首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P D Johnston  A G Redfield 《Biochemistry》1981,20(14):3996-4006
Nuclear magnetic resonance (NMR) measurements of proton exchange were performed on yeast tRNAPhe, and in much less detail on Escherichia coli tRNAfMet, over a range of Mg2+ concentrations and temperatures, at neutral pH and 0.1 M NaCl. The resonances studied were those of ring nitrogen protons, resonating between 10 and 15 ppm downfield from sodium 3-(trimethylsilyl)-1-propanesulfonate, which partake in hydrogen bonding between bases of secondary and tertiary pairs. Methods include saturation--recovery, line width, and real-time observation after a change to deuterated solvent. The relevant theory is briefly reviewed. We believe that most of the higher temperature rates reflect major unfolding of the molecule. For E. coli tRNAfMet, the temperature dependence of the rate for the U8--A14 resonance maps well onto previous optical T-jump studies for a transition assigned to tertiary melting. For yeast tRNAPhe, exchange rates of several resolved protons could be studied from 30 to 45 degrees C in zero Mg2+ concentration and had activation energies on the order of 40 kcal/mol. Initially, the tertiary structure melts, followed shortly by the acceptor stem. At high Mg2+ concentration, relatively few exchange rates are measurable below the general cooperative melt at about 60 degrees C; these are attributed to tertiary changes. Real-time observations suggest a change in the exchange mechanism at room temperature with a lower activation energy. The results are compared with those obtained by other methods directed toward assaying ribonucleic acid dynamics.  相似文献   

2.
A comparison of imino proton NMR spectra of yeast tRNAPhe recorded at various solution conditions indicates, that polyamines have a limited effect on the structure of this tRNA molecule. Polyamines are found to catalyse the solvent exchange of several imino protons in yeast tRNAPhe not only of non hydrogen bonded imino protons, but also of imino protons of the GU and of some AU and tertiary base pairs. It is concluded that at low levels of catalysing components the exchange rates of the latter protons are not determined by the base pair lifetime. In the presence of high levels of spermidine the solvent exchange rates of imino protons of several base pairs in the molecule were assessed as a function of the temperature. Apparent activation energies derived from these rates were found to be less than 80 kJ/mol, which is indicative for (transient) independent opening of the corresponding base pairs. In the acceptor helix the GU base pair acts as a dynamic dislocation. The AU base pairs at one side of the GU base pair exhibit faster transient opening than the GC base pairs on the other side of this wobble pair. The base pairs m2GC10 and GC11 from the D stem and GC28 from the anticodon stem show relatively slow opening up to high temperatures. Model studies suggest that 1-methyladenosine, an element of tRNA itself, catalyses imino proton solvent exchange in a way similar to polyamines.  相似文献   

3.
Pseudouridine psi 55 alone and both psi 55 and psi 39 in yeast tRNAPhe are selectively modified with fluorescent reagent of 4-bromomethyl-7-methoxycoumarin (BMC). The change of fluorescence intensity was measured as a function of temperature and Mg2+ concentration. Fluorescent quenching shows the stacked and unstacked forms of Y base, dependent on Mg2+ concentration. In contrast, Mg2+ had no effect on psi 55-BMC in T psi C loop at 20 degrees C. Fluorescence on titrating Mg2+ exhibited a kind of Mg2+-induced structural collapse at the corner of L-structure. The melting of psi 55-BMC takes place at 70 degrees C in 10mM Mg2+. At very low Mg2+ concentration, melting takes place at 35 degrees C. The melting of psi 39-BMC, located near the anticodon loop, was observed before the unfolding of the whole structure of tRNAPhe. A conformational transition of the anticodon loop takes place at a lower temperature and it is also expected in the quenching experiment of Y base.  相似文献   

4.
Pseudouridine psi 73 in yeast 5.8S RNA was modified with 4-bromomethyl-7-methoxycoumarin(BMC). Temperature dependence of fluorescence intensity was measured and it was compared with UV-thermal melting curve. The region around psi 73 melts partially. Fluorescence intensity changes by titration with Mg2+ and it quenches largely by added iodide ion. The results are compared with those of BMC-modified psi 55 of tRNAPhe and psi 50 of 5S RNA reported in previous paper1-4.  相似文献   

5.
The proton NMR spectrum of yeast tRNAVal 1 has been studied using nuclear Overhauser effect (NOE), including comparison of NOE patterns between purine C8 deuterated and nondeuterated samples. Studies of the downfield region enable us to reliably assign many resonances in the acceptor and D stems. Prominent among these reliable assignments is that of the unusual base pair U psi, which is made here for the first time. Other identifications include GU2, U8-A14, the three AU base pairs of the acceptor stem, and N1 and N3 protons of psi 55.  相似文献   

6.
The exchangeable N1 imino protons of two pseudouridine (psi) bases located at adjacent internal positions within an undecamer RNA duplex (5'AUAC psi psi ACCUG/3'UAUGAAUGGUC) can report on the environment of the major groove of an A-form double-stranded nucleic acid. The psi N1 imino protons of these residues (which are not involved in interstrand Watson-Crick hydrogen bonding) are protected from chemical exchange with the solvent water and thus are observable in the proton NMR spectrum in H2O (1). These protons will exchange readily at increased pH values or upon thermal denaturation of the duplex. The longitudinal (T1) relaxation times of the psi N1 imino protons in 100 mM NaCl or in 10 mM MgCl2 and 100 mM NaCl are approximately two-fold faster than those of the psi N3 imino protons which are involved in Watson-Crick base pairing. With the addition of spermidine, the psi N1 imino protons become readily exchangeable at a temperature some 20 degrees C below the melting temperature of the duplex.  相似文献   

7.
The thermal unfolding of phenylalanine and initiator tRNA from yeast was investigated over a broad range of solution conditions by differential ultraviolet absorption at 260 nm. Under most conditions, the initiator tRNA exhibits two clearly separated transitions in its differential melting curve which were assigned to unfolding of tertiary and secondary structure elements, respectively. The tertiary transition of this tRNA and the overall transition observed for tRNAPhe do not show a maximum in a curve of Tm values plotted as a function of [Na+]. Such a maximum is usually observed for other nucleic acids at about 1 M Na+. In the presence of 5 mM of the divalent cation Mg2+ (or Ca2+), an overall destabilization of the tRNAs is observed when increasing the sodium concentration. The largest fall in Tm (approximately 15 degrees C) is observed for the tertiary transition of the initiator tRNA. Among various cations tested the following efficiency in the overall stabilization of tRNAPhe is observed: spermine greater than spermidine greater than putrescine greater than Na+ (approximately NH4+). Mg2+ is most efficient at concentrations above 5 mM, but below this concentration spermine and spermidine appear to be more efficient. The same hierarchy in stabilizing power of the polyamines and Na+ is observed for both transitions of the initiator tRNA. However, when compared with Mg2+, the polyamines are far less capable of stabilizing the tertiary structure. In contrast, spermine and spermidine are slightly better than Mg2+ in stabilizing the secondary structure. At increasing concentrations of the polyvalent cations (at fixed [Na+] ) the Tm values of the tRNAs attain a constant value.  相似文献   

8.
Resonances of the water exchangeable iminoprotons of the tertiary structure of yeast tRNAPhe were studied by experiments involving Nuclear Overhauser Effects (NOE's). Direct NOE evidence is presented for the assignment of all resonances of iminoprotons participating in tertiary basepairing (except that of G19C56 which was assigned by an elimination procedure). The present results in conjunction with our previous assignment of secondary iminoprotons constitute for the first time a complete spectral assignment of all iminoprotons participating in basepairing in yeast tRNAPhe. In addition we have been able to assign the non(internally) hydrogen bonded N1 proton of psi 55 as well as the N3 proton of this residue, which is one of the two iminoprotons hydrogen bonded to a phosphate group according to X-ray results. No evidence could be obtained for the existence in solution of the other iminoproton-phosphate interaction: that between U33 N3H and P36 located in the anticodon loop. Remarkable is the assignment of a resonance at 12.4 - 12.5 ppm to the iminoproton of the tertiary basepair T54m1A58. The resonance positions obtained for the iminoprotons of G18 (9.8 ppm) and m2(2)G26 (10.4 ppm) are surprisingly far upfield considering that these protons are involved in hydrogen bonds according to X-ray diffraction results. As far as reported by changes in chemical shifts of iminoproton resonances the main structural event induced by Mg++ ions takes place near the tertiary interactions U8A14 and G22m7G46.  相似文献   

9.
Salts and polyamines have a variety of effects on the physical properties of DNA, including stabilization against thermal melting. We wished to gain greater insight into the mechanism of this stabilization by ascertaining its effect on the dynamics of base opening and closing reactions, as measured by NMR. Since the binding of spermidine(3+) is influenced by salt, and since spermidine may act as a base catalyst in proton exchange reactions, we have undertaken a study of salt and base catalyst effects on the imino proton exchange kinetics of a model oligomeric DNA. The selective longitudinal NMR relaxation rates of the hydrogen-bonded imino protons of the self-complementary octadeoxyribonucleotide d(GGAATTCC) monitor the rate of the base-catalyzed chemical exchange of these protons with solvent water. The exchange rates thus obtained provide a sensitive measure of the base-pair opening reactions of the DNA duplex. Under conditions of low pH and no added base catalyst, the NMR relaxation rates allow the determination of kd, the rate constant for the dissociation of the octameric duplex into single strands. Titration with the base catalyst tris(hydroxymethyl)aminomethane allows the determination of kop, the rate constant for the localized opening of individual base pairs, prior to dissociation. A significant Na+ concentration dependence is found for kd. From an analysis of this dependence, it is determined that 0.6 +/- 0.1 sodium ion is released during the dissociation event. The activation energy for helix dissociation (200 +/- 5 kJ/mol) is not dependent on the sodium ion concentration, indicating that the dissociation is entropically driven by the release of bound sodium ions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The N1 imino units in Escherichia coli tRNAfMet, tRNAGlu, tRNAPhe, and tRNATyr were studied by 1H-15N NMR using three different techniques to suppress signals of protons not attached to 15N. Two of the procedures, Fourier internuclear difference spectroscopy and two-dimensional forbidden echo spectroscopy permitted 1H and 15N chemical shifts to be measured simultaneously at 1H sensitivity. The tRNAs were labeled by fermentation of the uracil auxotroph S phi 187 on a minimal medium containing [1-15N]uracil. 1H and 15N resonances were detected for all of the N1 psi imino units except psi 13 at the end of the dihydrouridine stem in tRNAGlu. Chemical shifts for imino units in the tRNAs were compared with "intrinsic" values in model systems. The comparisons show that the A X psi pairs at the base of the anticodon stem in E. coli tRNAPhe and tRNATyr have psi in an anti conformation. The N1 protons of psi in other locations, including psi 32 in the anticodon loop of tRNAPhe, form internal hydrogen bonds to bridging water molecules or 2'-hydroxyl groups in nearby ribose units. These interactions permit psi to stabilize the tertiary structure of a tRNA beyond what is provided by the U it replaces.  相似文献   

11.
M P Stone  D L Johnson  P N Borer 《Biochemistry》1981,20(12):3604-3610
Conformational features of the oligoribonucleic acid (oligo-RNA) A1-U2-C3-C4-A5 are explored by proton nuclear magnetic resonance (NMR). The sequence is a molecular cognate of a portion of the T psi C loop and stem regions of yeast tRNAPhe. The molecule forms at least two classes of flexible yet ordered structures. Class I states are similar in spectral properties to the component oligomers, AU, AUC, and AUCC, and are likely to be standard right-helical structures. Class II states are characterized by a 2'-endo pucker at A1 and unusually large shielding of several C3 and U2 protons. Most of these features are consistent with identifying the class II solution structures with the "arch" conformation for the T psi C region determined by X-ray crystallography of yeast tRNAPhe.  相似文献   

12.
The phosphorylation of red blood cell membrane fragments (RBCMF) during Ca++ transport was investigated. When red cell membrane fragments are incubated with [gamma-32P]ATP under the experimental condition which minimizes the phosphorylation of Na+-K+-ATPase, RBCMF are labeled in the presence of Mg++ without Ca++. When Ca++ is added, the labeling decreases due to dephosphorylation of RBCMF. The initial reaction of phosphorylation is reversed in the presence of excess ADP. The treatment of RBCMF with n-ethylmaleimide (NEM) does not interfere with the initial phosphorylation reaction, but blocks the dephosphorylation in the presence of Ca++. These data suggest that the enzymatic sequence of the Ca++ transport mechanism may be very similar to that of the Na+ transport mechanism.  相似文献   

13.
Binding of spermidine to transfer ribonucleic acid   总被引:1,自引:0,他引:1  
M E McMahon  V A Erdmann 《Biochemistry》1982,21(21):5280-5288
The binding of spermidine to yeast tRNAPhe and Escherichia coli tRNAGlu2 at low and high ionic strength was studied by equilibrium dialysis. Once corrected for the expected Donnan effect, the binding at low ionic strength obeys the simple relationship of equivalent binding sites, and cooperative binding of spermidine to tRNA could not be detected. At low ionic strength (0.013 M Na+ ion), tRNAPhe (yeast) has 13.9 +/- 2.3 strong spermidine binding sites per molecule with Kd = 1.39 X 10(-6) M and a few weak spermidine binding sites which were inaccessible to experimentation; tRNAGlu2 (E. coli) has 14.8 +/- 1.6 strong spermidine binding sites and 4.0 +/- 0.1 weak spermidine binding sites with Kd = 1.4 X 10(-6) M and Kd = 1.23 X 10(-4) M, respectively. At high ionic strength (0.12 M monovalent cation) and 0.01 M Mg2+, tRNAPhe (yeast) has approximately 13 strong spermidine binding sites with an apparent Kd = 3.4 X 10(-3) M while the dimeric complex tRNAPhe X tRNAGlu2 has 10.4 +/- 1.2 strong spermidine binding sites per monomer with an apparent Kd = 2.0 X 10(-3) M. In the presence of increasing Na+ ion or K+ ion concentration, spermidine binding data do not fit a model for competitive binding to tRNA by monovalent cations. Rather, analysis of binding data by the Debye-Hückel approximation results in a good fit of experimental data, indicating that monovalent cations form a counterion atmosphere about tRNA, thus decreasing electrostatic interactions. On the basis of equilibrium binding analyses, it is proposed that the binding of spermidine to tRNA occurs predominantly by electrostatic forces.  相似文献   

14.
15.
16.
Nuclear Overhauser effects (NOEs) in yeast tRNAAsp were found for all four GU and G psi base pairs. NOEs of both reverse-Hoogsteen pairs were identified by comparison with a purine C8 deuterated sample. Several NOEs involving these resonances were also found which are clearly between single protons on adjacent base pairs. These interbase NOEs, combined with the assumption of reasonable similarity between the structure of yeast tRNAAsp and that of yeast tRNAPhe, lead to unambiguous assignment of many resonances including all the ring NH and C2 protons in the D stem. The stability of the stem at 28 degrees C, as recently deduced by Moras et al (Nature 288 669-674), from x-ray diffraction is confirmed. Assignments of the ring NH resonances of T54-A58 and of a G psi pair are made for the first time.  相似文献   

17.
Solvent exchange rates of all the protons of yeast tRNAphe resonating in the lowfield NMR region (-11 to-15 ppm from DSS) have been measured by saturation-recovery long-pulse Fourier transform NMR. All these protons in yeast tRNAphe are in the fast exchange limit with H2O relative to their intrinsic longitudinal relaxation processes. Most rates show very little temperature dependence; however, tertiary base pair protons are preferentially destabilized in the absence of Mg++ at higher temperatures. The measured exchange rates are between 2 and 125 sec-1 for a temperature range from 10 degrees C to 45 degrees C and MgCl2 concentrations between 0 and 15 mM.  相似文献   

18.
The kinetic profile of Ca++ uptake in the presence of oxalate is biphasic. An initial phase independent on oxalate is followed by an oxalate-dependent phase delayed in time. The ionophore X-537A only abolishes the net Ca++ uptake if added before the onset of the oxalate phase. However, during this phase, X-537A suddenly releases an amount of Ca++ similar in quantity to that released in the initial phase. The delay of the oxalate-dependent phase is a function of pH. At pH of about 5.5, the oxalate phase and simultaneous calcium oxalate precipitation would theoretically start at the beginning, with no delay. Ejection of protons during Ca++ uptake is strongly depressed by oxalate, but not by other organic anions which do not trap Ca++. It is suggested that oxalate is transferred to the inside of the vesicles as a monoprotonated species at expense of protons ejected by the Ca++-pump during the uptake of Ca++.  相似文献   

19.
E I Hyde  B R Reid 《Biochemistry》1985,24(16):4307-4314
The imino region of the proton NMR spectrum of Escherichia coli tRNAPhe has been largely assigned from the nuclear Overhauser effects between neighboring bases. These have led to the unambiguous assignment of the imino protons of the ribothymidine stem and of most of the dihydrouridine stem of this tRNA and given several other sets of connectivities. These connectivities are discussed in reference to the previously reported temperature studies of the spectrum [Hurd, R. E., & Reid, B. R. (1980) J. Mol. Biol. 142, 1981] and compared with assignments of other tRNAs resulting in tentative assignments of the rest of the spectrum.  相似文献   

20.
The interactions of tetra-4N-methylpyridyl porphyrin and its zinc(II), copper(II) and manganese(III) complexes with brewer's yeast type V phenylalanine specific tRNA have been evaluated by high-resolution NMR. Differences in chemical shifts have been noted for three proton resonances in response to the presence of small quantities of the free base and the zinc and copper complexes. The protons giving rise to these signals are located on bases T54 and psi 55, both of which are involved in the primary intraloop and interloop hydrogen bonds that hold the D and T psi C loops together in the tertiary structure. In addition, broadening of specific resonances due to hydrogen bonding protons in the D stem at low ratios of porphyrin to tRNA indicates that the association of porphyrins increases the rate of imino proton exchange. The titration of the tRNA with the manganese(III) complex did not reveal shifts or specific broadening comparable to the other porphyrins at low ratios. The changes induced in the NMR spectrum of tRNA by porphyrins define their site of interaction with the polynucleotide. This site, at the outside of the elbow-bend in the tRNA 'L', is different from the locus of binding in tRNA for other classical DNA intercalators. Furthermore, a new mode of binding may be involved that is neither intercalative nor simply electrostatic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号