首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main pathological hallmarks of Alzheimer’s disease are amyloid-beta plaques and neurofibrillary tangles, which are primarily composed of amyloid precursor protein (APP) and tau, respectively. These proteins and their role in the mechanism of neurodegeneration have been extensively studied. Hirano bodies are a frequently occurring pathology in Alzheimer’s disease as well as other neurodegenerative diseases. However, the physiological role of Hirano bodies in neurodegenerative diseases has yet to be determined. We have established cell culture models to study the role of Hirano bodies in amyloid precursor protein and tau-induced cell death mechanisms. Exogenous expression of APP and either of its c-terminal fragments c31 or Amyloid Precursor Protein Intracellular Domain c58 (AICDc58) enhance cell death. The presence of tau is not required for this enhanced cell death. However, the addition of a hyperphosphorylated tau mimic 352PHPtau significantly increases cell death in the presence of both APP and c31 or AICDc58 alone. The mechanism of cell death induced by APP and its c-terminal fragments and tau was investigated. Fe65, Tip60, p53, and caspases play a role in tau-independent and tau-dependent cell death. In addition, apoptosis was determined to contribute to cell death. The presence of model Hirano bodies protected against cell death, indicating Hirano bodies may play a protective role in neurodegeneration.  相似文献   

2.
Microtubule-associated protein tau is a naturally unfolded protein that can modulate a vast array of physiological processes through direct or indirect binding with molecular partners. Aberrant tau homeostasis has been implicated in the pathogenesis of several neurodegenerative disorders, including Alzheimer’s disease. In this study, we performed an unbiased high-content protein profiling assay by incubating recombinant human tau on microarrays containing thousands of human polypeptides. Among the putative tau-binding partners, we identify SAH hydrolase–like protein 1/inositol 1,4,5-trisphosphate receptor (IP3R)–binding protein (AHCYL1/IRBIT), a member of the SAH hydrolase family and a previously described modulator of IP3R activity. Using coimmunoprecipitation assays, we show that endogenous as well as overexpressed tau can physically interact with AHCYL1/IRBIT in brain tissues and cultured cells. Proximity ligation assay experiments demonstrate that tau overexpression may modify the close localization of AHCYL1/IRBIT to IP3R at the endoplasmic reticulum. Together, our experimental evidence indicates that tau interacts with AHCYL1/IRBIT and potentially modulates AHCYL1/IRBIT function.  相似文献   

3.
Filamentous inclusions of the microtubule-associated protein, tau, define a variety of neurodegenerative diseases known as tauopathies, including Alzheimer’s disease (AD). To better understand the role of tau-mediated effects on pathophysiology and global central nervous system function, we extensively characterized gene expression, pathology and behavior of the rTg4510 mouse model, which overexpresses a mutant form of human tau that causes Frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). We found that the most predominantly altered gene expression pathways in rTg4510 mice were in inflammatory processes. These results closely matched the causal immune function and microglial gene-regulatory network recently identified in AD. We identified additional gene expression changes by laser microdissecting specific regions of the hippocampus, which highlighted alterations in neuronal network activity. Expression of inflammatory genes and markers of neuronal activity changed as a function of age in rTg4510 mice and coincided with behavioral deficits. Inflammatory changes were tau-dependent, as they were reversed by suppression of the tau transgene. Our results suggest that the alterations in microglial phenotypes that appear to contribute to the pathogenesis of Alzheimer’s disease may be driven by tau dysfunction, in addition to the direct effects of beta-amyloid.  相似文献   

4.
Alzheimer’s disease is a neurodegenerative disorder accounting for more than 50% of cases of dementia. Diagnosis of Alzheimer’s disease relies on cognitive tests and analysis of amyloid beta, protein tau, and hyperphosphorylated tau in cerebrospinal fluid. Although these markers provide relatively high sensitivity and specificity for early disease detection, they are not suitable for monitor of disease progression. In the present study, we used label-free shotgun mass spectrometry to analyse the cerebrospinal fluid proteome of Alzheimer’s disease patients and non-demented controls to identify potential biomarkers for Alzheimer’s disease. We processed the data using five programs (DecyderMS, Maxquant, OpenMS, PEAKS, and Sieve) and compared their results by means of reproducibility and peptide identification, including three different normalization methods. After depletion of high abundant proteins we found that Alzheimer’s disease patients had lower fraction of low-abundance proteins in cerebrospinal fluid compared to healthy controls (p<0.05). Consequently, global normalization was found to be less accurate compared to using spiked-in chicken ovalbumin for normalization. In addition, we determined that Sieve and OpenMS resulted in the highest reproducibility and PEAKS was the programs with the highest identification performance. Finally, we successfully verified significantly lower levels (p<0.05) of eight proteins (A2GL, APOM, C1QB, C1QC, C1S, FBLN3, PTPRZ, and SEZ6) in Alzheimer’s disease compared to controls using an antibody-based detection method. These proteins are involved in different biological roles spanning from cell adhesion and migration, to regulation of the synapse and the immune system.  相似文献   

5.
Unexpected adverse effects on the cardiovascular system remain a major challenge in the development of novel active pharmaceutical ingredients (API). To overcome the current limitations of animal-based in vitro and in vivo test systems, stem cell derived human cardiomyocyte clusters (hCMC) offer the opportunity for highly predictable pre-clinical testing. The three-dimensional structure of hCMC appears more representative of tissue milieu than traditional monolayer cell culture. However, there is a lack of long-term, real time monitoring systems for tissue-like cardiac material. To address this issue, we have developed a microcavity array (MCA)-based label-free monitoring system that eliminates the need for critical hCMC adhesion and outgrowth steps. In contrast, feasible field potential derived action potential recording is possible immediately after positioning within the microcavity. Moreover, this approach allows extended observation of adverse effects on hCMC. For the first time, we describe herein the monitoring of hCMC over 35 days while preserving the hCMC structure and electrophysiological characteristics. Furthermore, we demonstrated the sensitive detection and quantification of adverse API effects using E4031, doxorubicin, and noradrenaline directly on unaltered 3D cultures. The MCA system provides multi-parameter analysis capabilities incorporating field potential recording, impedance spectroscopy, and optical read-outs on individual clusters giving a comprehensive insight into induced cellular alterations within a complex cardiac culture over days or even weeks.  相似文献   

6.
BDNF plays an important role in several facets of neuronal survival, differentiation, and function. Structural and functional deficits in axons are increasingly viewed as an early feature of neurodegenerative diseases, including Alzheimer’s disease (AD) and Huntington’s disease (HD). As yet unclear is the mechanism(s) by which axonal injury is induced. We reported the development of a novel technique to produce biologically active, monobiotinylated BDNF (mBtBDNF) that can be used to trace axonal transport of BDNF. Quantum dot-labeled BDNF (QD-BDNF) was produced by conjugating quantum dot 655 to mBtBDNF. A microfluidic device was used to isolate axons from neuron cell bodies. Addition of QD-BDNF to the axonal compartment allowed live imaging of BDNF transport in axons. We demonstrated that QD-BDNF moved essentially exclusively retrogradely, with very few pauses, at a moving velocity of around 1.06 μm/sec. This system can be used to investigate mechanisms of disrupted axonal function in AD or HD, as well as other degenerative disorders.  相似文献   

7.
Tau pathology is implicated in mechanisms of neurodegenerative tauopathies, including Alzheimer’s disease (AD) and hereditary frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). It has been reported that transgenic mice expressing FTDP-17 mutation P301L of human tau (P301L mice) display extensive tau pathology and exhibit behavioral deficits with aging. In this study, we investigated the effects of T-817MA, a neuroprotective agent, on the motor and cognitive impairments associated with neuronal degeneration in P301L mice. T-817MA prevented the progression of motor deficit and the loss of spinal cord motor neurons in P301L mice. Furthermore, T-817MA significantly attenuated the spatial memory impairment and the reduction in synaptic terminal density in the hippocampal dentate gyrus of P301L mice. These results indicate that T-817MA improved the motor and cognitive impairments as a result of inhibiting neuronal degeneration derived from tau pathology in the P301L mice. Therefore, it is expected that T-817MA has a therapeutic potential for tau-related neurodegenerative diseases such as AD.  相似文献   

8.
Ca2+ blockers, particularly those capable of crossing the blood-brain barrier (BBB), have been suggested as a possible treatment or disease modifying agents for neurodegenerative disorders, e.g., Alzheimer’s disease. The present study investigated the effects of a novel 4-(N-dodecyl) pyridinium group-containing 1,4-dihydropyridine derivative (AP-12) on cognition and synaptic protein expression in the brain. Treatment of AP-12 was investigated in wild type C57BL/6J mice and transgenic Alzheimer’s disease model mice (Tg APPSweDI) using behavioral tests and immunohistochemistry, as well as mass spectrometry to assess the blood-brain barrier (BBB) penetration. The data demonstrated the ability of AP-12 to cross the BBB, improve spatial learning and memory in both mice strains, induce anxiolytic action in transgenic mice, and increase expression of hippocampal and cortical proteins (GAD67, Homer-1) related to synaptic plasticity. The compound AP-12 can be seen as a prototype molecule for use in the design of novel drugs useful to halt progression of clinical symptoms (more specifically, anxiety and decline in memory) of neurodegenerative diseases, particularly Alzheimer’s disease.  相似文献   

9.
In-depth scholar literature analysis of Alzheimer’s disease neurodegenerative features of amyloid beta protein neurochemistry modification and excessive phosphorylation of tau protein (and associated neuronal cytoskeleton rearrangements) are secondary phenomena. At early disease stage these neurobiochemical mechanisms are reversible and serve to heal an impairment of biophysical properties of neuronal membranes, neurotransmission, basic neuronal function and neuroplasticity, while preserving anatomical and functional brain fields. Aβ and tau could well serve to biochemically restore physico-chemical properties of neual membranes due to a role these proteins play in lipid metabolism. Under such scenario therapeutic block of aggregation and plaque formation of Aβ and inhibition of tau phosphorylation, as well as pharmaceutical modification of other secondary neurodegenerative features (such as a cascade of oxidative stress reactions) are unable to provide an effective cure of Alzheimer’s disease and related pathologies of the Central and peripheral nervous systems, because they are not arraying primary pathagenetic cause. We review the role of Aβ in compensatory mechanisms of neuroplasticity restoration under normal physiological condition and Alzheimer’s disease.  相似文献   

10.
Misfolded, pathological tau protein propagates from cell to cell causing neuronal degeneration in Alzheimer’s disease and other tauopathies. The molecular mechanisms of this process have remained elusive. Unconventional secretion of tau takes place via several different routes, including direct penetration through the plasma membrane. Here, we show that tau secretion requires membrane interaction via disulphide bridge formation. Mutating residues that reduce tau interaction with membranes or formation of disulphide bridges decrease both tau secretion from cells, and penetration through artificial lipid membranes. Our results demonstrate that tau is indeed able to penetrate protein-free membranes in a process independent of active cellular processes and that both membrane interaction and disulphide bridge formation are needed for this process. QUARK-based de novo modelling of the second and third microtubule-binding repeat domains (MTBDs), in which the two cysteine residues of 4R isoforms of tau are located, supports the concept that this region of tau could form transient amphipathic helices for membrane interaction.  相似文献   

11.
Discovering the mechanisms by which proteins aggregate into fibrils is an essential first step in understanding the molecular level processes underlying neurodegenerative diseases such as Alzheimer’s and Parkinson''s. The goal of this work is to provide insights into the structural changes that characterize the kinetic pathways by which amyloid-β peptides convert from monomers to oligomers to fibrils. By applying discontinuous molecular dynamics simulations to PRIME20, a force field designed to capture the chemical and physical aspects of protein aggregation, we have been able to trace out the entire aggregation process for a system containing 8 Aβ17–42 peptides. We uncovered two fibrillization mechanisms that govern the structural conversion of Aβ17–42 peptides from disordered oligomers into protofilaments. The first mechanism is monomeric conversion templated by a U-shape oligomeric nucleus into U-shape protofilament. The second mechanism involves a long-lived and on-pathway metastable oligomer with S-shape chains, having a C-terminal turn, en route to the final U-shape protofilament. Oligomers with this C-terminal turn have been regarded in recent experiments as a major contributing element to cell toxicity in Alzheimer’s disease. The internal structures of the U-shape protofilaments from our PRIME20/DMD simulation agree well with those from solid state NMR experiments. The approach presented here offers a simple molecular-level framework to describe protein aggregation in general and to visualize the kinetic evolution of a putative toxic element in Alzheimer’s disease in particular.  相似文献   

12.
Alzheimer’s disease (AD) is a devastating neurodegenerative disorder with no effective treatment and commonly diagnosed only on late stages. Amyloid-β (Aβ) accumulation and exacerbated tau phosphorylation are molecular hallmarks of AD implicated in cognitive deficits and synaptic and neuronal loss. The Aβ and tau connection is beginning to be elucidated and attributed to interaction with different components of common signaling pathways. Recent evidences suggest that non-fibrillary Aβ forms bind to membrane receptors and modulate GSK-3β activity, which in turn phosphorylates the microtubule-associated tau protein leading to axonal disruption and toxic accumulation. Available AD animal models, ranging from rodent to invertebrates, significantly contributed to our current knowledge, but complementary platforms for mechanistic and candidate drug screenings remain critical for the identification of early stage biomarkers and potential disease-modifying therapies. Here we show that Aβ1–42 injection in the hindbrain ventricle of 24 hpf zebrafish embryos results in specific cognitive deficits and increased tau phosphorylation in GSK-3β target residues at 5dpf larvae. These effects are reversed by lithium incubation and not accompanied by apoptotic markers. We believe this may represent a straightforward platform useful to identification of cellular and molecular mechanisms of early stage AD-like symptoms and the effects of neuroactive molecules in pharmacological screenings.  相似文献   

13.
Tip60 is a histone acetyltransferase (HAT) enzyme that epigenetically regulates genes enriched for neuronal functions through interaction with the amyloid precursor protein (APP) intracellular domain. However, whether Tip60-mediated epigenetic dysregulation affects specific neuronal processes in vivo and contributes to neurodegeneration remains unclear. Here, we show that Tip60 HAT activity mediates axonal growth of the Drosophila pacemaker cells, termed “small ventrolateral neurons” (sLNvs), and their production of the neuropeptide pigment-dispersing factor (PDF) that functions to stabilize Drosophila sleep–wake cycles. Using genetic approaches, we show that loss of Tip60 HAT activity in the presence of the Alzheimer’s disease-associated APP affects PDF expression and causes retraction of the sLNv synaptic arbor required for presynaptic release of PDF. Functional consequence of these effects is evidenced by disruption of the sleep–wake cycle in these flies. Notably, overexpression of Tip60 in conjunction with APP rescues these sleep–wake disturbances by inducing overelaboration of the sLNv synaptic terminals and increasing PDF levels, supporting a neuroprotective role for dTip60 in sLNv growth and function under APP-induced neurodegenerative conditions. Our findings reveal a novel mechanism for Tip60 mediated sleep–wake regulation via control of axonal growth and PDF levels within the sLNv-encompassing neural network and provide insight into epigenetic-based regulation of sleep disturbances observed in neurodegenerative diseases like Alzheimer’s disease.  相似文献   

14.
Tauopathies are neurodegenerative diseases, including AD (Alzheimer's disease) and FTLD-T (tau-positive frontotemporal lobar degeneration), with shared pathology presenting as accumulation of detergent-insoluble hyperphosphorylated tau deposits in the central nervous system. The currently available treatments for AD address only some of the symptoms, and do not significantly alter the progression of the disease, namely the development of protein aggregates and loss of functional neurons. The development of effective treatments for various tauopathies will require the identification of common mechanisms of tau neurotoxicity, and pathways that can be modulated to protect against neurodegeneration. Model organisms, such as Caenorhabditis elegans, provide methods for identifying novel genes and pathways that are involved in tau pathology and may be exploited for treatment of various tauopathies. In the present paper, we summarize data regarding characterization of MSUT2 (mammalian suppressor of tau pathology 2), a protein identified in a C. elegans tauopathy model and subsequently shown to modify tau toxicity in mammalian cell culture via the effects on autophagy pathways. MSUT2 represents a potential drug target for prevention of tau-related neurodegeneration.  相似文献   

15.
The human parvulin Pin1 is a member of the peptidyl-prolyl cis-trans isomerase group of proteins, which modulate the assembly, folding, activity, and transport of essential cellular proteins. Pin1 is a mitotic regulator interacting with a range of proteins that are phosphorylated before cell division. In addition, an involvement of Pin1 in the tau-related neurodegenerative brain disorders has recently been shown. In this context, Pin1 becomes depleted from the nucleus in Alzheimer's disease (AD) neurons when it is redirected to the large amounts of hyperphosphorylated tau associated with the neurofibrillary tangles. This depletion from the nucleus may ultimately contribute to neuron cell death. Recently we have devised a novel methodology in which exogenous Pin1 is used as a TEM probe for its target proteins. Here we extend this methodology to provide further evidence that Pin1 binds at enhanced levels to mitotic nuclear proteins and to hyperphosphorylated tau in AD brain. We suggest that exogenous Pin1 labeling can be used to elucidate the phosphorylation status of its target proteins in general and could specifically provide important insights into the development of tau-related neurodegenerative brain disorders.  相似文献   

16.
In Alzheimer’s disease the neuronal microtubule-associated protein tau becomes highly phosphorylated, loses its binding properties, and aggregates into paired helical filaments. There is increasing evidence that the events leading to this hyperphosphorylation are related to mitotic mechanisms. Hence, we have analyzed the physiological phosphorylation of endogenous tau protein in metabolically labeled human neuroblastoma cells and in Chinese hamster ovary cells stably transfected with tau. In nonsynchronized cultures the phosphorylation pattern was remarkably similar in both cell lines, suggesting a similar balance of kinases and phosphatases with respect to tau. Using phosphopeptide mapping and sequencing we identified 17 phosphorylation sites comprising 80–90% of the total phosphate incorporated. Most of these are in SP or TP motifs, except S214 and S262. Since phosphorylation of microtubule-associated proteins increases during mitosis, concomitant with increased microtubule dynamics, we analyzed cells mitotically arrested with nocodazole. This revealed that S214 is a prominent phosphorylation site in metaphase, but not in interphase. Phosphorylation of this residue strongly decreases the tau–microtubule interaction in vitro, suppresses microtubule assembly, and may be a key factor in the observed detachment of tau from microtubules during mitosis. Since S214 is also phosphorylated in Alzheimer’s disease tau, our results support the view that reactivation of the cell cycle machinery is involved in tau hyperphosphorylation.  相似文献   

17.
Various neurodegenerative disorders are ascribed to pathogenic molecular processes involving conformational transitions of amyloidogenic proteins into toxic aggregates characterized by their β structures. Accumulating evidence indicates that neuronal cell membranes provide platforms for such conformational transitions of pathogenic proteins as best exemplified by amyloid β (Aβ). Therefore, membrane-bound Aβ species can be promising targets for the development of novel drugs for Alzheimer’s disease. In the present study, solid-state nuclear magnetic resonance spectroscopy has elucidated the membrane-induced conformation of Aβ, in which the disordered N-terminal segment is followed by the stable C-terminal β strand. The data provides an insight into the molecular processes of the conformational transition of Aβ coupled with its assembly into parallel β structures.  相似文献   

18.
Cerebral spinal fluid (CSF) Aβ42, tau and p181tau are widely accepted biomarkers of Alzheimer’s disease (AD). Numerous studies show that CSF tau and p181tau levels are elevated in mild-to-moderate AD compared to age-matched controls. In addition, these increases might predict preclinical AD in cognitively normal elderly. Despite their importance as biomarkers, the molecular nature of CSF tau and ptau is not known. In the current study, reverse-phase high performance liquid chromatography was used to enrich and concentrate tau prior to western-blot analysis. Multiple N-terminal and mid-domain fragments of tau were detected in pooled CSF with apparent sizes ranging from <20 kDa to ~40 kDa. The pattern of tau fragments in AD and control samples were similar. In contrast, full-length tau and C-terminal-containing fragments were not detected. To quantify levels, five tau ELISAs and three ptau ELISAs were developed to detect different overlapping regions of the protein. The discriminatory potential of each assay was determined using 20 AD and 20 age-matched control CSF samples. Of the tau ELISAs, the two assays specific for tau containing N-terminal sequences, amino acids 9-198 (numbering based on tau 441) and 9-163, exhibited the most significant differences between AD and control samples. In contrast, CSF tau was not detected with an ELISA specific for a more C-terminal region (amino acids 159-335). Significant discrimination was also observed with ptau assays measuring amino acids 159-p181 and 159-p231. Interestingly, the discriminatory potential of p181 was reduced when measured in the context of tau species containing amino acids 9-p181. Taken together, these results demonstrate that tau in CSF occurs as a series of fragments and that discrimination of AD from control is dependent on the subset of tau species measured. These assays provide novel tools to investigate CSF tau and ptau as biomarkers for other neurodegenerative diseases.  相似文献   

19.
Several lines of study suggest that peripheral metabolism of amyloid beta (Aß) is associated with risk for Alzheimer disease (AD). In blood, greater than 90% of Aß is complexed as an apolipoprotein, raising the possibility of a lipoprotein-mediated axis for AD risk. In this study, we report that genetic modification of C57BL/6J mice engineered to synthesise human Aß only in liver (hepatocyte-specific human amyloid (HSHA) strain) has marked neurodegeneration concomitant with capillary dysfunction, parenchymal extravasation of lipoprotein-Aß, and neurovascular inflammation. Moreover, the HSHA mice showed impaired performance in the passive avoidance test, suggesting impairment in hippocampal-dependent learning. Transmission electron microscopy shows marked neurovascular disruption in HSHA mice. This study provides causal evidence of a lipoprotein-Aß /capillary axis for onset and progression of a neurodegenerative process.

It has been suggested that peripheral metabolism of amyloid-beta is associated with risk for Alzheimer’s disease. This study reveals that the expression of human amyloid exclusively in the liver induces Alzheimer’s disease-like pathologies in mice, potentially indicating a completely novel pathway of Alzheimer’s disease aetiology and therapies.  相似文献   

20.
Alzheimer’s disease (AD) is the most common cause of dementia worldwide and mainly characterized by the aggregated β-amyloid (Aβ) and hyperphosphorylated tau. FLZ is a novel synthetic derivative of natural squamosamide and has been proved to improve memory deficits in dementia animal models. In this study, we aimed to investigate the mechanisms of FLZ’s neuroprotective effect in APP/PS1 double transgenic mice and SH-SY5Y (APPwt/swe) cells. The results showed that treatment with FLZ significantly improved the memory deficits of APP/PS1 transgenic mice and decreased apoptosis of SH-SY5Y (APPwt/swe) cells. FLZ markedly attenuated Aβ accumulation and tau phosphorylation both in vivo and in vitro. Mechanistic study showed that FLZ interfered APP processing, i.e., FLZ decreased β-amyloid precursor protein (APP) phosphorylation, APP-carboxy-terminal fragment (APP-CTF) production and β-amyloid precursor protein cleaving enzyme 1 (BACE1) expression. These results indicated that FLZ reduced Aβ production through inhibiting amyloidogenic pathway. The mechanistic study about FLZ’s inhibitory effect on tau phosphorylation revealed t the involvement of Akt/glycogen synthase kinase 3β (GSK3β) pathway. FLZ treatment increased Akt activity and inhibited GSK3β activity both in vivo and in vitro. The inhibitory effect of FLZ on GSK3β activity and tau phosphorylation was suppressed by inhibiting Akt activity, indicating that Akt/GSK3β pathway might be the possible mechanism involved in the inhibitory effect of FLZ on tau hyperphosphorylation. These results suggested FLZ might be a potential anti-AD drug as it not only reduced Aβ production via inhibition amyloidogenic APP processing pathway, but also attenuated tau hyperphosphoylation mediated by Akt/GSK3β.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号