首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Parvalbumin, aldolase and liver alcohol dehydrogenase (ADH), proteins exhibiting long-lived phosphorescence lifetimes at room temperature, were examined for their reactivity with ferricytochrome c (cytochrome c Fe3+) as an external electron acceptor. Illumination of a reaction mixture containing protein and cytochrome c in the absence of oxygen brought about reduction of cytochrome c in relation to the duration of light. The largest portion of reduced cytochrome c was found with a sample containing ADH, where a 50% reduction of cytochrome c was reached after 5 min of illumination with a xenon lamp. Parvalbumin and aldolase were about half as effective under the same conditions. Several lines of evidence support the idea that the reaction of cytochrome c occurred by a long-range electron transfer from the excited triplet state of tryptophan. First, cytochrome c quenches the tryptophan phosphorescence and with parvalbumin, its bimolecular quenching rate constant, kq, was 2.9 x 10(6) M-1 s-1. Second, when the illuminated reaction mixture was supplied with 0.2 mM to 1 mM nitrite, a concentration range of nitrite which quenches the tryptophan phosphorescence but not the fluorescence, the amount of reduced cytochrome c on illumination markedly decreased. Finally, for all illuminated protein samples, the extent of cytochrome c reduction occurred parallel to a decrease in tryptophan content as judged from a decrease in fluorescence intensity and/or a decrease in tryptophan absorption at 280 nm.  相似文献   

2.
Synechocystis sp. PCC 6803 when grown in the presence of sublethal (M) levels of cobalt chloride shows an enhancement of Photosystem II (PS II) catalyzed Hill reaction. This stimulation seems to be induced by cobalt ions as other metal ions inhibit para-benzoquinone catalyzed Hill reaction. At saturating white light intensity, this enhancement is two times over that of the control cells on unit chlorophyll basis. Analysis of the PS II electron transport rate at varying intensities of white, blue or yellow light suggests an increased maximal rates but no change in the quantum yield or effective antenna size of CoCl2-grown cells. There were no structural and functional changes in the phycobilisome as judged by the absence of changes in the phycocyanin/allophycocyanin ratio, fluorescence emission spectra, second derivative absorption spectra at 77 K and SDS-PAGE analysis of isolated phycobilisomes. The 77 K fluorescence emission spectra of the cells showed a decrease in the ratio of Photosystem I emission (F725) to Photosystem II emission (F685) in CoCl2-grown cells compared to the control cells. These observations indicate three possibilities: (1) there is an increase in the number of Photosystem II units; (2) a faster turnover of Photosystem II centers; or (3) an alteration in energy redistribution between PS II and PS I in CoCl2-grown cells which causes stimulation of Photosystem II electron transport rate.Abbreviations APC allophycocyanin - Chl a chlorophyll a - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - EDTA ethylene diamine tetraacetic acid - PBS phycobilisome - PC phycocyanin - PSI Photosystem I - PS II Photosystem II - pBQ p-benzoquinone - PMSF phenyl methyl sulfonyl fluoride  相似文献   

3.
A chlorophyll a, c-fucoxanthin pigment-protein complex8 functions as the major light harvesting antenna in the Chrysophyte Ochromonas danica. The regulated distribution of excitation energy between the two photosystems was investigated in these organisms and was shown to be strongly wavelength dependent. A light state transition was induced by pre-illumination of cells using light 2 (640 nm) and light 1 (700 nm) of equal absorbed intensity, and detected by reversible changes in the 77 K chlorophyll fluorescence emission spectra. Peaks at 690 nm and 720 nm in the low temperature spectra are most likely associated with PS2 and PS1 respectively. A room temperature fluorescence emission at 680 nm induced by modulated light 2 (500 nm) was strongly quenched in the presence of background light 1 (720 nm). Removal of light 1 led to an increase in fluorescence followed by a slow quenching. The room temperature fluorescence changes were directly correlated with changes in the 77 K emission spectra that indicated a change in the distribution of excitation energy between the two photosystems. It was established that DCMU (1 mol) prevented the state 2. The conversion to state 1 followed a simple photochemical dose dependence and had a half-time of 20 s-1.5 min at 6 W m-2. In contrast, the conversion to state 2 was independent of light intensity. These data indicate that O. danica undergoes a light state transition in response to the preferential excitation of PS2 or PS1.Abbreviations PS2 photosystem 2 - PS1 photosystem 1 - LHC light harvesting chlorophyll a/b protein - fx fucoxanthin - PQ plastoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea  相似文献   

4.
3-磷酸甘油醛脱氢酶胍变性时的活力及构象变化   总被引:1,自引:1,他引:0  
酵母3-磷酸甘油醛脱氢酶在盐酸胍溶液中的内源荧光及剩余活力的变化结果提示:apo酶及holo酶的活力在胍浓度为0.5M左右可完全丧失.同时伴有内源荧光强度的下降,光谱宽度的增加和335nm最大发射峰的红移(提示了色氨酸残基的暴露).与已经报导的肌肉酶(内源荧光强度在胍浓度为0.4—1.2M范围相对稳定)不同,酵母酶内源荧光在此浓度范围内表现为逐渐降低.在0.7M胍溶液中,内源荧光变化动力学过程只能测出一相,而酶失活动力学过程为快慢两相,快相动力学速度常数至少大于内源荧光降低速度常数三个数量级以上.以上结果提示:低浓度胍可引起该酶的完全失活,活性部位的空间构象比酶分子的构象更易受到变性剂的扰乱;有一个色氨酸残基位于或靠近酶的活性部位.  相似文献   

5.
Colored light modifies the relative concentration of chlorophyll-forms of the diatom Phaeodactylum tricornutum compared to white-light control. No change in the ratio carotenoids/chlorophylls was observed after 4 days exposure to green light (max: 530 nm), blue light (max: 470 nm) or red light ( > 650 nm) of same intensity.However, the absorption spectra were modified, the content in Ca 684, Ca 690, Ca 699 forms increased in red and green light cultures and photosynthetic unit size of PS II decreased by 30% in green and blue light cultures.Fluorescence emission and fluorescence excitation spectra according to the Butler and Kitajima method (1975) were carried out for each culture. Ca 669 form was predominant in the two photosystems. The newly appeared far red forms fluoresce at 715 nm like PS I forms.We conclude that these new forms originated in a rearrangement of PS II forms. They do not transmit excitation energy to reaction center of PS I and are disconnected from the other chlorophyll-forms of the photosynthetic antennae.Abbreviations ABS absorption - Ca chlorophyll-complex - chla chlorophyll a - chl c chlorophyll c - chl t total chlorophylls - D.C.M.U. 3-(3, 4 dichlorophenyl) 1-diméthyl-urea - dv division - F fluorescence - PS I and PS II photosystem I and photosystem II  相似文献   

6.
Fructose-1,6-bisphosphatase (FBPase; EC 3.1.3.11) is strongly inhibited by AMP in vitro and, therefore, at physiological concentrations of substrate and AMP, FBPase should be completely inhibited. Desensitization of rabbit muscle FBPase against AMP inhibition was previously observed in the presence of rabbit muscle aldolase. In this study, we analysed the kinetics of an FBPase catalyzed reaction and interaction between chicken muscle FBPase and chicken muscle aldolase. The initial rate of FBPase reaction vs. substrate concentration shows a maximum activity at a concentration of 20 microM Fru-1,6P2 and then decreases. Assuming rapid equilibrium kinetics, the enzyme-catalyzed reaction was described by the substrate inhibition model, with Ks approximately 5 microM and Ksi approximately 39 microM and factor beta approximately 0.2, describing change in the rate constant (k) of product formation from the ES and ESSi complexes. Based on ultracentrifugation studies, aldolase and FBPase form a hetero-complex with approximately 1:1 stoichiometry with a dissociation constant (Kd) of 3.8 microM. The FBPase-aldolase interaction was confirmed via fluorescence investigation. The aldolase-FBPase interaction results in aldolase fluorescence quenching and its maximum emission spectrum shifting from 344 to 356 nm. The Kd of the FBPase-aldolase complex, determined on the basis of fluorescence changes, is 0.4 microM at 25 degrees C with almost 1:1 stoichiometry. This interaction increases the I(0.5) for the AMP inhibition of FBPase threefold, and slightly affects FBPase affinity to magnesium ions, increasing the Ka and Hill coefficient (n). No effect of aldolase on the FBPase pH optimum was observed. Thus, the decrease in FBPase sensitivity to AMP inhibition enables FBPase to function in vivo thanks to aldolase.  相似文献   

7.
The reactions of nitrite and oxygen with the cytochrome d oxidase of Escherichia coli were studied, following growth of cells on glycerol with fumarate as respiratory oxidant. Optical difference spectroscopy was used to investigate the kinetics of product formation during the reaction of the respiratory chain with nitrite. Two kinetically distinct species were formed in the reaction with nitrite; these had spectral features at 438 nm and 630 nm. These observations indicate that the cytochrome d does not contribute significantly to absorbance in the Soret region, and that changes elicited by ligand binding in the Soret region are largely attributable to haemoprotein b-590. Inhibition of respiratory oxidase activity by nitrite was also investigated. The inhibition was competitive with oxygen (Ki 0.83 mM, pH 7), which allowed analysis of the reaction of the oxidase with oxygen itself. The reaction with oxygen was cooperative with an apparent number of oxygen-binding sites, n, of 1.26 at pH 7, increasing to 1.72 at pH 6. We propose a model for the oxidase in which there are two ligand-binding sites.  相似文献   

8.
The effect of pH on the photosynthetic properties of photosystem I (PSI) particles isolated from spinach chloroplasts were studied using various spectroscopic and activity measurements. The results indicated that the PSI light energy absorption was not affected by changing pH of suspending media. The low-temperature fluorescence yield of the dominating long-wavelength emission band at 734 nm was decreased with increasing pH, whereas it did not exhibit changes in the major peak position at pHs studied except for pH 12, where the major peak in low-temperature chlorophyll (Chl) fluorescence emission spectra was shifted toward the blue light by 5 nm. Pronounced changes were found in PSI photochemical activities. Mild alkalinity (pH 8–10) in suspending media stimulated the rate of oxygen uptake with a maximum activity of oxygen consumption at about pH 9, while the other pHs exhibited an inhibition as compared to the control at pH 7.8. The rate of P700 photooxidation increased with the increasing pH, and the optimum for the reaction activity was in the region of pH 9–11. Circular dichroism spectra revealed that a progressive increase occurred in the conformation of the α-helices as pH value decreased from pH 7.8 to 3.0 or increased from pH 7.8 to 12.0. The results demonstrated that the Chl states in PSI particles were highly stable, while the photochemical activities and protein secondary structures were very sensitive to the pH stimuli of external medium.  相似文献   

9.
The effects of low temperature acclimation and photoinhibitory treatment on Photosystem 2 (PS 2) have been studied by thermoluminescence and chlorophyll fluorescence decay kinetics after a single turnover saturating flash. A comparison of unhardened and hardened leaves showed that, in the hardened case, a decrease in overall and B-band thermoluminescence emissions occurred, indicating the presence of fewer active PS 2 reaction centers. A modification in the form of the B-band emission was also observed and is attributed to a decrease in the apparent activation energy of recombination in the hardened leaves. The acclimated leaves also produced slower QA reoxidation kinetics as judged from the chlorophyll fluorescence decay kinetics. This change was mainly seen in an increased lifetime of the slow reoxidation component with only a small increase in its amplitude. Similar changes in both thermoluminescence and fluorescence decay kinetics were observed when unhardened leaves were given a high light photoinhibitory treatment at 4°C, whereas the hardened leaves were affected to a much lesser extent by a similar treatment. These results suggest that the acclimated plants undergo photoinhibition at 4°C even at low light intensities and that a subsequent high light treatment produces only a small additive photoinhibitory effect. Furthermore, it can be seen that photoinhibition eventually gives rise to PS 2 reaction centers which are no longer functional and which do not produce thermoluminescence or variable chlorophyll fluorescence.Abbreviations D1 The 32 kDa protein of Photosystem 2 reaction center - Fm maximum chlorophyll fluorescence yield - F0 minimal chlorophyll fluorescence yield obtained when all PS 2 centers are open - Fi intermediate fluorescence level corresponding to PS 2 centers which are loosely or not connected to plastoquinone (non-B centers) - Fv maximum variable chlorophyll fluorescence yield (Fv=Fm–F0) - PS 2 Photosystem 2 - QA and QB respectively, primary and secondary quinonic acceptors of PS 2 - S1, S2 and S3 respectively, the one, two and three positively charged states of the oxygen evolving system - Z secondary donor of PS 2  相似文献   

10.
The oxidation of melatonin (MEL) using the Cu(II) + H2O2 + HO (the Fenton-like reaction) system was investigated by chemiluminescence (CL), fluorescence, spectrophotometric, and EPR spin trapping techniques. The reaction exhibits CL in the 400–730 nm region. The light emission from the Fenton-like reaction was greatly enhanced in the presence of MEL and was strongly dependent on its concentration. The spectrum measured with cut-off filters revealed maxima at around 460, 500, 580–590, 640–650, and 690–700 nm. The band at 460 nm may be due to the excited cleavage product, N1-acetyl-N2-formyl-5-methoxykynuramine, whereas the bands at 500, 580–590, 640–650, and 700 nm were similar to those observed for singlet molecular oxygen (1O2). The effect of reactive oxygen species (ROS) scavengers on the light emission was studied. The CL was strongly inhibited by the 1O2 scavengers in a dose-dependent manner; at concentration 1 mM the potency of 1O2 scavenging was 5,5-dimethylcyclohexandione-1,3 > methionine > histidine > hydroquinone. The potency of HO scavenging by thiourea, tryptophan, cysteine at concentration 5 mM was 79–94%, by 1 mM glutathione and trolox 75 and 94%, respectively, and by 10 mM cimetidine 18%. Specific acceptors of O2 such as p-nitroblue tetrazolium chloride and 4,5-dihydroxy-1,3-benzene disulfonic acid (tiron) at concentration 5 mM decreased the CL by 51 and 95%, respectively, whereas superoxide dismutase (SOD) does not reduce the emission at concentration 2.8 U/ml. At higher concentration SOD substantially enhanced the light emission. Addition of 1360 U/ml catalase and 100 μM desferrioxamine strongly inhibited CL (96 and 90%, respectively). The increased generation of 1O2 from the Cu/H2O2 system in the presence of MEL was confirmed using the spectrophotometric method based on the bleaching of p-nitrosodimethylaniline and by trapping experiments with 2,2,6,6-tetramethylpiperidine (TEMP) and subsequent electron paramagnetic (EPR) spectroscopy. These findings suggest the increased production of reactive oxygen species (O2, HO, 1O2) from the Fenton-like reaction in the presence of MEL. This means that the hormone is not able to act as classical chain-breaking antioxidant even at low concentration, and may show clear prooxidant activity at higher concentrations. In addition, long-lived carbonyl product of the MEL transformation in the triplet state can also be toxic by transferring its energy to organelles and causing a photochemical process.  相似文献   

11.
Rapid microspectrofluorometry has been used to evaluate 1-pyrene-butyric acid as an oxygen probe in single living EL2 ascites tissue culture cells. Despite instrumental conditions preventing detection of the pyrene butyric acid maxima at 380 and 400 nm, the probe having penetrated the cell can be easily identified (maximum around 440 nm in unconnected spectra) from the fluorescence emission spectrum, as compared with NAD(P)H emission in controls (maximum around 460 nm). Fluorescence changes during gradually increasing anaerobiosis under nitrogen flow, are compatible with a linear relationship between the reciprocal of the fluorescence intensity and the intracellular oxygen concentration (increase in 430, 434, 442/461 nm ratios at anaerobiosis). The cells having absorbed the probe continue to catabolize glycolytic substrate, but some inhibition is noticeable (e.g. from the amplitude of the NAD(P)H fluorescence increase spectrum due to intracellular addition of glucose-6-P). In principle rapid microspectrofluorometry allows a multiprobe (e.g. 1-pyrene-butyric acid for oxygen, vs NAD(P)H for metabolism) exploration of the living cell.  相似文献   

12.
本文主要报导了具有放氧活性的光系统Ⅱ(PSⅡ)颗粒的毫秒延迟荧光(ms-DF)的特性以及NH_4Cl对它的调节作用.  相似文献   

13.
Veeranjaneyulu  K.  Leblanc  R.M. 《Photosynthetica》1998,35(2):191-203
High-irradiance (HI) induced changes in heat emission, fluorescence, and photosynthetic energy storage (EST) of shade grown sugar maple (Acer saccharum Marsh.) saplings were followed using modulated photoacoustic and fluorescence spectroscopic techniques. HI-treatment at 900-4400 µmol m-2 s-1 for 15 min caused an increase in heat emission and a decrease in EST. In some leaves, HI-treatment of 900 µmol m-2 s-1 for 1 min induced a rapid increase in heat emission with a marginal decrease in EST. Parallel to the increase in heat emission, there was a decrease in fluorescence, and this phenomenon was reversible in darkness. Quenching of thermal energy dissipation and a recovery in EST were observed during the first 15 min after the HI-treatment. This down-regulation of photochemical activity and its recovery may be one of the photoprotective mechanisms in shade grown sugar maple plants. The increase in thermal energy dissipation was greater in the red absorbing long wavelength (640-700 nm) region than in the blue absorbing short wavelength region of photosynthetically active excitation radiation. The photochemical activity was affected more in short wavelengths (400-520 nm) than in the long wavelength region of the spectrum. This can be due to the migration of light-harvesting chlorophyll (Chl) a/b protein complex from photosystem (PS) 2 to PS1 and/or to the disconnection of carotenoid pool from Chls in the pigment bed of photosynthetic apparatus.  相似文献   

14.
Cells of the cyanobacterium Synechococcus 6301 were grown in yellow light absorbed primarily by the phycobilisome (PBS) light-harvesting antenna of photosystem II (PS II), and in red light absorbed primarily by chlorophyll and, therefore, by photosystem I (PS I). Chromatic acclimation of the cells produced a higher phycocyanin/chlorophyll ratio and higher PBS-PS II/PS I ratio in cells grown under PS I-light. State 1-state 2 transitions were demonstrated as changes in the yield of chlorophyll fluorescence in both cell types. The amplitude of state transitions was substantially lower in the PS II-light grown cells, suggesting a specific attenuation of fluorescence yield by a superimposed non-photochemical quenching of excitation. 77 K fluorescence emission spectra of each cell type in state 1 and in state 2 suggested that state transitions regulate excitation energy transfer from the phycobilisome antenna to the reaction centre of PS II and are distinct from photosystem stoichiometry adjustments. The kinetics of photosystem stoichiometry adjustment and the kinetics of the appearance of the non-photochemical quenching process were measured upon switching PS I-light grown cells to PS II-light, and vice versa. Photosystem stoichiometry adjustment was complete within about 48 h, while the non-photochemical quenching occurred within about 25 h. It is proposed that there are at least three distinct phenomena exerting specific effects on the rate of light absorption and light utilization by the two photoreactions: state transitions; photosystem stoichiometry adjustment; and non-photochemical excitation quenching. The relationship between these three distinct processes is discussed.Abbreviations Chl chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - F relative fluorescence intensity at emission wavelength nm - F o fluorescence intensity when all PS II traps are open - light 1 light absorbed preferentially by PS I - light 2 light absorbed preferentially by PS II - PBS phycobilisome - PS photosystem  相似文献   

15.
In the cyanobacterium Anabaena variabilis the dependence of photoinhibition on fluence rate, duration and wavelength of irradiation were studied by measurements of oxygen production and fluorescence emission spectra. The analysis of the photosynthetic activity revealed that photoinhibition affects exclusively photosystem II (PS II), whereas photosystem I (PS I) remained largely unimpaired. Furthermore, PS II fluorescence emission decreased much faster in bleached than in unbleached controls.Studying the wavelength dependence of photoinhibition it was found that only radiation between 520 and 680 nm causes photoinhibition. This is about the same range of wavelengths which causes photobleaching. Fluorescence emission spectra of samples exposed to high fluence rates of 582 and 662 nm, respectively, essentially agree with those samples exposed to high fluence rates of white light, whereas the fluorescence emission spectra of samples exposed to blue light resemble those exposed to dim white light.NaN3, a substance which prevents photobleaching, inhibits the photosynthetic O2 production of Anabaena and, hence, enhances the photoinhibitory effect.  相似文献   

16.
Robert C. Jennings 《BBA》1984,766(2):303-309
The effect of removal of Mg2+ on the fluorescence properties of LHCP-PS-II has been examined by different methods: (a) by titration with the artificial quenchers of chlorophyll fluorescence, m-dinitrobenzene and DBMIB (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone); (b) as a function of wavelengths absorbed preferentially by LHCP, compared with wavelengths relatively enriched in PS II absorbed light; (c) by measurement of the fluorescence induction parameters as a function of the Mg2+ concentration or the excitation wavelength (i.e., light absorbed preferentially by LHCP or relatively enriched in PS II absorbed wavelengths). The following conclusions are drawn. (a) In the presence of magnesium ions, energy-transfer coupling between LHCP and PS II is tight, which argues against the idea of a weakly coupled population of LHCP molecules. (b) On lowering the Mg2+ concentration of a chloroplast suspension: (1) the increased spillover of energy to PS-I involves virtually all LHCP-PS-II entities and not just a part, which is strongly quenched; (2) there is a decrease in LHCP-PS-II energy-transfer coupling and this occurs only at low Mg2+ concentrations (below 0.5 mM). This process therefore seems distinct from the spillover interaction; (3) the rate constant for energy transfer to PS-II reaction centers decreases and this seems independent of the decreased LHCP-PS-II energy coupling.  相似文献   

17.
During denaturation by sodium dodecyl sulfate (SDS), aminoacylase shows a rapid decrease in activity with increasing concentration of the detergent to reach complete inactivation at 1.0 mM SDS. The denatured minus native-enzyme difference spectrum showed two negative peaks at 287 and 295 nm. With the increase of concentration of SDS, both negative peaks increased in magnitude to reach maximal values at 5.0 mM SDS. The fluorescence emission intensity of the enzyme decreased, whereas there was no red shift of emission maximum in SDS solutions of increasing concentration. In the SDS concentration regions employed in the present study, no marked changes of secondary structure of the enzyme have been observed by following the changes in far-ultraviolet CD spectra. The inactivation of this enzyme has been followed and compared with the unfolding observed during denaturation in SDS solutions. A marked inactivation is already evident at low SDS concentration before significant conformational changes can be detected by ultraviolet absorbance and fluorescence changes. The inactivation rate constants of free enzyme and substrate-enzyme complex were determined by the kinetics method of the substrate reaction in the presence of inactivator previously described by Tsou [Tsou (1988),Adv. Enzymol. Related Areas Mol. Biol. 61, 381–436]. It was found that substrate protects against inactivation and at the same SDS concentrations, the inactivation rate of the free enzyme is much higher than the unfolding rate. The above results show that the active sites of metal enzyme containing Zn2+ are also situated in a limited and flexible region of the enzyme molecule that is more fragile to denaturants than the protein as a whole.  相似文献   

18.
The rise of the chlorophyll fluorescence yield of Photosystem II (PS II) membranes as induced by high-intensity actinic light comprises only two distinct phases: (1) the initial O-J increase and (2) the subsequent J-P increase. Partial inhibition of the PS II donor side by heating or washing procedures which remove peripheral PS II proteins or cofactors of the oxygen-evolving complex results in decrease of magnitude and rate of the J-P phase. The rate constant of the J-P increase is directly proportional to the steady-state rate of oxygen evolution; complete suppression of the J-P phase corresponds to full inhibition. A characteristic dip after J-level is observed only in Tris-washed or severely heated PS II membranes; manganese release correlates with appearance of the dip after J-level as verified by EPR spectroscopy. Presence of stabilizing cosolutes (glycine betaine, sucrose) or addition of donor-side cofactors (bicarbonate, chloride, calcium) to PS II membranes before heating (47 °C, 5 min) diminishes J-P phase suppression and prevents dip appearance, whereas the addition after heating is without effect. In conclusion, analysis of chlorophyll fluorescence transients of PS II membranes is a potentially useful tool for investigations on photosynthetic oxygen evolution. A decreased rate of the J-P phase can be employed as a convenient indicator for partial inhibition of oxygen-evolution activity; the appearance of a dip after J-level is suggestive of manganese release. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Long-term and short-term effects of gramine on cells of Anabaena sp. were studied. Culture death was observed after an initial growth in the presence of 0.5 mM gramine, and lower concentrations decreased both the specific growth rate and the growth yield. Cultures showed a reduction in the chlorophyll content as well as an increase in the level of accessory pigments, which were proportional to the alkaloid concentration. When cultures were excited with green light in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea, the fluorescence spectra of the cells showed a shoulder at 685 nm related to the photosystem II (PSII) antennae emission. This band was reduced when gramine was present during the growth, suggesting that gramine suppresses the energy transfer between the phycobilisomes and PSII. At lethal concentrations for cellular growth, gramine suppressed immediately the photosynthetic oxygen production as well as the electron transport from H2O to p-benzoquinone. The influence of gramine on the PSII photochemical reactions was investigated by flash-induced fluorescence measurements, and the results suggest that the alkaloid could act as an electron donor to the PSII reaction center.  相似文献   

20.
We investigated the effects of aminoguanidine (AG) on β-cell functions in an insulin secreting cell line (INS-1). Culture with 27 mM glucose for one week markedly decreased both insulin release and insulin content compared to culture in 0.8 mM or 3.3 mM glucose. Relative to culture at 27 mM glucose alone, the co-exposure to 1 mM AG almost doubled basal as well as glucose or 25 mM KCl-stimulated insulin release and increased insulin content by 42%. AG failed to affect release and content in cells cultured at 0.8 or 3.3 mM glucose. Preproinsulin mRNA content in 27 mM glucose-cultured cells was 52% suppressed compared to 0.8 mM glucose-cultured cells, and AG treatment partially counteracted this decline. Advanced glycosylation end product (AGE)-associated fluorescence (370 nm excitation and 440 nm emission) of cells′ extracts did not differ between 27 mM and 0.8 mM glucose-cultured cells after 1 week of culture and fluorescence was unaffected by AG. Accumulation of nitrite into culture media was markedly increased from 27 mM glucose-cultured cells, and this accumulation was 33% suppressed by AG. In conclusion, AG partially protects against glucotoxic effects in INS-1 cells. These beneficial effects may involve a decrease in early glycation products and/or nitric oxide synthase (NOS) activity. The effects which were obtained after one week of high glucose exposure may supplement AGE-associated effects seen after chronically elevated glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号