首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phylogenetic diversity (PD) represents the evolutionary history of a species assemblage and is a valuable measure of biodiversity because it captures not only species richness but potentially also genetic and functional diversity. Preserving PD could be critical for maintaining the functional integrity of the world's ecosystems, and species extinction will have a large impact on ecosystems in areas where the ecosystem cost per species extinction is high. Here, we show that impacts from global extinctions are linked to spatial location. Using a phylogeny of all mammals, we compare regional losses of PD against a model of random extinction. At regional scales, losses differ dramatically: several biodiversity hotspots in southern Asia and Amazonia will lose an unexpectedly large proportion of PD. Global analyses may therefore underestimate the impacts of extinction on ecosystem processes and function because they occur at finer spatial scales within the context of natural biogeography.  相似文献   

2.
3.
4.

Aim

Large ‐ scale diversity patterns are generated by different but not mutually exclusive mechanisms. However, understanding of multiple facets of diversity and their determinants in the freshwater realm remains limited. Here, we characterized the geographical gradients, hotspots and spatial congruence of three facets of freshwater molluscan diversity and evaluated the relative importance of three different underlying mechanisms related to the energy, area/environmental heterogeneity and dispersal/historical hypotheses.

Location

China.

Methods

Species richness (SR), functional richness (FR) and taxonomic distinctness (TD, a proxy of phylogenetic diversity) were calculated for 212 drainage basins with a total of 313 molluscan species. Spatial congruence between the diversity facets was evaluated with Pearson correlation coefficient and overlap among hotspots. Multiple linear regression models and variation partitioning were used to assess the relative importance of different mechanisms.

Results

Hotspots of SR and FR were mainly concentrated in the Yangtze River and Huai River basins, while high TD values were patchily distributed across China. We found extremely low spatial congruence between TD and both SR and FR, while there was relatively high concordance between SR and FR. All diversity facets were best explained by the dispersal/historical hypothesis with strong unique effects, followed by the factors related to the energy hypothesis. The area/ environmental heterogeneity hypothesis was only weakly supported.

Main conclusions

We found a potentially strong influence of dispersal limitation and evolutionary history on the geographical diversity gradients of Chinese molluscs. This finding contrasts with the general finding that energy‐related factors are the strongest correlates of diversity patterns at large spatial scales. Moreover, our results do not support the idea that using any one diversity component as a surrogate of the others in developing conservation strategies. Instead, an integrative approach embracing multiple facets of diversity should be adopted in the conservation of freshwater biodiversity.
  相似文献   

5.
于1999~2001年调查了神农架自然保护区6个地点不同栖息地的非飞行哺乳动物的物种丰富度。栖息地分为8类:原始林、择伐林(采伐枯立木)、次生林、灌木林、草地、常年性河流水溪、农田和人居住区。小型非飞行哺乳动物调查用捕鼠夹;大型非飞行哺乳动物调查主要根据皮张收购资料以及样线法和痕迹法;用10 m×10 m的样方调查林地树种丰富度。调查发现,神农架自然保护区有非飞行哺乳动物59种[不包括引进种梅花鹿(Cervus nippon)]。在同一海拔高度,原始林通常比择伐林和次生林的物种丰富度高,说明采伐严重降低了物种丰富度。对比同一栖息地不同海拔高度的物种丰富度,我们发现,在中海拔地段(800~1700 m)物种丰富度最高:如在原始林和次生林,海拔1700 m的东溪物种丰富度最高;在择伐林,海拔800 m的九冲物种丰富度最高。聚类分析显示,6个地点的哺乳动物物种组成可以分为两组:高海拔组(2100 m以上)和中低海拔组(1700 m以下)。各地点的哺乳动物物种组成与植被的垂直分布是一致的。各地点的物种丰富度与单位面积(100 m2)树种平均丰富度、栖息地类型数和海拔高度相关。3个环境变量间也是相关的:海拔高度对单位面积树种平均丰富度和栖息地类型数有重要影响。根据研究结果提出两点保护建议:第一,保护区的移民迁出和退耕还林工程应首先在物种丰富度最高的九冲进行,而后是东溪和下谷;第二,为了增加个体流和基因流,保护区东西两片相间的非保护区地带应划入保护区,建立栖息地廊道。  相似文献   

6.
The total number of insect species in the world is an important if elusive figure. We use a fresh approach to estimate global insect species richness, based on biogeographic patterns of diversity of well or better documented taxa. Estimates generated by various calculations, all variations on a theme, largely serve to substantiate suggestions that insect species are likely to number around 10 million or less.  相似文献   

7.
Habitat loss and fragmentation have highlighted the importance of monitoring remaining habitats. For megadiverse groups such as arthropods, of which many species are still being discovered, the use of higher taxonomic levels as substitutes for diversity may be a useful tool. The aim of this study was to evaluate the use of substitute taxonomic resolutions to assess the richness and composition of Laniatores harvestmen (Arachnida: Opiliones). The five resolutions selected were as follows: genus, family, subfamily, indicator taxa and intermediate resolution (combination of genus and species identification levels). In addition, we evaluated whether the diversity substitutes provide good estimates of latitudinal gradients. Nineteen Atlantic Forest sites located along a latitudinal gradient in northeastern Brazil were sampled. We recorded a total of 88 harvestmen species/morpho-species, distributed in 7 families, 15 subfamilies and 36 genera. Genus and intermediate resolution were excellent substitutes for harvestmen species richness. The efficiency differed according to the substitute resolution used. Four resolutions were adequate to replace the harvestmen composition: genus, intermediate resolution, indicator taxa, and subfamily. The number of harvestmen species recorded was significantly different between Seasonal Semideciduous Forest and Costal Atlantic Rainforest. The same relationship was also observed the same relationship was observed when we consider genus and intermediate resolution. Our results suggest the use of genus as a substitute for richness and composition of harvestmen for reducing monitoring costs and providing evaluation in a shorter time and a more practical way.  相似文献   

8.
Rarity, commonness, and patterns of species richness: the mammals of Mexico   总被引:2,自引:0,他引:2  
Aim To determine whether rare or common species contribute most to overall patterns of spatial variation in extant species richness. Location Mexico. Methods Using data on the distribution of mammal species across Mexico at a quarter degree resolution, we ranked species from the most widespread to the most restricted (common‐to‐rare) within the study area, and from the most restricted to the most widespread (rare‐to‐common), and generated a sequence of patterns of species richness for increasing numbers of species. At each stage along both series of richness patterns, we correlated the species richness pattern for the subassemblage with that of the full assemblage. This allows comparison of subassemblages of the n most common with the n most rare species, in terms of how well they match the full assemblage richness pattern. Further analyses examined the effects on these patterns of correlation of the amount of raw information contained in the distributions of given numbers of rare and common species. Results For the mammals of Mexico the more widely distributed species contribute disproportionately to patterns of species richness compared with more restricted species, particularly for non‐volant species and endemic species. This is not simply a consequence of differences in the volumes of information contained in the distributions of rare and common species, with the disproportionate contribution of common species if anything being sharpened when these differences are taken into account. The pattern is most clearly demonstrated by endemic species, suggesting that the contribution of common species is clearest when the causes of rarity and commonness are limited to those genuinely resulting in narrow and widespread geographical ranges, respectively, rather than artificial (e.g. geopolitical) boundaries to the extents of study regions. Conclusions Perhaps surprisingly, an understanding of the determinants of overall patterns of species richness may gain most from consideration of why common species occur in some areas and are absent from others, rather than consideration of the distributions of rare species.  相似文献   

9.
Aim We examined the relationship between host species richness and parasite species richness using simultaneously collected data on small mammals (Insectivora, Rodentia and Lagomorpha) and their flea parasites. Location The study used previously published data on small mammals and their fleas from 37 different regions. All the world's main geographical regions other than Australasia and Wallacea were represented in the study, i.e. neotropical, nearctic, palaearctic, oriental and afrotropical realms. Methods We controlled the data for the area sampled and sampling effort and then tested this relationship using both cross‐region conventional analysis and the independent contrasts method (to control for the effects of biogeographic historical relationships among different regions). Brooks parsimony analysis was used to construct a region cladogram based on the presence/absence of a host species and host phylogeny. Results Both cross‐region and independent contrasts analyses showed a positive correlation between host species richness and flea species richness. Conventional cross‐region regression under‐ or overestimated fleas species richness in the majority of regions. Main conclusions When the regression derived by the independent contrasts method was mapped onto the original tip data space, points that deviated significantly from the regression originated from Kenya, Mississippi and southern California (lower than expected flea richness) and Chile, Idaho, south‐western California and Kyrgyzstan (higher than expected flea richness). These deviations can be explained by the environmental mediation of host–flea relationships and by a degree of environmental variety in sampled areas.  相似文献   

10.
Understanding environmental drivers of species diversity has become increasingly important under climate change. Different trophic groups (predators, omnivores and herbivores) interact with their environments in fundamentally different ways and may therefore be influenced by different environmental drivers. Using random forest models, we identified drivers of terrestrial mammals' total and proportional species richness within trophic groups at a global scale. Precipitation seasonality was the most important predictor of richness for all trophic groups. Richness peaked at intermediate precipitation seasonality, indicating that moderate levels of environmental heterogeneity promote mammal richness. Gross primary production (GPP) was the most important correlate of the relative contribution of each trophic group to total species richness. The strong relationship with GPP demonstrates that basal-level resource availability influences how diversity is structured among trophic groups. Our findings suggest that environmental characteristics that influence resource temporal variability and abundance are important predictors of terrestrial mammal richness at a global scale.  相似文献   

11.
We evaluated the richness, diversity, and composition of the medium and large mammal community in the Loka Abaya National Park (LANP), southern Ethiopia, and how these parameters differ among four habitat types: wooded grassland, riverine forest, hilly scrubland and wetland, and between seasons. We recorded a total of 2,573 individual animals of 28 medium and large mammal species in the park. This included three globally threatened species: the endangered African wild dog (Lycaon pictus), the vulnerable Leopard (Panthera pardus), and Hippopotamus (Hippopothamus amphibius). Season had little effect on species richness, diversity, and composition both across and within habitat types. However, species richness across seasons was significantly different among the four habitat types, in the declining order of the following: wooded grassland > riverine forest > hilly scrubland > wetland. The strongest similarity in species composition, both across and within seasons, was found between wooded grassland and riverine forest. In terms of relative abundance, mammal assemblage of the wooded grassland and wetland habitats had more evenly distributed number of species with different relative abundance categories. Overall, Anubis Baboon (Papio anubis), Grivet Monkey (Chlorocebus aethiops), and Greater Kudu (Tragelephus strepsiceros) were the three most abundant species across habitat types. In conclusion, findings of our study reveal that LANP plays an important role in Ethiopia's mammal conservation. Our findings will serve as baseline information for managers of the park to make effective conservation decisions and as a baseline for researchers wishing to conduct related ecological studies.  相似文献   

12.
Although we understand how species evolve, we do not appreciate how this process has filled an empty world to create current patterns of biodiversity. Here, we conduct a numerical experiment to determine why biodiversity varies spatially on our planet. We show that spatial patterns of biodiversity are mathematically constrained and arise from the interaction between the species’ ecological niches and environmental variability that propagates to the community level. Our results allow us to explain key biological observations such as (a) latitudinal biodiversity gradients (LBGs) and especially why oceanic LBGs primarily peak at midlatitudes while terrestrial LBGs generally exhibit a maximum at the equator, (b) the greater biodiversity on land even though life first evolved in the sea, (c) the greater species richness at the seabed than at the sea surface, and (d) the higher neritic (i.e., species occurring in areas with a bathymetry lower than 200 m) than oceanic (i.e., species occurring in areas with a bathymetry higher than 200 m) biodiversity. Our results suggest that a mathematical constraint originating from a fundamental ecological interaction, that is, the niche–environment interaction, fixes the number of species that can establish regionally by speciation or migration.  相似文献   

13.
One of the oldest challenges in ecology is to understand the processes that underpin the composition of communities. Historically, an obvious way in which to describe community compositions has been diversity in terms of the number and abundances of species. However, the failure to reject contradictory models has led to communities now being characterized by trait and phylogenetic diversities. Our objective here is to demonstrate how species, trait and phylogenetic diversity can be combined together from large to local spatial scales to reveal the historical, deterministic and stochastic processes that impact the compositions of local communities. Research in this area has recently been advanced by the development of mathematical measures that incorporate trait dissimilarities and phylogenetic relatedness between species. However, measures of trait diversity have been developed independently of phylogenetic measures and conversely most of the phylogenetic diversity measures have been developed independently of trait diversity measures. This has led to semantic confusions particularly when classical ecological and evolutionary approaches are integrated so closely together. Consequently, we propose a unified semantic framework and demonstrate the importance of the links among species, phylogenetic and trait diversity indices. Furthermore, species, trait and phylogenetic diversity indices differ in the ways they can be used across different spatial scales. The connections between large‐scale, regional and local processes allow the consideration of historical factors in addition to local ecological deterministic or stochastic processes. Phylogenetic and trait diversity have been used in large‐scale analyses to determine how historical and/or environmental factors affect both the formation of species assemblages and patterns in species richness across latitude or elevation gradients. Both phylogenetic and trait diversity have been used at different spatial scales to identify the relative impacts of ecological deterministic processes such as environmental filtering and limiting similarity from alternative processes such as random speciation and extinction, random dispersal and ecological drift. Measures of phylogenetic diversity combine phenotypic and genetic diversity and have the potential to reveal both the ecological and historical factors that impact local communities. Consequently, we demonstrate that, when used in a comparative way, species, trait and phylogenetic structures have the potential to reveal essential details that might act simultaneously in the assembly of species communities. We highlight potential directions for future research. These might include how variation in trait and phylogenetic diversity alters with spatial distances, the role of trait and phylogenetic diversity in global‐scale gradients, the connections between traits and phylogeny, the importance of trait rarity and independent evolutionary history in community assembly, the loss of trait and phylogenetic diversity due to human impacts, and the mathematical developments of biodiversity indices including within‐species variations.  相似文献   

14.
1. Using data from 71, mainly shallow (an average mean depth of 3 m), Danish lakes with contrasting total phosphorus concentrations (summer mean 0.02–1.0 mg P L?l), we describe how species richness, biodiversity and trophic structure change along a total phosphorus (TP) gradient divided into five TP classes (class 1–5: <0.05, 0.05–0.1, 0.1–0.2, 0.2–0.4,> 0.4 mg P L?1).
2. With increasing TP, a significant decline was observed in the species richness of zooplankton and submerged macrophytes, while for fish, phytoplankton and floating‐leaved macrophytes, species richness was unimodally related to TP, all peaking at 0.1–0.4 mg P L?1. The Shannon–Wiener and the Hurlbert probability of inter‐specific encounter (PIE) diversity indices showed significant unimodal relationships to TP for zooplankton, phytoplankton and fish. Mean depth also contributed positively to the relationship for rotifers, phytoplankton and fish.
3. At low nutrient concentrations, piscivorous fish (particularly perch, Perca fluviatilis) were abundant and the biomass ratio of piscivores to plankti‐benthivorous cyprinids was high and the density of cyprinids low. Concurrently, the zooplankton was dominated by large‐bodied forms and the biomass ratio of zooplankton to phytoplankton and the calculated grazing pressure on phytoplankton were high. Phytoplankton biomass was low and submerged macrophyte abundance high.
4. With increasing TP, a major shift occurred in trophic structure. Catches of cyprinids in multiple mesh size gill nets increased 10‐fold from class 1 to class 5 and the weight ratio of piscivores to planktivores decreased from 0.6 in class 1 to 0.10–0.15 in classes 3–5. In addition, the mean body weight of dominant cyprinids (roach, Rutilus rutilus, and bream, Abramis brama) decreased two–threefold. Simultaneously, small cladocerans gradually became more important, and among copepods, a shift occurred from calanoid to cyclopoids. Mean body weight of cladocerans decreased from 5.1 μg in class 1 to 1.5 μg in class 5, and the biomass ratio of zooplankton to phytoplankton from 0.46 in class 1 to 0.08–0.15 in classes 3–5. Conversely, phytoplankton biomass and chlorophyll a increased 15‐fold from class 1 to 5 and submerged macrophytes disappeared from most lakes.
5. The suggestion that fish have a significant structuring role in eutrophic lakes is supported by data from three lakes in which major changes in the abundance of planktivorous fish occurred following fish kill or fish manipulation. In these lakes, studied for 8 years, a reduction in planktivores resulted in a major increase in cladoceran mean size and in the biomass ratio of zooplankton to phytoplankton, while chlorophyll a declined substantially. In comparison, no significant changes were observed in 33 ‘control’ lakes studied during the same period.  相似文献   

15.
Given that land‐use change is the main cause of global biodiversity decline, there is widespread interest in adopting land‐use practices that maintain high levels of biodiversity, and in restoring degraded land that previously had high biodiversity value. In this study, we use ant taxonomic and functional diversity to examine the effects of different land uses (agriculture, pastoralism, silviculture and conservation) and restoration practices on Cerrado (Brazilian savanna) biodiversity. We also examine the extent to which ant diversity and composition can be explained by vegetation attributes that apply across the full land management spectrum. We surveyed vegetation attributes and ant communities in five replicate plots of each of 13 land‐use and restoration treatments, including two types of native vegetation as reference sites: cerrado sensu stricto and cerradão. Several land‐use and restoration treatments had comparable plot richness to that of the native reference habitats. Ant species and functional composition varied systematically among land‐use treatments following a gradient from open habitats such as agricultural fields to forested sites. Tree basal area and grass cover were the strongest predictors of ant species richness. Losses in ant diversity were higher in land‐use systems that transform vegetation structure. Among productive systems, therefore, uncleared pastures and old pine plantations had similar species composition to that occurring in cerrado sensu stricto. Restoration techniques currently applied to sites that were previously Cerrado have focused on returning tree cover, and have failed to restore ant communities typical of savanna. To improve restoration outcomes for Cerrado biodiversity, greater attention needs to be paid to the re‐establishment and maintenance of the grass layer, which requires frequent fire. At the broader scale, conservation planning in agricultural landscapes, should recognize the value of land‐use mosaics and the risks of homogenization.  相似文献   

16.
Since São Tomé and Príncipe were colonized by Europeans in the 1470s alien mammal species have been introduced to these islands. The impact of these introduced species (14 to São Tomé Príncipe and 12 to Príncipe) is unknown and though this paper reviews all the available information for each alien species no firm conclusions can be gleaned about their effect on the native biota of the República Democrática de São Tomé e Príncipe. Despite the probable long association of many, if not all, the alien mammals it is clear that the long history of deforestation and habitat modification has had a greater detrimental impact to date. Although all the Red Data Book species are still present it is possible that the introduced mammals could cause future population declines and extinctions. Research and surveys are urgently required to discover the current status, distribution and ecology of both the native Red Data Book species and the alien species. These surveys, in conjunction with the identification of core areas for conservation would allow active management to control any detrimental impacts likely to be caused by the alien mammals. Once identified, regular monitoring programmes should be undertaken to ensure that the conservation aims are being achieved. At present there is a lack of any really suitable institutional organization with the responsibility or skills to undertake the required work. The development of such an organization should be a priority and support should be given both in the short and long terms by international organizations such as Birdlife International and the Gulf of Guinea Conservation Group.  相似文献   

17.
18.
This paper investigates the distribution of species richness, rarity and endemicity of European land mammals (bats and introduced species excluded). The highest level of species richness was in Central Europe, while Southern areas had the highest rarity and endemicity scores. The distribution of richness was affected by the location of sampling points in islands and peninsulas. After excluding these sampling points, richness continued to decrease Westward suggesting the existence of a large-scale peninsular effect on mammal distribution. These patterns of continental distribution of richness, rarity and endemicity could be the result of the distribution of refuge areas in the southern Mediterranean peninsulas, and the Pleistocene advances and retreats of mammals throughout the Western Palearctic. Thus, European mammal distribution can be interpreted on the basis of two different patterns of abundance distribution in which Palearctic species reduce their abundance from central-Europe outwards, while endemic, rare species show a similar depletion in the North. It should be useful to evaluate the role of the different regions in Europe in conserving the demographic interactions between central and peripheral populations of mammal species. Given the restricted distribution and potential small size of population, these endemic species are most likely to be susceptible to anthropogenic environmental degradation.  相似文献   

19.
Soil nematode biodiversity in terrestrial ecosystems   总被引:5,自引:0,他引:5  
A review of the literature on nematode diversity (=number of species identified) of soil inhabiting nematodes was undertaken and analysed with regard to distance from the equator, vegetation type and sampling effort. After applying a correction factor for sampling effort the results indicated that species richness was greatest in temperate broadleaf forest (61.7 species per sample) followed by cultivated soil, grassland, tropical rainforest, temperate coniferous forests and polar vegetation. The maintenance of high biodiversity in cultivated soils is unexpected but may reflect the impact of dominance in calculating many indices. Species richness was greatest between latitudes 30–40° (93.9 species per sample) and least above 70°, the mean richness near the equator (i.e. 0–10°) was 80.6 species per sample. While these data would suggest that nematode diversity is not necessarily greatest at the equator, and evidence to support a 'humped back' theory of species richness is not conclusive, they contradict the suggestion that nematode diversity increases with increased latitude.  相似文献   

20.
The value of biodiversity lies in its option value for the future, the greater the complement of contemporary biodiversity conserved today, the greater the possibilities for future biodiversity because of the diverse genetic resource needed to ensure continued evolution in a changing and uncertain world. From this perspective, biodiversity option value can be equated with richness in the different features expressed by species. An individual species of greater value is one contributing more novel features to a given subset. The feature diversity of species and communities is difficult to estimate directly, but can be predicted by the phylogenetic relationships among the species. The ‘Phylogenetic Diversity’ measure (PD) (Faith, 1992a) estimates the relative feature diversity of any nominated set of species by the sum of the lengths of all those branches spanned by the set. These branch lengths reflect patristic or path‐length distances. This study first reviews and expands on some of the properties of PD, and develops simple modifications of the measure (δnPD and enPD) to enable capture of both the phylogenetic relatedness of species and their abundances in each sample. Then the application of PD, δnPD and enPD to a wide range of conservation and resource management issues is demonstrated using avian case studies. Supertree construction procedures (matrix representation using parsimony analysis; average consensus) were used to combine the extensive DNA‐DNA hybridization tree of Sibley & Ahlquist (1990) with numerous, recently published phylogenetic reconstructions to derive a phylogenetic tree for the global avian fauna. Using this supertree as a systematic framework, the utility of PD was demonstrated in four case studies: (i) state of the environment reporting, with changes in avian faunas resulting from extinctions quantified as indicators of the state of biodiversity at Global, New Zealand and Waikato region scales, and changes in available habitat quantified as indicators of pressures on biodiversity in the Waikato region; (ii) setting priorities for threatened species management, with PD as a measure of option value integrated with information on survivorship expectations to develop a ranking among threatened New Zealand forest bird species; (iii) monitoring biotic response to management, with data from 5‐minute counts used to analyse changes in forest bird communities under three management regimes in New Zealand; and (iv) selection of indicator species, with PD used to objectively identify subsets of species in the Global, New Zealand and Waikato avian faunas that comprise a high proportion of the option value in those faunas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号