共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Proteolysis of mitotic regulators like securins and cyclins requires Fizzy(FZY)/Cdc20 and Fizzy-related(FZR)/Hct1/Cdh1 proteins. Budding yeast Cdh1 acts not only during G1, but is also required for B-type cyclin degradation during exit from mitosis when Cdh1 is a target of the mitotic exit network controlling progression through late mitosis and cytokinesis. In contrast, observations in frog and Drosophila embryos have suggested that the orthologous FZR is not involved during exit from mitosis. However, the potential involvement of minor amounts of maternally derived FZR was not excluded in these studies. Similarly, the reported absence of severe mitotic defects in chicken Cdh1(-/-) cells might be explained by the recent identification of multiple Cdh1 genes [10]. Here, we have carefully analyzed the FZR requirement during exit from mitosis in Drosophila, which, apart from fzr, has only one additional homolog. We find that this fzr2 gene, although expressed in the male germline, is not expressed during mitotic divisions. Moreover, by characterizing fzr alleles, we demonstrate that completion of mitosis including Cyclin B degradation does not require FZR. However, fzr is an essential gene corresponding to the rap locus, and FZR, which accumulates predominantly in the cytoplasm, is clearly required during G1. 相似文献
3.
Pharmacological studies show that ghrelin stimulates growth hormone release, appetite, and fat deposition, but ghrelin's physiological role in energy homeostasis has not been established. Ghrelin was also proposed to regulate leptin and insulin release and to be important for the normal function of stomach, heart, kidney, lung, testis, and placenta. To help determine a definable physiological role for ghrelin, we generated ghrelin-null mice. In contrast to predictions made from the pharmacology of ghrelin, ghrelin-null mice are not anorexic dwarfs; their size, growth rate, food intake, body composition, reproduction, gross behavior, and tissue pathology are indistinguishable from wild-type littermates. Fasting produces identical decreases in serum leptin and insulin in null and wild-type mice. Ghrelin-null mice display normal responses to starvation and diet-induced obesity. As in wild-type mice, the administration of exogenous ghrelin stimulates appetite in null mice. Our data show that ghrelin is not critically required for viability, fertility, growth, appetite, bone density, and fat deposition and not likely to be a direct regulator of leptin and insulin. Therefore, antagonists of ghrelin are unlikely to have broad utility as antiobesity agents. 相似文献
4.
T.L. Short 《Biology & philosophy》2002,17(3):323-340
Darwin'suse of final cause accords with the Aristotelian idea of finalcauses as explanatory types – as opposed to mechanical causes, which arealways particulars. In Wright's consequence etiology, anadaptation is explained by particular events, namely, its past consequences;hence, that etiology is mechanistic at bottom. This justifies Ghiselin'scharge that such versions of teleology trivialize the subject, But a purelymechanistic explanation of an adaptation allows it to appear coincidental.Patterns of outcome, whether biological or thermodynamic, cannot be explainedbytracing causal chains, even were that possible. They are explicanda of aspecialkind. The form of their explanation, in statistical mechanics or by naturalselection, is not captured by statistical variants of the covering-law model orrelated models of explanation. In them as in classical teleology, types ofoutcome are cited to explain why there are outcomes of those types. But onlywhen types are explanatory by being selected for, as inexplanations of animal and human behavior as well as in Darwin's theory ofnatural selection, but not in statistical mechanics, is the explanationteleological. Darwin's theory is nontrivially teleological. 相似文献
5.
Peter Nonacs 《Journal of theoretical biology》2010,266(4):739-741
Models of reproductive skew assume reproductive shares are either conceded, competed over, or both. Previous mathematical evaluations found that simultaneous concessions and contests are evolutionarily unstable. Recently, Shen and Reeve (2010) challenged these conclusions and developed a series of sub-models they argued to be a unified approach to reproductive skew: the general bordered tug-of-war (BTOW). However, BTOW fails as a general model for two reasons: (1) the BTOW strategy cannot invade populations where individuals either only compete for or only concede reproductive shares and (2) contrary to Shen and Reeve’s assertion, BTOW populations are easily invaded by strategies with fewer or no concessions, but competing at lower levels. The failure of BTOW as a general model has major implications for interpreting experiments on reproductive skew. A large number of studies have measured the effects of genetic relatedness and competitive ability on reproductive skew, with a great majority finding no significant correlation between variation in within-group relatedness or competitive ability and across-group differences in skew. No model of reproductive skew except one variant of the BTOW predicts such results. With the rejection of BTOW as a valid general model, it is clear that these results are contradictory to reproductive skew theory rather than supportive of it. 相似文献
6.
Nine mutations in the switch I and switch II regions of human ADP-ribosylation factor 3 (ARF3) were isolated from loss-of-interaction screens, using two-hybrid assays with three different effectors. We then analyzed the ability of the recombinant proteins to (i) bind guanine nucleotides, (ii) activate phospholipase D1 (PLD1), (iii) recruit coatomer (COP-I) to Golgi-enriched membranes, and (iv) expand and vesiculate Golgi in intact cells. Correlations of activities in these assays were used as a means of testing specific hypotheses of ARF action, including the role of PLD1 activation in COP-I recruitment, the role of COP-I in Golgi vesiculation caused by expression of the dominant activating mutant [Q71L]ARF3, and the need for PLD1 activation in Golgi vesiculation. Because we were able to find at least one example of a protein that has lost each of these activities with retention of the others, we conclude that activation of PLD1, recruitment of COP-I to Golgi, and vesiculation of Golgi in cells are functionally separable processes. The ability of certain mutants of ARF3 to alter Golgi morphology without changes in PLD1 activity or COP-I binding is interpreted as evidence for at least one additional, currently unidentified, effector for ARF action at the Golgi. 相似文献
7.
BACKGROUND: Regulation of the major transitions in the cell cycle, such as G1/S, G2/M, and metaphase to anaphase, are increasingly well understood. However, we have a poor understanding of the timing of events within each phase of the cell cycle, such as S phase or early mitosis. Two extreme models of regulation are possible. A "regulator-controlled model" in which the order of events is governed by the activation of a series of cytoplasmic regulators, such as kinases, phosphatases, or proteases; or a "substrate-controlled model" in which temporal regulation is determined by the differential responses of the cellular machinery to a common set of activators. RESULTS: We have tried to distinguish between these two models by examining the timing of both biochemical and morphological events in Xenopus egg extracts during mitosis. Several proteins respond with different delays to the activation of Cdc2. We have found that the timing of phosphorylation is largely unchanged when these proteins are exposed to extracts that have been in mitosis for various periods of time. Similarly, when Xenopus interphase nuclei are added to extracts at different times after the G2/M transition, they undergo all the expected morphological changes in the proper sequence and with very similar kinetics. CONCLUSIONS: Our results suggest that during early mitosis (from prophase to metaphase) the timing of biochemical events (such as phosphorylation) and morphological events (such as structural changes in the nucleus) is at least partly controlled by the responses of the substrates themselves to a common set of signals. 相似文献
8.
9.
In synchronized rat or mouse cells infected with Moloney murine leukemia virus (MLV), integration of viral DNA and production of viral proteins occur only after the cells traverse mitosis. Integration is blocked when cells are prevented from progressing through mitosis. Viral nucleoprotein complexes isolated from arrested cells contain full-length viral DNA and can integrate this viral DNA in vitro, showing that the block to integration in arrested cells is not due to a lack of mature integration machinery. When infected cells traverse mitosis, there is a sharp increase in nuclear accumulation of viral DNA. The dependence of integration on mitosis may therefore be due to a requirement for mitosis and nuclear envelope breakdown for entry of the viral integration complex into the nucleus. 相似文献
10.
Phosphorylation of the nuclear lamins during interphase and mitosis 总被引:68,自引:0,他引:68
The nuclear lamina is a polymeric protein assembly that is proposed to function as an architectural framework for the nuclear envelope. Previous work suggested that phosphorylation of the major polypeptides of the lamina (the "lamins") may induce disassembly of this structure during mitosis. To further investigate the possible involvement of phosphorylation in regulation of lamina structure, we characterized lamin phosphorylation occurring in mammalian tissue culture cells during interphase and mitosis. Phosphorylation occurs continuously throughout all interphase periods (coordinately with nuclear envelope growth), and takes place mainly on the assembled lamina. When the lamina is disassembled during cell division, the lamins are modified with approximately 1-2 molecules of associated phosphate. This level of mitotic phosphorylation is 4-7-fold higher than the average interphase level. Lamin phosphate occurs predominantly as phosphoserine, and is distributed over numerous tryptic peptides, many of which are modified during both interphase and mitotic periods. Significantly, phosphorylation is the only detectable charge-altering postsynthetic modification of the lamins that occurs specifically during mitosis. The results of this study support the notion that phosphorylation is important for regulation of interphase and mitotic lamina structure. 相似文献
11.
12.
Ase1p organizes antiparallel microtubule arrays during interphase and mitosis in fission yeast 总被引:7,自引:0,他引:7
下载免费PDF全文

Loïodice I Staub J Setty TG Nguyen NP Paoletti A Tran PT 《Molecular biology of the cell》2005,16(4):1756-1768
Proper microtubule organization is essential for cellular processes such as organelle positioning during interphase and spindle formation during mitosis. The fission yeast Schizosaccharomyces pombe presents a good model for understanding microtubule organization. We identify fission yeast ase1p, a member of the conserved ASE1/PRC1/MAP65 family of microtubule bundling proteins, which functions in organizing the spindle midzone during mitosis. Using fluorescence live cell imaging, we show that ase1p localizes to sites of microtubule overlaps associated with microtubule organizing centers at both interphase and mitosis. ase1Delta mutants fail to form overlapping antiparallel microtubule bundles, leading to interphase nuclear positioning defects, and premature mitotic spindle collapse. FRAP analysis revealed that interphase ase1p at overlapping microtubule minus ends is highly dynamic. In contrast, mitotic ase1p at microtubule plus ends at the spindle midzone is more stable. We propose that ase1p functions to organize microtubules into overlapping antiparallel bundles both in interphase and mitosis and that ase1p may be differentially regulated through the cell cycle. 相似文献
13.
14.
RCC1, a guanine nucleotide exchange factor of the small GTPase Ran, plays various roles throughout the cell cycle. However, the functions of RCC1 in biological processes in vivo are still unclear. In particular, although RCC1 has multifunctional domains, the biological significance of each domain is unclear. To examine each domain of RCC1, we established an RCC1 conditional knockout chicken DT40 cell line and introduced various RCC1 mutants into the knockout cells. We found that nuclear reformation did not occur properly in RCC1-deficient cells and examined whether specific RCC1 mutants could rescue this phenotype. Surprisingly, we found that neither the nuclear localization signal nor the chromatin-binding domain of RCC1 is essential for its function. However, codisruption of these domains resulted in defective nuclear reformation, which was rescued by artificial nuclear localization of RCC1. Our data indicate that chromatin association of RCC1 during mitosis is crucial for its proper nuclear localization in the next interphase. Moreover, proper nuclear localization of RCC1 in interphase is essential for its function through its nucleotide exchange activity. 相似文献
15.
Redouan Bshary Klaus Zuberbühler Carel P. van Schaik 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2016,371(1687)
Mutual helping for direct benefits can be explained by various game theoretical models, which differ mainly in terms of the underlying conflict of interest between two partners. Conflict is minimal if helping is self-serving and the partner benefits as a by-product. In contrast, conflict is maximal if partners are in a prisoner''s dilemma with both having the pay-off-dominant option of not returning the other''s investment. Here, we provide evolutionary and ecological arguments for why these two extremes are often unstable under natural conditions and propose that interactions with intermediate levels of conflict are frequent evolutionary endpoints. We argue that by-product helping is prone to becoming an asymmetric investment game since even small variation in by-product benefits will lead to the evolution of partner choice, leading to investments by the chosen class. Second, iterated prisoner''s dilemmas tend to take place in stable social groups where the fitness of partners is interdependent, with the effect that a certain level of helping is self-serving. In sum, intermediate levels of mutual helping are expected in nature, while efficient partner monitoring may allow reaching higher levels. 相似文献
16.
17.
The structural basis of mitosis, spindle organisation and chromosome segregation, in the unicellular parasite Trypanosoma brucei is poorly understood. Here, using immunocytochemistry, fluorescent in situ hybridisation and electron microscopy, we provide
a detailed analysis of mitosis in this parasite. We describe the organisation of the mitotic spindle during different stages
of mitosis, the complex ultrastructure of kinetochores and the identification of a potential spindle-organising centre in
the mitotic nucleus. We investigate the dynamics of chromosome segregation using telomeric and chromosome-specific probes.
We also discuss the problems involved in chromosome segregation in the light of the fact that the T. brucei karyotype has 22 chromosomes in the apparent presence of only eight ultrastructurally defined kinetochores.
Received: 9 August 1999; in revised form: 15 October 1999 / Accepted: 10 November 1999 相似文献
18.
19.
Linares JF Amanchy R Greis K Diaz-Meco MT Moscat J 《Molecular and cellular biology》2011,31(1):105-117
The protein scaffold and signaling regulator p62 is important in critical cellular functions, including bone homeostasis, obesity, and cancer, because of its interactions with various signaling intermediaries. p62 is overexpressed in human cancers and is induced during cell transformation. Its genetic ablation inhibits lung tumorigenesis in vivo and cell proliferation in culture by regulating the TRAF6/NF-κB signaling cascade to control reactive oxygen species (ROS) production and apoptosis. Here we show that cdk1 phosphorylates p62 in vitro and in vivo at T269 and S272, which is necessary for the maintenance of appropriate cyclin B1 levels and the levels of cdk1 activity necessary to allow cells to properly enter and exit mitosis. The lack of cdk1-mediated phosphorylation of p62 leads to a faster exit from mitosis, which translates into enhanced cell proliferation and tumorigenesis in response to Ras-induced transformation. Therefore, p62 emerges as a node for the control of not only cell survival but also cell transit through mitosis. 相似文献