共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Jess M. Cunnick Sabine Schmidhuber Gang Chen Min Yu Sun-Ju Yi Young Jin Cho Vesa Kaartinen Parviz Minoo David Warburton John Groffen Nora Heisterkamp 《Molecular and cellular biology》2009,29(21):5742-5750
Bcr and Abr are GTPase-activating proteins for the small GTPase Rac. Both proteins are expressed in cells of the innate immune system, including neutrophils and macrophages. The function of Bcr has been linked to the negative regulation of neutrophil reactive oxygen species (ROS) production, but the function of Abr in the innate immune system was unknown. Here, we report that mice lacking both proteins are severely affected in two models of experimental endotoxemia, including exposure to Escherichia coli lipopolysaccharide and polymicrobial sepsis, with extensive microvascular leakage, resulting in severe pulmonary edema and hemorrhage. Additionally, in vivo-activated neutrophils of abr and bcr null mutant mice produced excessive tissue-damaging myeloperoxidase (MPO), elastase, and ROS. Moreover, the secretion of the tissue metalloproteinase MMP9 by monocytes and ROS by elicited macrophages was abnormally high. In comparison, ROS production from bone marrow monocytes was not significantly different from that of controls, and the exocytosis of neutrophil secondary and tertiary granule products, including lactoferrin, was normal. These data show that Abr and Bcr normally curb very specific functions of mature tissue innate immune cells, and that each protein has distinct as well as partly overlapping functions in the downregulation of inflammatory processes.BCR originally was discovered as a human gene on chromosome 22 that, in chronic myeloid leukemia, becomes fused to the c-ABL tyrosine kinase gene originating from chromosome 9 (18). The normal gene encodes a 160-kDa protein that contains a domain with GTPase-activating (GAP) activity toward Rho family GTPases (7, 11, 12, 32, 36). There is only one other gene in mouse and human, called ABR, that is closely homologous to BCR (17). Abr shares several domains with Bcr, which includes a Dbl homology (DH) domain and a GAP domain. Bcr has an additional N-terminal part consisting of a coiled-coil and a serine/threonine kinase domain that is not present in Abr, suggesting that each GAP has a distinct cellular function.Rho GTPases, including Rho, Rac, and Cdc42, play important roles in many functions of cells of the innate immune system (16). They cycle between active GTP and inactive GDP-bound conformations. GAP proteins catalyze the conversion of bound GTP to GDP on Rho GTPases and thus act as negative, inactivating regulators.In previous studies, we showed that both Abr and Bcr specifically act as GAPs for Rac and not for the related Cdc42 (6). To investigate the normal cellular function of these two related GAPs, we generated mice defective in the production of Abr or Bcr through gene targeting. Mice that lack both proteins have defects in the architecture of the inner ear, with the partial absence of otoconia and hair cells. Additionally, postnatal cerebellar development is abnormal, with a persistence of ectopic granule cells at the cerebellar surface. These combined abnormalities cause persistent circling and balance problems (20, 21).As reported previously, neutrophils from mice lacking Bcr produce increasing amounts of reactive oxygen species (ROS), and bcr−/− mice injected with Escherichia coli lipopolysaccharide (LPS) are much more severely affected than are wild-type mice (39). We further explored the role of Bcr and Abr in the innate immune system with a detailed study of bone marrow-derived macrophages (BMM). Interestingly, macrophages isolated from double-knockout (abr × bcr−/−) mice exhibited multiple defects. These include aberrant actin cytoskeletal organization and the increased colony-stimulating factor 1-stimulated chemotaxis and phagocytosis of opsonized zymosan or E. coli (6).In the current study, we examined whether the defects observed in vitro result in an observable phenotype in vivo, under inflammatory conditions. Here, we report that Abr plays a distinct role in negatively regulating the innate immune system in vivo, as well as exhibiting overlap with the function of Bcr. Mice lacking both Abr and Bcr have a severely impaired ability to resolve septic shock, showing that the activity of both proteins is required for the appropriate negative control of innate immune responses. 相似文献
3.
V Kaartinen I Gonzalez-Gomez J W Voncken L Haataja E Faure A Nagy J Groffen N Heisterkamp 《Development (Cambridge, England)》2001,128(21):4217-4227
Experiments in cultured cells have implicated the molecular switch Rac in a wide variety of cellular functions. Here we demonstrate that the simultaneous disruption of two negative regulators of Rac, Abr and Bcr, in mice leads to specific abnormalities in postnatal cerebellar development. Mutants exhibit granule cell ectopia concomitant with foliation defects. We provide evidence that this phenotype is causally related to functional and structural abnormalities of glial cells. Bergmann glial processes are abnormal and GFAP-positive astroglia were aberrantly present on the pial surface. Older Abr;Bcr-deficient mice show spontaneous mid-brain glial hypertrophy, which can further be markedly enhanced by kainic acid. Double null mutant astroglia are hyper-responsive to stimulation with epidermal growth factor and lipopolysaccharide and exhibit constitutively increased phosphorylation of p38 mitogen-activated protein kinase, which is regulated by Rac. These combined data demonstrate a prominent role for Abr and Bcr in the regulation of glial cell morphology and reactivity, and consequently in granule cell migration during postnatal cerebellar development in mammals. 相似文献
4.
Yukari Sadamura-Takenaka Takashi Ito Satoshi Noma Yoko Oyama Shingo Yamada Ko-ichi Kawahara Hiromasa Inoue Ikuro Maruyama 《PloS one》2014,9(7)
Rationale
Pulmonary arterial hypertension (PAH) is characterized by increased pulmonary vascular resistance leading to right ventricular failure and death. Recent studies have suggested that chronic inflammatory processes are involved in the pathogenesis of PAH. However, the molecular and cellular mechanisms driving inflammation have not been fully elucidated.Objectives
To elucidate the roles of high mobility group box 1 protein (HMGB1), a ubiquitous DNA-binding protein with extracellular pro-inflammatory activity, in a rat model of PAH.Methods
Male Sprague-Dawley rats were administered monocrotaline (MCT). Concentrations of HMGB1 in bronchoalveolar lavage fluid (BALF) and serum, and localization of HMGB1 in the lung were examined over time. The protective effects of anti-HMGB1 neutralizing antibody against MCT-induced PAH were tested.Results
HMGB1 levels in BALF were elevated 1 week after MCT injection, and this elevation preceded increases of other pro-inflammatory cytokines, such as TNF-α, and the development of PAH. In contrast, serum HMGB1 levels were elevated 4 weeks after MCT injection, at which time the rats began to die. Immunohistochemical analyses indicated that HMGB1 was translocated to the extranuclear space in periarterial infiltrating cells, alveolar macrophages, and bronchial epithelial cells of MCT-injected rats. Anti-HMGB1 neutralizing antibody protected rats against MCT-induced lung inflammation, thickening of the pulmonary artery wall, and elevation of right ventricular systolic pressure, and significantly improved the survival of the MCT-induced PAH rats.Conclusions
Our results identify extracellular HMGB1 as a promoting factor for MCT-induced PAH. The blockade of HMGB1 activity improved survival of MCT-induced PAH rats, and thus might be a promising therapy for the treatment of PAH. 相似文献5.
Abr and Bcr, two homologous Rac GTPase-activating proteins, control multiple cellular functions of murine macrophages
下载免费PDF全文

Cho YJ Cunnick JM Yi SJ Kaartinen V Groffen J Heisterkamp N 《Molecular and cellular biology》2007,27(3):899-911
Small GTPases of the Rho family are key regulators of phagocytic leukocyte function. Abr and Bcr are homologous, multidomain proteins. Their C-terminal domain has GTPase-activating protein (GAP) activity that, in vitro, is specific for Rac and Cdc42. To address the in vivo relevance of these entire proteins, of which little is known, the current study examined the effect of the genetic ablation of Abr and Bcr in murine macrophages. The concomitant loss of Abr and Bcr induced multiple alterations of macrophage cellular behavior known to be under the control of Rac. Macrophages lacking both Abr and Bcr exhibited an atypical, elongated morphology that was reproduced by the ectopic expression of GAP domain mutant Abr and Bcr in a macrophage cell line and of constitutively active Rac in primary macrophages. A robust increase in colony-stimulating factor 1 (CSF-1)-directed motility was observed in macrophages deficient for both proteins and, in response to CSF-1 stimulation, Abr and Bcr transiently translocated to the plasma membrane. Phagocytosis of opsonized particles was also increased in macrophages lacking both proteins and correlated with sustained Rac activation. Bcr and Abr GAP mutant proteins localized around phagosomes and induced distinct phagocytic cup formation. These results identify Abr and Bcr as the only GAPs to date that specifically negatively regulate Rac function in vivo in primary macrophages. 相似文献
6.
Mathilde Dubois Estelle Delannoy Lucie Duluc Ellen Closs Huige Li Christian Toussaint Alain-Pierre Gadeau Axel G?decke Véronique Freund-Michel Arnaud Courtois Roger Marthan Jean-Pierre Savineau Bernard Muller 《PloS one》2013,8(11)
Tetrahydrobiopterin (BH4), which fosters the formation of and stabilizes endothelial NO synthase (eNOS) as an active dimer, tightly regulates eNOS coupling / uncoupling. Moreover, studies conducted in genetically-modified models demonstrate that BH4 pulmonary deficiency is a key determinant in the pathogenesis of pulmonary hypertension. The present study thus investigates biopterin metabolism and eNOS expression, as well as the effect of sepiapterin (a precursor of BH4) and eNOS gene deletion, in a mice model of hypoxic pulmonary hypertension. In lungs, chronic hypoxia increased BH4 levels and eNOS expression, without modifying dihydrobiopterin (BH2, the oxidation product of BH4) levels, GTP cyclohydrolase-1 or dihydrofolate reductase expression (two key enzymes regulating BH4 availability). In intrapulmonary arteries, chronic hypoxia also increased expression of eNOS, but did not induce destabilisation of eNOS dimers into monomers. In hypoxic mice, sepiapterin prevented increase in right ventricular systolic pressure and right ventricular hypertrophy, whereas it modified neither remodelling nor alteration in vasomotor responses (hyper-responsiveness to phenylephrine, decrease in endothelium-dependent relaxation to acetylcholine) in intrapulmonary arteries. Finally, deletion of eNOS gene partially prevented hypoxia-induced increase in right ventricular systolic pressure, right ventricular hypertrophy and remodelling of intrapulmonary arteries. Collectively, these data demonstrate the absence of BH4/BH2 changes and eNOS dimer destabilisation, which may induce eNOS uncoupling during hypoxia-induced pulmonary hypertension. Thus, even though eNOS gene deletion and sepiapterin treatment exert protective effects on hypoxia-induced pulmonary vascular remodelling, increase on right ventricular pressure and / or right ventricular hypertrophy, these effects appear unrelated to biopterin-dependent eNOS uncoupling within pulmonary vasculature of hypoxic wild-type mice. 相似文献
7.
8.
慢性低氧高二氧化碳性肺动脉高压严重威胁着国民身体健康,但其发病机制尚未完全阐明。该研究通过检测正常对照组和慢性低氧高二氧化碳组小鼠右心室肥厚指数(right ven-tricular hypertrophy index,RVHI)、管壁厚度占血管外径的百分比(vessel wall thickness/total vasculardiameter,WT%)和管壁面积占血管总面积的百分比(vessel wall area/total vascular area,WA%),RT-PCR检测肺组织中Rho激酶(ROCK1,ROCK2)基因的表达,Western blot检测肺组织中ROCK1、p-MYPT1(phospho-myosin phosphatase target subunit 1)蛋白的表达,免疫组织化学法观察ROCK1的定位表达,探讨了Rho激酶在慢性低氧高二氧化碳性肺动脉高压形成中的作用。结果发现,慢性低氧高二氧化碳组小鼠RVHI、WT%、WA%值均显著升高(P<0.01),ROCK1、ROCK2基因表达明显增加(ROCK1 P<0.01,ROCK2 P<0.05),ROCK1、p-MYPT1蛋白表达显著增加(P<0.01),ROCK1蛋白表达于肺动脉、肺泡和支气管。以上结果提示,慢性低氧高二氧化碳条件下,小鼠肺组织中Rho激酶表达升高,可能参与了肺动脉高压的形成。 相似文献
9.
10.
Pulmonary hypertension (PH) is a progressive vascular disease of pulmonary arteries that impedes ejection of blood by the right ventricle. As a result there is an increase in pulmonary vascular resistance and pulmonary arterial pressure causing right ventricular hypertrophy (RVH) and RV failure. The pathology of PAH involves vascular cell remodeling including pulmonary arterial endothelial cell (PAEC) dysfunction and pulmonary arterial smooth muscle cell (PASMC) proliferation. Current therapies are limited to reverse the vascular remodeling. Investigating a key molecule is required for development of new therapeutic intervention. Thymosin beta-4 (Tβ4) is a ubiquitous G-actin sequestering protein with diverse biological function and promotes wound healing and modulates inflammatory responses. However, it remains unknown whether Tβ4 has any protective role in PH. The purpose of this study is to evaluate the whether Tβ4 can be used as a vascular-protective agent. In monocrotaline (MCT)-induced PH mouse model, we showed that mice treated with Tβ4 significantly attenuated the systolic pressure and RVH, compared to the MCT treated mice. Our data revealed for the first time that Tβ4 selectively targets Notch3-Col 3A-CTGF gene axis in preventing MCT-induced PH and RVH. Our study may provide pre-clinical evidence for Tβ4 and may consider as vasculo-protective agent for the treatment of PH induced RVH. 相似文献
11.
Jin-Hwa Choi Minh-Phuong Nguyen Dongjin Lee Goo-Taeg Oh You-Mie Lee 《Molecules and cells》2014,37(6):487-496
Angiotensinogen (AGT), the precursor of angiotensin I, is known to be involved in tumor angiogenesis and associated with the pathogenesis of coronary atherosclerosis. This study was undertaken to determine the role played by AGT in endothelial progenitor cells (EPCs) in tumor progression and metastasis. It was found that the number of EPC colonies formed by AGT heterozygous knockout (AGT+/−) cells was less than that formed by wild-type (WT) cells, and that the migration and tube formation abilities of AGT+/− EPCs were significantly lower than those of WT EPCs. In addition, the gene expressions of vascular endothelial growth factor (VEGF), Flk1, angiopoietin (Ang)-1, Ang-2, Tie-2, stromal derived factor (SDF)-1, C-X-C chemokine receptor type 4 (CXCR4), and of endothelial nitric oxide synthase (eNOS) were suppressed in AGT+/− EPCs. Furthermore, the expressions of hypoxia-inducible factor (HIF)-1α and -2α were downregulated in AGT+/− early EPCs under hypoxic conditions, suggesting a blunting of response to hypoxia. Moreover, the activation of Akt/eNOS signaling pathways induced by VEGF, epithelial growth factor (EGF), or SDF-1α were suppressed in AGT+/− EPCs. In AGT+/− mice, the incorporation of EPCs into the tumor vasculature was significantly reduced, and lung tumor growth and melanoma metastasis were attenuated. In conclusion, AGT is required for hypoxia-induced vasculogenesis. 相似文献
12.
Michael Seimetz Nirmal Parajuli Alexandra Pichl Mariola Bednorz Hossein Ardeschir Ghofrani Ralph Theo Schermuly Werner Seeger Friedrich Grimminger Norbert Weissmann 《PloS one》2015,10(6)
Rationale
Chronic obstructive pulmonary disease (COPD) is a widespread disease, with no curative therapies available. Recent findings suggest a key role of NO and sGC-cGMP signaling for the pathogenesis of the disease. Previous data suggest a downregulation/inactivation of the cGMP producing soluble guanylate cyclase, and sGC stimulation prevented cigarette smoke-induced emphysema and pulmonary hypertension (PH) in mice. We thus aimed to investigate if the inhibition of the cGMP degrading phosphodiesterase (PDE)5 has similar effects. Results were compared to the effects of a PDE 4 inhibitor (cAMP elevating) and a combination of both.Methods
C57BL6/J mice were chronically exposed to cigarette smoke and in parallel either treated with Tadalafil (PDE5 inhibitor), Piclamilast (PDE4 inhibitor) or both. Functional measurements (lung compliance, hemodynamics) and structural investigations (alveolar and vascular morphometry) as well as the heart ratio were determined after 6 months of tobacco smoke exposure. In addition, the number of alveolar macrophages in the respective lungs was counted.Results
Preventive treatment with Tadalafil, Piclamilast or a combination of both almost completely prevented the development of emphysema, the increase in lung compliance, tidal volume, structural remodeling of the lung vasculature, right ventricular systolic pressure, and right ventricular hypertrophy induced by cigarette smoke exposure. Single, but not combination treatment prevented or reduced smoke-induced increase in alveolar macrophages.Conclusion
Cigarette smoke-induced emphysema and PH could be prevented by inhibition of the phosphodiesterases 4 and 5 in mice. 相似文献13.
14.
Christine Wandall-Frostholm Lykke Moran Skaarup Veeranjaneyulu Sadda Gorm Nielsen Elise R?ge Hedegaard Susie Mogensen Ralf K?hler Ulf Simonsen 《PloS one》2014,9(5)
Objective
In vascular biology, endothelial KCa2.3 and KCa3.1 channels contribute to arterial blood pressure regulation by producing membrane hyperpolarization and smooth muscle relaxation. The role of KCa2.3 and KCa3.1 channels in the pulmonary circulation is not fully established. Using mice with genetically encoded deficit of KCa2.3 and KCa3.1 channels, this study investigated the effect of loss of the channels in hypoxia-induced pulmonary hypertension.Approach and Result
Male wild type and KCa3.1−/−/KCa2.3T/T(+DOX) mice were exposed to chronic hypoxia for four weeks to induce pulmonary hypertension. The degree of pulmonary hypertension was evaluated by right ventricular pressure and assessment of right ventricular hypertrophy. Segments of pulmonary arteries were mounted in a wire myograph for functional studies and morphometric studies were performed on lung sections. Chronic hypoxia induced pulmonary hypertension, right ventricular hypertrophy, increased lung weight, and increased hematocrit levels in either genotype. The KCa3.1−/−/KCa2.3T/T(+DOX) mice developed structural alterations in the heart with increased right ventricular wall thickness as well as in pulmonary vessels with increased lumen size in partially- and fully-muscularized vessels and decreased wall area, not seen in wild type mice. Exposure to chronic hypoxia up-regulated the gene expression of the KCa2.3 channel by twofold in wild type mice and increased by 2.5-fold the relaxation evoked by the KCa2.3 and KCa3.1 channel activator NS309, whereas the acetylcholine-induced relaxation - sensitive to the combination of KCa2.3 and KCa3.1 channel blockers, apamin and charybdotoxin - was reduced by 2.5-fold in chronic hypoxic mice of either genotype.Conclusion
Despite the deficits of the KCa2.3 and KCa3.1 channels failed to change hypoxia-induced pulmonary hypertension, the up-regulation of KCa2.3-gene expression and increased NS309-induced relaxation in wild-type mice point to a novel mechanism to counteract pulmonary hypertension and to a potential therapeutic utility of KCa2.3/KCa3.1 activators for the treatment of pulmonary hypertension. 相似文献15.
16.
Qiurong Ye Ying Zheng Songqing Fan Zailong Qin Nan Li Anliu Tang Feiyan Ai Xuemei Zhang Yanhui Bian Wei Dang Jing Huang Ming Zhou Yanhong Zhou Wei Xiong Qun Yan Jian Ma Guiyuan Li 《PloS one》2014,9(7)
Nonresolving inflammatory processes affect all stages of carcinogenesis. Lactoferrin, a member of the transferrin family, is involved in the innate immune response and anti-inflammatory, anti-microbial, and anti-tumor activities. We previously found that lactoferrin is significantly down-regulated in specimens of nasopharyngeal carcinoma (NPC) and negatively associated with tumor progression, metastasis, and prognosis of patients with NPC. Additionally, lactoferrin expression levels are decreased in colorectal cancer as compared with normal tissue. Lactoferrin levels are also increased in the various phases of inflammation and dysplasia in an azoxymethane–dextran sulfate sodium (AOM-DSS) model of colitis-associated colon cancer (CAC). We thus hypothesized that the anti-inflammatory function of lactoferrin may contribute to its anti-tumor activity. Here we generated a new Lactoferrin knockout mouse model in which the mice are fertile, develop normally, and display no gross morphological abnormalities. We then challenged these mice with chemically induced intestinal inflammation to investigate the role of lactoferrin in inflammation and cancer development. Lactoferrin knockout mice demonstrated a great susceptibility to inflammation-induced colorectal dysplasia, and this characteristic may be related to inhibition of NF-κB and AKT/mTOR signaling as well as regulation of cell apoptosis and proliferation. Our results suggest that the protective roles of lactoferrin in colorectal mucosal immunity and inflammation-related malignant transformation, along with a deficiency in certain components of the innate immune system, may lead to serious consequences under conditions of inflammatory insult. 相似文献
17.
Chen Yu Yang Jing Wang Ying Yang Mei Guo Mengyao 《Biological trace element research》2020,195(1):142-149
Biological Trace Element Research - Zinc (Zn) plays an important role in spermatogenesis, and carbon tetrachloride (CCl4) induces testicular oxidative damage and cell death. The objective of the... 相似文献
18.
Soheila Ajdary Mohammad Hossein Hosseini Mohammad Hossein Alimohammadian 《Microbiology and immunology》1997,41(3):281-283
Interleukin-1 exacerbates leishmanial lesions in Leishmania major-infected BALB/c mice. Indomethacin can modulate the effect of IL-1, so at least part of the IL-1 effect on disease progression is due to the induction of prostaglandin synthesis. 相似文献
19.
20.
Conduit pulmonary artery (PA) stiffening is characteristic of pulmonary arterial hypertension (PAH) and is an excellent predictor of mortality due to right ventricular (RV) overload. To better understand the impact of conduit PA stiffening on RV afterload, it is critical to examine the arterial viscoelastic properties, which require measurements of elasticity (energy storage behavior) and viscosity (energy dissipation behavior). Here we hypothesize that PAH leads to frequency-dependent changes in arterial stiffness (related to elasticity) and damping ratio (related to viscosity) in large PAs. To test our hypothesis, PAH was induced by the combination of chronic hypoxia and an antiangiogenic compound (SU5416) treatment in mice. Static and sinusoidal pressure-inflation tests were performed on isolated conduit PAs at various frequencies (0.01–20 Hz) to obtain the mechanical properties in the absence of smooth muscle contraction. Static mechanical tests showed significant stiffening of large PAs with PAH, as expected. In dynamic mechanical tests, structural stiffness (κ) increased and damping ratio (D) decreased at a physiologically relevant frequency (10 Hz) in hypertensive PAs. The dynamic elastic modulus (E), a material stiffness, did not increase significantly with PAH. All dynamic mechanical properties were strong functions of frequency. In particular, κ, E and D increased with increasing frequency in control PAs. While this behavior remained for D in hypertensive PAs, it reversed for κ and E. Since these novel dynamic mechanical property changes were found in the absence of changes in smooth muscle cell content or contraction, changes in collagen and proteoglycans and their interactions are likely critical to arterial viscoelasticity in a way that has not been previously described. The impact of these changes in PA viscoelasticity on RV afterload in PAH awaits further investigation. 相似文献