首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Channel-forming colicins are bactericidal proteins that spontaneously insert into hydrophobic lipid bilayers. We have used magic-angle spinning solid-state nuclear magnetic resonance spectroscopy to examine the conformational differences between the water-soluble and the membrane-bound states of colicin Ia channel domain, and to study the effect of bound colicin on lipid bilayer structure and dynamics. We detected 13C and 15N isotropic chemical shift differences between the two forms of the protein, which indicate structural changes of the protein due to membrane binding. The Val Cα signal, unambiguously assigned by double-quantum experiments, gave a 0.6 ppm downfield shift in the isotropic position and a 4 ppm reduction in the anisotropic chemical shift span after membrane binding. These suggest that the α-helices in the membrane-bound colicin adopt more ideal helical torsion angles as they spread onto the membrane. Colicin binding significantly reduced the lipid chain order, as manifested by 2H quadrupolar couplings. These results are consistent with the model that colicin Ia channel domain forms an extended helical array at the membrane-water interface upon membrane binding.  相似文献   

2.
Channel-forming colicins are bactericidal proteins that spontaneously insert into hydrophobic lipid bilayers. We have used magic-angle spinning solid-state nuclear magnetic resonance spectroscopy to examine the conformational differences between the water-soluble and the membrane-bound states of colicin Ia channel domain, and to study the effect of bound colicin on lipid bilayer structure and dynamics. We detected (13)C and (15)N isotropic chemical shift differences between the two forms of the protein, which indicate structural changes of the protein due to membrane binding. The Val C(alpha) signal, unambiguously assigned by double-quantum experiments, gave a 0.6 ppm downfield shift in the isotropic position and a 4 ppm reduction in the anisotropic chemical shift span after membrane binding. These suggest that the alpha-helices in the membrane-bound colicin adopt more ideal helical torsion angles as they spread onto the membrane. Colicin binding significantly reduced the lipid chain order, as manifested by (2)H quadrupolar couplings. These results are consistent with the model that colicin Ia channel domain forms an extended helical array at the membrane-water interface upon membrane binding.  相似文献   

3.
The colicin E1 channel polypeptide was shown to be organized anisotropically in membranes by solid-state NMR analysis of samples of uniformly 15N-labeled protein in oriented planar phospholipid bilayers. The 190 residue C-terminal colicin E1 channel domain is the largest polypeptide to have been characterized by 15N solid-state NMR spectroscopy in oriented membrane bilayers. The 15N-NMR spectra of the colicin E1 show that: (1) the structure and dynamics are independent of anionic lipid content in both oriented and unoriented samples; (2) assuming the secondary structure of the polypeptide is helical, there are both trans-membrane and in-plane helical segments; (3) trans-membrane helices account for approximately 20-25% of the channel polypeptide, which is equivalent to 38-48 residues of the 190-residue polypeptide. The results of the two-dimensional PISEMA spectrum are interpreted in terms of a single trans-membrane helical hairpin inserted into the bilayer from each channel molecule. These data are also consistent with this helical hairpin being derived from the 38-residue hydrophobic segment near the C-terminus of the colicin E1 channel polypeptide.  相似文献   

4.
Colicin A protein kills cells by opening voltage-dependent ion channels in the cytoplasmic membrane. The C-terminal domain of colicin A retains the full protein’s ability to form membrane pores, making it an excellent model for in vitro studies of protein-membrane interaction. We report here the NMR assignment and backbone dynamics of this domain in solution. The chemical shifts identify ten α-helices that match those observed in the crystal structure, while the 15N{1H} NOEs show differential fast mobility for some of the inter-helical loops and the chain ends. This analysis provides the basis for further NMR studies of this channel forming protein and its interactions.  相似文献   

5.
Molecular dynamics (MD) simulations have been carried out on bundles of the channel-forming transmembrane (TM) domain of the viral protein U (VPU(1-27) and VPU(6-27)) from the human immunodeficiency virus (HIV-1). Simulations of hexameric and pentameric bundles of VPU(6-27) in an octane/water membrane mimetic system suggested that the pentamer is the preferred oligomer. Accordingly, an unconstrained pentameric helix bundle of VPU(1-27) was then placed in a hydrated palmitoyl-oleyl-3-n-glycero-phosphatidylethanolamine (POPE) lipid bilayer and its structural properties calculated from a 3-ns MD run. Some water molecules, initially inside the channel lumen, were expelled halfway through the simulation and the bundle adopted a conical structure reminiscent of previous MD results obtained for VPU(6-27) in an octane/water system. The pore constriction generated may correspond to a closed state of the channel and underlies the relocation of the W residue toward the pore lumen. The relative positions of the helices with respect to the bilayer and their interactions with the lipids are discussed. The observed structure is stabilized via specific interactions between the VPU helices and the carbonyl oxygen atoms of the lipid molecules, particularly at the Q and S residues.  相似文献   

6.
Bacterial toxins commonly translocate cytotoxic enzymes into cells using channel-forming subunits or domains as conduits. Here we demonstrate that the small cytotoxic endonuclease domain from the bacterial toxin colicin E9 (E9 DNase) shows nonvoltage-gated, channel-forming activity in planar lipid bilayers that is linked to toxin translocation into cells. A disulfide bond engineered into the DNase abolished channel activity and colicin toxicity but left endonuclease activity unaffected; NMR experiments suggest decreased conformational flexibility as the likely reason for these alterations. Concomitant with the reduction of the disulfide bond is the restoration of conformational flexibility, DNase channel activity and colicin toxicity. Our data suggest that endonuclease domains of colicins may mediate their own translocation across the bacterial inner membrane through an intrinsic channel activity that is dependent on structural plasticity in the protein.  相似文献   

7.
Yao XL  Hong M 《Biochemistry》2006,45(1):289-295
Channel-forming colicins are bacterial toxins that spontaneously insert into the inner cell membrane of sensitive bacteria to form voltage-gated ion channels. It has been shown that the channel current and the conformational flexibility of colicin E1 channel domain depend on the membrane surface potential, which is regulated by the anionic lipid content and the ion concentration. To better understand the dependence of colicin structure and dynamics on the membrane surface potential, we have used solid-state NMR to investigate the topology and segmental motion of the closed state of colicin Ia channel-forming domain in membranes of different anionic lipid contents and ion concentrations. Colicin Ia channel domain was reconstituted into membranes with different POPG and KCl concentrations. 1H spin diffusion experiments indicate that the protein contains a small domain that inserts into the hydrophobic center of the 70% anionic membrane, similar to when it binds to the 25% anionic membrane. Measurements of C-H and N-H dipolar couplings indicate that, on the sub-microsecond time scale, the protein has the least segmental mobility under the high-salt and low-anionic lipid condition, which has the most physiological membrane surface potential. Measurement of millisecond time scale motions yielded similar results. These suggest that optimal channel activity requires the protein to have sufficient segmental rigidity so that entire helices can undergo cooperative conformational motions that are required for translocating the channel-forming helices across the lipid bilayer upon voltage activation.  相似文献   

8.
9.
10.
Summary The two histidine residues of COOH-terminal channel-forming peptides of colicin E1 were modified by addition of a carbethoxy group through pretreatment with diethylpyrocarbonate. The consequences of the modification were examined by the action of the altered product on both phospholipid vesicles and planar membranes. At pH 6, where activity is low, histidine modification resulted in a decrease of the single channel conductance from 20 pS to approximately 9 pS and a decrease in the selectivity for sodium relative to chloride, showing that histidine modification affected the permeability properties of the channel. At pH 4, where activity is high, the single channel conductance and ion selectivity were not significantly altered by histidine modification. The histidine modification assayed at pH 4 resulted in a threefold increase in the rate of Cl efflux from asolectin vesicles, and a similar increase in conductance assayed with planar membranes. This conductance increase was inferred to arise from an increase in the fraction of bound histidine-modified colicin molecules forming channels at pH 4, since the increase in activity was not due to (i) an increase in binding of the modified peptide, (ii) a change in ion selectivity, (iii) a change of single channel conductance, or (iv) a change in the pH dependence of binding. The sole cysteine in the colicin molecule was modified in 6m urea with 5,5-dithiobis(2-nitrobenzoic acid). The activities of the colicin and its COOH-terminal tryptic peptide were found to be unaffected by cysteine modification, arguing against a role of (-SH) groups in protein insertion and/or channel formation.  相似文献   

11.
Colicin Ia can be cleaved by isolated outer membranes prepared from sensitive and resistant (lacking the colicin Ia receptor) strains of Escherichia coli. Both active and heat-denatured colicin Ia are extensively fragmented. Such proteolysis does not occur when colicin Ia is added to whole sensitive or resistant cells. These results demonstrate that cleavage of colicin Ia is not mediated by its outer membrane receptor.  相似文献   

12.
Crystals of the channel-forming domain of colicin E1 from E. coli were grown by vapor diffusion at pH 6.4 and higher pH values. Cleavage of the colicin molecule with trypsin or thermolysin produced two of the pore-forming polypeptides used in these experiments. The third polypeptide was purified from a constructed plasmid that overexpresses only the C-terminal domain of colicin E1. Polypeptide crystals are tetragonal with space group I4, have one monomer in the asymmetric unit, and diffract to 2.2–2.4 Å. Unit cell parameters for the tryptic and thermolytic polypeptides are a = 102.9 Å and c = 35.6 Å. Crystals of the overexpressed polypeptide have unit cell parameters of a =87.2 Å and c =59.1 Å. The crystals were characterized by precession photography, and native data sets of each channel-forming fragment were collected on a Siemens-Nicolet area detector. The crystallization and characterization of these polypeptides are the first steps in the structure determination of the channel-forming domain of colicin E1. © 1994 Wiley-Liss, Inc.  相似文献   

13.
The backbone dynamics of the channel-forming peptide antibiotic zervamicin IIB (Zrv-IIB) in methanol were studied by 15N nuclear magnetic resonance relaxation measurements at 11.7, 14.1 and 18.8 T magnetic fields. The anisotropic overall rotation of the peptide was characterized based on 15N relaxation data and by hydrodynamic calculations. 'Model-free' analysis of the relaxation data showed that the peptide is fairly rigid on a sub-nanosecond time-scale. The residues from the polar side of Zrv-IIB helix are involved in micro-millisecond time-scale conformational exchange. The conformational exchange observed might indicate intramolecular processes or specific intermolecular interactions of potential relevance to Zrv-IIB ion channel formation.  相似文献   

14.
Gallagher GJ  Hong M  Thompson LK 《Biochemistry》2004,43(24):7899-7906
A recently developed solid-state NMR method for measurement of depths in membrane systems is applied to gramicidin A, a membrane-bound peptide of known structure, to investigate the potential of this method. (15)N-detected, (1)H spin diffusion experiments demonstrate the resolution of the technique by measuring the 4-5 A depth differences between three (15)N-labeled backbone sites (Trp13, Val7, Gly2) in gramicidin A. We also show that (13)C-detected, (1)H spin diffusion experiments on unlabeled gramicidin A are sufficient to discriminate between the end-to-end dimer and double-helix structures of gramicidin A. Thus, spin diffusion solid-state NMR experiments can provide a simple approach, which does not require labeled samples, for testing structural models of membrane-bound peptides.  相似文献   

15.
The role of proline residues in the photocycle of bacteriorhodopsin (bR) is addressed using solid-state NMR. (13)C and (15)N chemical shifts from X-Pro peptide bonds in bR are assigned from REDOR difference spectra of pairwise labeled samples, and correlations of chemical shifts with structure are explored in a series of X-Pro model compounds. Results for the three membrane-embedded X-Pro bonds of bR indicate only slight changes in the transition from the resting state of the protein to either the early or late M state of the protonmotive photocycle. These results suggest that the buried prolines serve a principally structural role in bR.  相似文献   

16.
Ni2+ affinity columns are widely used for protein purification, but they carry the risk that Ni2+ ions may bind to the protein, either adventitiously or at a physiologically important site. Dialysis against ethylenediaminetetraacetic acid (EDTA) is normally used to remove metal ions bound adventitiously to proteins; however, this approach does not always work. Here we report that a bacterial endonuclease, the DNase domain of colicin E9, binds Ni2+ acquired from Ni2+ affinity columns, and appears to bind [Ni(EDTA)(H2O)n]2- at low ionic strength. NMR was used to detect the presence of both Ni2+ coordinated to amino acid side chains and [Ni(EDTA)(H2O)N]2-. Dialysis against > or =0.2 M NaCl was required to remove the [Ni(EDTA)(H2O)n]2-. The NMR procedure we have used to characterize the presence of Ni2+ and [Ni(EDTA)(H2O)n]2- should be applicable to other proteins where there is the possibility of binding paramagnetic metal ions that are present to expedite protein purification. In the present case, the binding of Ni2+ seems likely to be physiologically relevant, and the NMR data complement recent X-ray crystallographic evidence concerning the number of histidine ligands to bound Ni2+.  相似文献   

17.
The structure of the pore-forming domain of the bacterial toxin colicin A was studied by attenuated total-reflection polarized Fourier-transform infrared spectroscopy. This channel-forming fragment interacts with dimyristoylglycerophosphoglycerol (Myr2GroPGro) vesicles and forms disk-like complexes. Analysis of the shape of the amide I' band indicates that its secondary structure is not affected by the pH 5.0-7.2. However, 5-10% of the peptide amino acids adopt an alpha-helical structure upon complex formation with Myr2GroPGro, while the random-coil and beta-sheet structure contents decrease. Interestingly, the increase in alpha-helical content is essentially due to an increase in the high-frequency component of the alpha-helical domain of amide I'. The fact that only this component was 90 degrees polarized (i.e. the helix is parallel to the acyl chain) suggests that only this particular type of helix is associated with the Myr2GroPGro bilayer.  相似文献   

18.
The bacterial toxin colicin Ia forms voltage-gated channels in planar lipid bilayers. The toxin consists of three domains, with the carboxy-terminal domain (C-domain) responsible for channel formation. The C-domain contributes four membrane-spanning segments and a 68-residue translocated segment to the open channel, whereas the upstream domains and the amino-terminal end of the C-domain stay on the cis side of the membrane. The isolated C-domain, lacking the two upstream domains, also forms channels; however, the amino terminus and one of the normally membrane-spanning segments can move across the membrane. (This can be observed as a drop in single-channel conductance.) In longer carboxy-terminal fragments of colicin Ia that include /=90 mV, even a 26-A stopper is translocated. Upon reduction of their disulfide bonds, all of the stoppers are easily translocated, indicating that it is the folded structure, rather than some aspect of the primary sequence, that slows translocation of the stoppers. Thus, the pathway for translocation is >/=26 A in diameter, or can stretch to this value. This is large enough for an alpha-helical hairpin to fit through.  相似文献   

19.
Helix 1 of the membrane-associated closed state of the colicin E1 channel domain was studied by site-directed fluorescence labeling where bimane was covalently attached to a single cysteine residue in each mutant protein. A number of fluorescence properties of the tethered bimane fluorophore were measured in the membrane-bound state of the channel domain, including fluorescence emission maximum, fluorescence quantum yield, fluorescence anisotropy, membrane bilayer penetration depth, surface accessibility, and apparent polarity. The data show that helix 1 is an amphipathic alpha-helix that is situated parallel to the membrane surface. A least squares fit of the various data sets to a harmonic function indicated that the periodicity and angular frequency for helix 1 are typical for an amphipathic alpha-helix (3.7 +/- 0.1 residues per turn and 97 +/- 3.0 degrees, respectively) that is partially bathing into the membrane bilayer. Dual fluorescence quencher analysis also revealed that helix 1 is peripherally membrane-associated, with one face of the helix dipping into the lipid bilayer and the other face projecting toward the solvent. Finally, our data suggest that the helical boundaries of helix 1, at least at the C-terminal region, remain unaffected upon binding to the surface of the membrane in support of a toroidal pore model for this colicin.  相似文献   

20.
Various solid dispersions of alpha-, beta- and gamma-cyclodextrin (CD) in PEG 6000 with and without the addition of 5% w/w indomethacin were prepared by the melting method using the original components. The samples were investigated by solid-state (13)C NMR, and the interactions between the drug and the cyclodextrins were evaluated. The indomethacin-gamma-CD phase with tetragonal symmetry found in a previous X-ray study gave chemical shifts which suggested that this phase is a complex between indomethacin and gamma-CD. Evidence of an indomethacin-beta-CD complex were found. A distribution of the chemical shifts for beta-CD was attributed to the possible formation of different types of complexes between indomethacin and beta-CD. No complex formation was found in the alpha-CD system. The degree of relative crystallinity of the samples in the gamma-CD system was measured by (1)H NMR, X-ray powder diffraction (XRD), differential scanning calorimetry (DSC), and modulated-temperature DSC (MTDSC). The results obtained by the NMR, XRD, and DSC techniques showed that the dispersions were less crystalline than the pure polymer carrier, and the dispersion containing the indomethacin-gamma-CD complex had the lowest degree of crystallinity. By the MTDSC method a deviation was found for the PEG 6000/indomethacin dispersion. This emphasizes that the different techniques give specific information on the crystallinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号