold greater activity (1.2 x 10(5) unit/mg) than at pH 6.0 and which contained significant amounts of the A2 fragment. We conclude that human fVIIIIIa, like porcine fVIIIIIa, is a heterotrimer and propose that its apparent decreased coagulant activity is due to weaker association of the A2 subunit.  相似文献   

4.
5.
Human and porcine factor VIII (fVIII) are activated by thrombin to form a heterotrimer composed of subunits designated A1 and A2 derived from the fVIII heavy chain (HC) and a subunit designated A3-C1-C2 derived from the fVIII light chain (LC). Human and porcine fVIII were activated at the same rate to the same peak levels but dissociation of the A2 subunit and concomitant loss of fVIIIa activity at pH 7.4 and 22 degrees C was 3-fold faster with human fVIIIa compared to porcine fVIIIa (0.35 min-1 versus 0.12 min-1, respectively). To determine structural requirements for the increased activity of porcine fVIII, plasma-derived hybrid human/porcine fVIII molecules were isolated. Porcine HC/human LC (pHC/hLC) fVIII had 44-fold higher coagulant activity than reconstituted human fVIII (hHC/hLC), 40-fold higher activity than hHC/pLC, and slightly (1.4-fold) higher activity than reconstituted porcine fVIII (pHC/pLC). Additionally, human and porcine A2 subunits and inactive A1/A3-C1-C2 human and porcine dimers were isolated and reconstitution experiments were done. Addition of the porcine A2 subunit to the human A1/A3-C1-C2 dimer produced coagulant activity similar to that found with porcine fVIIIa and superior to human fVIIIa. These results suggest that human fVIII has weaker coagulant activity than porcine fVIII due to faster dissociation of the A2 subunit and that the A2 subunit itself is responsible for the difference.  相似文献   

6.
Hemophilia A is a common X chromosome-linked genetic bleeding disorder caused by abnormalities in the coagulation factor VIII gene (F8). Hemophilia A patients suffer from a bleeding diathesis, such as life-threatening bleeding in the brain and harmful bleeding in joints and muscles. Because it could potentially be cured by gene therapy, subhuman animal models have been sought. Current mouse hemophilia A models generated by gene targeting of the F8 have difficulties to extrapolate human disease due to differences in the coagulation and immune systems between mice and humans. Here, we generated a porcine model of hemophilia A by nuclear transfer cloning from F8-targeted fibroblasts. The hemophilia A pigs showed a severe bleeding tendency upon birth, similar to human severe hemophiliacs, but in contrast to hemophilia A mice which rarely bleed under standard breed conditions. Infusion of human factor VIII was effective in stopping bleeding and reducing the bleeding frequency of a hemophilia A piglet but was blocked by the inhibitor against human factor VIII. These data suggest that the hemophilia A pig is a severe hemophilia A animal model for studying not only hemophilia A gene therapy but also the next generation recombinant coagulation factors, such as recombinant factor VIII variants with a slower clearance rate.  相似文献   

7.
Factor VIII (fVIII) is the plasma protein that is missing or deficient in hemophilia A. In contrast, elevated levels of fVIII are associated with an increased risk of arterial and venous thrombosis. fVIII is activated by thrombin to form a non-covalently linked A1/A2/A3-C1-C2 heterotrimer. At physiological concentrations, fVIIIa decays as a result of A2 subunit dissociation, which may help regulate the balance between hemostasis and thrombosis. A2 subunit dissociation is faster in human fVIIIa than in porcine fVIIIa, which may represent an evolutionary adaptation associated with the development of the upright posture and venous stasis in the lower extremities. To investigate the basis for the different decay kinetics of human and porcine fVIIIa, hybrid fVIII molecules representing all possible combinations of human and porcine A domains were isolated. The kinetics of fVIIIa decay were measured and fit to a model describing a reversible bimolecular reaction in which the dissociation rate constant, k, and dissociation constant, Kd, were the fitted parameters. Substitution of the porcine A1 domain into human fVIIIa produced a dissociation rate constant indistinguishable from porcine fVIIIa. Subsequently, substitution of the second cupredoxin-like A1 subdomain resulted in a dissociation rate constant similar to porcine fVIIIa, whereas substitution of the first cupredoxin-like A1 subdomain resulted in a dissociation rate constant intermediate between human and porcine fVIIIa. We propose that cupredoxin-like A1 subdomains in fVIII contain inter-species differences that are a result of selective pressure on the dissociation rate constant.  相似文献   

8.
Parker ET  Lollar P 《Biochemistry》2007,46(34):9737-9742
Blood coagulation factor VIII (fVIII) is activated by thrombin to form an A1/A2/A3-C1-C2 heterotrimer, which functions as a cofactor for factor IXa during intrinsic pathway factor X activation. Human thrombin-activated fVIII (fVIIIa) decays rapidly because of first-order dissociation of the A2 subunit, which may function to regulate the coagulation mechanism. The three fVIII A domains each consist of two cupredoxin-like subdomains. Substitution of the COOH-terminal A1 subdomain of porcine fVIIIa, which decays more slowly than human fVIIIa, reduces the dissociation rate constant for fVIIIa decay. Examination of a human fVIII A1-A2-A3 homology model [Pemberton, S., et al. (1997) Blood 89, 2413-2421) revealed a possible interaction between Q316 in the FG helix of the COOH-terminal A1 subdomain and M539 in the FG helix of the NH2-terminal A2 subdomain, which are sites where human and porcine fVIII differ. Decays of purified recombinant human and porcine fVIIIa and the human fVIIIa mutants Q316H, M539L and Q316H/M539L were compared at 23 and 37 degrees C. The decay rates of the Q316H and Q316H/M539L mutants, but not the M539L mutant, were significantly slower than human fVIIIa. These results indicate that the FG helix of the COOH-terminal A1 cupredoxin-like subdomain of fVIII may be under selective pressure by the requirements of hemostatic balance.  相似文献   

9.
We have demonstrated previously that catabolism of a coagulation factor VIII (fVIII) from its complex with von Willebrand factor (vWf) is mediated by low density lipoprotein receptor-related protein (LRP) (Saenko, E. L., Yakhyaev, A. V., Mikhailenko, I., Strickland, D. K., and Sarafanov, A. G. (1999) J. Biol. Chem. 274, 37685-37692). In the present study, we found that this process is facilitated by cell surface heparan sulfate proteoglycans (HSPGs). This was demonstrated by simultaneous blocking of LRP and HSPGs in model cells, which completely prevented fVIII internalization and degradation from its complex with vWf. In contrast, the selective blocking of either receptor had a lesser effect. In vivo studies of clearance of (125)I-fVIII-vWf complex in mice also demonstrated that the simultaneous blocking of HSPGs and LRP led to a more significant prolongation of fVIII half-life (5.5-fold) than blocking of LRP alone (3.5-fold). The cell culture and in vivo experiments revealed that HSPGs are also involved in another, LRP-independent pathway of fVIII catabolism. In both pathways, HSPGs act as receptors providing the initial binding of fVIII-vWf complex to cells. We demonstrated that this binding occurs via the A2 domain of fVIII, since A2, but not other portions of fVIII or isolated vWf, strongly inhibited cell surface binding of fVIII-vWf complex, and the affinities of A2 and fVIII-vWf complex for the cells were similar. The A2 site involved in binding to heparin was localized to the region 558-565, based on the ability of the corresponding synthetic peptide to inhibit A2 binding to heparin, used as a model for HSPGs.  相似文献   

10.
BACKGROUND: The development of anti-factor VIII (FVIII) antibodies (inhibitors) is a critical concern when considering gene therapy as a potential treatment modality for hemophilia A. We used a hemophilia A mouse model bred on different genetic backgrounds to explore genetically controlled differences in the immune response to FVIII gene therapy. METHODS: C57BL/6 FVIII knockout (C57-FVIIIKO) mice were bred with normal BALB/c (BAL) mice, to generate a recombinant congenic BAL-FVIIIKO model of hemophilia A. Early generation adenoviral (Ad) vectors containing the canine FVIII B-domain-deleted transgene under the control of either the CMV promoter or a tissue-restricted (TR) promoter were administered to C57-FVIIIKO, C57xBAL(F1)-FVIIIKO crosses, and BAL-FVIIIKO mice. FVIII expression, inhibitor development, inflammation, and vector-mediated toxicity were assessed. RESULTS: In response to administration of Ad-CMV-cFVIII, C57-FVIIIKO mice attain 3-fold higher levels of FVIII expression than BAL-FVIIIKO. All strains injected with Ad-CMV-FVIII displayed FVIII expression lasting only 2 weeks, with associated inhibitor development. C57-FVIII-KO mice that received Ad-TR-FVIII expressed FVIII for 12 months post-injection, whereas FVIII expression was limited to 1 week in C57xBAL(F1)-FVIIIKO and BAL-FVIIIKO mice. This loss of expression was associated with anti-FVIII inhibitor development. BAL-FVIIIKO mice showed increased hepatotoxicity with alanine aminotransferase levels reaching 4-fold higher levels than C57-FVIIIKO mice. However, C57-FVIIIKO mice initiate a more rapid and effective cell-mediated clearance of virally transduced cells than BAL-FVIIIKO, as evidenced by real-time PCR analysis of transduced tissues. Overall, strain-dependent differences in the immune response to FVIII gene delivery were only noted in the adaptive response, and not in the innate response. CONCLUSIONS: Our results indicate that the genetic background of the murine model of hemophilia A influences FVIII expression levels, the development of anti-FVIII inhibitors, clearance of transduced cells, and the severity of vector-mediated hepatotoxicity.  相似文献   

11.
Knowledge regarding the timing of embryonic expression of the mammalian genome is of relevance for the development of preimplantation diagnostic methods for human genetic diseases. For development of preimplantation diagnosis of lysosomal storage diseases, it will be necessary to know at which embryonic stage the genes for lysosomal enzymes are expressed. In previous studies by other investigators, it has been shown that lysosomal alpha- and beta-galactosidase and beta-glucuronidase in murine embryos increase 50- to 100-fold in activity between the two-cell and late blastocyst stage. We describe here expression of lysosomal beta-galactosidase in preimplantation ovine (two-cell through midblastocyst) and porcine (two-cell through late blastocyst) embryos. Expression of beta-galactosidase in ovine and porcine preimplantation embryos followed a similar rate of increase as that described for murine embryos. Activity of beta-galactosidase increased over 10-fold between the two- to four-cell and midblastocyst stages in ovine embryos, and 300-fold between the two- to four-cell and late blastocyst stages in porcine embryos. Activity expressed on a per cell basis was relatively constant in ovine embryos, as has been described in murine embryos, and increased approximately 5-fold on a per cell basis in porcine embryos. Activity of beta-galactosidase in ovine and porcine embryos initially was greater than 12-fold on a per cell or per embryo basis than in murine embryos evaluated. The knowledge of beta-galactosidase embryonic expression may provide the basis for preimplantation diagnosis of genetic beta-galactosidase deficiency in these species.  相似文献   

12.
Factor VIII is a multidomain protein composed of A1, A2, B, A3, C1, and C2 domains. Deficiency or dysfunction of factor VIII causes hemophilia A, a bleeding disorder. Administration of exogenous recombinant factor VIII as a replacement leads to development of inhibitory antibodies against factor VIII in 15-30% of hemophilia A patients. Hence, less immunogenic preparations of factor VIII are highly desirable. Inhibitory antibodies against factor VIII are mainly directed against immunodominant epitopes in C2, A3, and A2 domains. Further, several universal epitopes for CD4+ T-cells have been identified within the C2 domain. The C2 domain is also known to interact specifically with phosphatidylserine-rich lipid vesicles. Here, we have investigated the hypothesis that complexation of O-phospho-l-serine, the head group of phosphatidylserine, with the C2 domain can reduce the overall immunogenicity of factor VIII. The biophysical (circular dichroism and fluorescence) and biochemical studies (ELISA and size exclusion chromatography) showed that O-phospho-l-serine binds to the phospholipid-binding region in the C2 domain, and this interaction causes subtle changes in the tertiary structure of the protein. O-Phospho-l-serine also prevented aggregation of the protein under thermal stress. The immunogenicity of the factor VIII-O-phospho-l-serine complex was evaluated in hemophilia A mice. The total and inhibitory antibody titers were lower for factor VIII-O-phospho-l-serine complex compared with factor VIII alone. Moreover, factor VIII administered as a complex with O-phospho-l-serine retained in vivo activity in hemophilia A mice. Our results suggest that factor VIII-O-phospho-l-serine complex may be beneficial to increase the physical stability and reduce immunogenicity of recombinant factor VIII preparations.  相似文献   

13.
Factor VIII (FVIII) is an essential component in blood coagulation, a deficiency of which causes the serious bleeding disorder hemophilia A. Recently, with the development of purification level and recombinant techniques, protein replacement treatment to hemophiliacs is relatively safe and can prolong their life expectancy. However, because of the possibility of unknown contaminants in plasma-derived FVIII and recombinant FVIII, and high cost for hemophiliacs to use these products, gene therapy for hemophilia A is an attractive alternative to protein replacement therapy. Thus far, the adeno-associated virus (AAV) is a promising vector for gene therapy. Further improvement of the virus for clinical application depends on better understanding of the molecular structure and fate of the vector genome. It is likely that hemophilia will be the first genetic disease to be cured by somatic cell gene therapy.  相似文献   

14.
High plasma levels of soluble P-selectin are associated with thrombotic disorders and may predict future cardiovascular events. Mice with high levels of soluble P-selectin have more microparticles in their plasma than do normal mice. Here we show that chimeras of P-selectin and immunoglobulin (P-sel-Ig) induced formation of procoagulant microparticles in human blood through P-selectin glycoprotein ligand-1 (PSGL-1; encoded by the Psgl1 gene, officially known as Selpl). In addition, Psgl1-/- mice produced fewer microparticles after P-sel-Ig infusion and did not spontaneously increase their microparticle count in old age as do wild-type mice. Injected microparticles specifically bound to thrombi and thus could be involved in thrombin generation at sites of injury. Infusion of P-sel-Ig into hemophilia A mice produced a 20-fold increase over control immunoglobulin in microparticles containing tissue factor. This significantly improved the kinetics of fibrin formation in the hemophilia A mice and normalized their tail-bleeding time. P-sel-Ig treatment could become a new approach to sustained control of bleeding in hemophilia.  相似文献   

15.
凝血因子Ⅶ是一种维生素K依赖型的单链糖蛋白,在凝血过程中发挥着极其重要的作用,在临床上有广泛的应用,可用于伴有抑制物的血友病、先天性FⅦ缺乏症、血小板无力症及外科手术或严重外伤导致的创伤出血等止血用途.基因重组技术提供了能够大规模制备人凝血因子Ⅶ的有效途径,近年来已尝试并建立了多种人凝血因子Ⅶ的重组表达系统.对重组人凝...  相似文献   

16.
Acquired hemophilia is a serious coagulopathy usually affecting the elderly, persons with autoimmune disorders and, infrequently, women in the immediate postpartum period. It is due to autoantibodies directed against specific domains of the factor VIII molecule, leading to inhibition of factor VIII binding to von Willebrand factor, to activated factor IX or to negatively charged phospholipids. This results in bleeding into the skin, muscles, gastrointestinal and genitourinary tracts, and other sites. Mixing patient plasma with normal plasma prolongs the activated partial thromboplastin time of the normal plasma and the Bethesda assay provides a quantitative estimate of the strength of the inhibitor. The selection of therapeutic concentrates for the management of acute bleeding is related to the titer of the inhibitor; if less than 5 Bethesda Units, human factor VIII may be effective, but higher titer inhibitors usually respond only to porcine factor VIII, recombinant factor VIIa or activated prothrombin complex concentrates. Corticosteroid treatment leads to disappearance of the autoantibody in 50% of patients; cyclophosphamide and cyclosporine are effective in many who do not respond to steroids. Occasionally, high dose intravenous immunoglobulin or immunosorbent columns transiently decrease inhibitor titers and enable control of bleeding. Other autoantibodies have been described against factors V, VII, XI and, rarely, factor XIII and prothrombin. New approaches in the management of autoimmune disease and, especially, methods to establish tolerance are in development.  相似文献   

17.
Deficiencies of coagulation factors that cause a bleeding disorder, other than factor VIII and factor IX, are inherited as autosomal recessive traits and are generally rare, with prevalence in the general population varying between 1 in 500 000 and 1 in 2 000 000. In the last few years, the number of patients with recessively transmitted coagulation deficiencies has increased in European countries with a high rate of immigration of Islamic populations where consanguineous marriages are frequent. As a consequence of the relative rarity of these deficiencies, the type and severity of bleeding symptoms, the underlying molecular defects and the actual management of bleeding episodes are not as well established as for hemophilia A and B. This article reviews these disorders, in terms of clinical manifestations and characterization of the molecular defects. The general principles of management are also discussed.  相似文献   

18.
In the present study, we found that catabolism of coagulation factor VIII (fVIII) is mediated by the low density lipoprotein receptor-related protein (LPR), a liver multiligand endocytic receptor. In a solid phase assay, fVIII was shown to bind to LRP (K(d) 116 nM). The specificity was confirmed by a complete inhibition of fVIII/LRP binding by 39-kDa receptor-associated protein (RAP), an antagonist of all LRP ligands. The region of fVIII involved in its binding to LRP was localized within the A2 domain residues 484-509, based on the ability of the isolated A2 domain and the synthetic A2 domain peptide 484-509 to prevent fVIII interaction with LRP. Since vWf did not inhibit fVIII binding to LRP, we proposed that LRP receptor may internalize fVIII from its complex with vWf. Consistent with this hypothesis, mouse embryonic fibroblasts that express LRP, but not fibroblasts genetically deficient in LRP, were able to catabolize (125)I-fVIII complexed with vWf, which was not internalized by the cells. These processes could be inhibited by RAP and A2 subunit of fVIII, indicating that cellular internalization and degradation were mediated by interaction of the A2 domain of fVIII with LRP. In vivo studies of (125)I-fVIII.vWf complex clearance in mice demonstrated that RAP completely inhibited the fast phase of the biphasic (125)I-fVIII clearance that is responsible for removal of 60% of fVIII from circulation. Inhibition of the RAP-sensitive phase prolonged the half-life of (125)I-fVIII in circulation by 3.3-fold, indicating that LRP receptor plays an important role in fVIII clearance.  相似文献   

19.
A mutant human factor IX with arginine at 338 residual changed to alanine (hFIXR338A) by site-directed mutagenesis was introduced into AAV vectors, and a recombinant adeno-associ- ated viral vector containing hFIXR338A, prepared by rHSV/AAV hybrid helper virus system, was directly introduced to the hind leg muscle of factor IX knock out mice. The expression and the biological activity of human factor IX mutant, hFIXR338A, and the immune response against it in the treated mice were assayed and detected. The results showed that (i) the high-level expression of human factor IX mutant protein, hFIXR338A, has been detected in rAAV-hFIXR338A treated hemophilia B mice and lasted more than 15 weeks; (ii) the clotting activity of hFIXR338A in plasma is 34.2%± 5.23%, which is remarkably higher than that of (14.27% ± 3.4%) of wild type hFIX treated mice in the activated partial thromboplastin assay; (iii) immune response against factor IX R338A was absent, with no factor IX mutant protein (hFIXR338A) inhibitors development in the treated mice; and (iv) no local or systemic side-effects and toxicity associated with the gene transfer were found. It demonstrated the potential use of treating hemophilia B by recombinant adeno-associated viral vectors with mutant hFIXR338A gene, an alternative strategy for hemophilia B gene therapy to wild-type human factor IX.  相似文献   

20.
A mutant human factor IX with arginine at 338 residual changed to alanine (hFIXR338A) by site-directed mutagenesis was introduced into AAV vectors, and a recombinant adeno-associ-ated viral vector containing hFIXR338A, prepared by rHSV/AAV hybrid helper virus system, was directly introduced to the hind leg muscle of factor IX knock out mice. The expression and the biological activity of human factor IX mutant, hFIXR338A, and the immune response against it in the treated mice were assayed and detected. The results showed that (i) the high-level expression of human factor IX mutant protein, hFIXR338A, has been detected in rAAV-hFIXR338A treated hemophilia B mice and lasted more than 15 weeks; (ii) the clotting activity of hFIXR338A in plasma is 34.2%± 5.23%, which is remarkably higher than that of (14.27%±3.4%) of wild type hFIX treated mice in the activated partial thromboplastin assay; (iii) immune response against factor IX R338A was absent, with no factor IX mutant protein (hFIXR338A) inhibitors deve  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号