首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The present investigation examined the relationship between CO2 sensitivity [at rest (S R) and during exercise (S E)] and the ventilatory response to exercise in ten elderly (61–79 years) and ten younger (17–26 years) subjects. The gradient of the relationship between minute ventilation and CO2 production ( E/ CO2) of the elderly subjects was greater than that of the younger subjects [mean (SEM); 32.8 (1.6) vs 27.3 (0.4); P<0.01]. At rest, S R was lower for the elderly than for the younger group [10.77 (1.72) vs 16.95 (2.13) 1 · min–1 · kPa–1; 1.44 (0.23) vs 2.26 (0.28) 1 · min–1 · mmHg–1; P<0.05], but S E was not significantly different between the two groups [17.85 (2.49) vs 19.17 (1.62) l · min–1 · kPa–1; 2.38 (0.33) vs 2.56 (0.21) 1 · min–1 · mmHg–1]. There were significant correlations between both S R and S E, and E/ CO2 (P<0.05; P<0.001) for the younger group, bot none for the elderly. The absence of a correlation for the elderly supports the suggestion that E/ CO2 is not an appropriate index of the ventilatory response to exercise for elderly humans.  相似文献   

2.
To evaluate the mechanism of potentiation of sweating after long-term physical training, we compared sweating function in trained and untrained subjects using the frequency of sweat expulsion (f sw) as an indicator of central sudomotor activity. Nine trained male subjects (trained group) and eight untrained male subjects (untrained group) performed 30-min cycle exercise at 35% maximal oxygen uptake at 25°C ambient temperature and 35% relative humidity. Oesophageal temperature (T oes), mean body temperature b, chest sweating rate ( sw,chest), forearm sweating rate ( forearm), andf sw were measured. The slopes of the sw,chest versus body temperature (T oes and b) and versusf sw relationships in the trained group were significantly greater than those in the untrained group (both,P < 0.05), while there was no difference between the groups in the slopes of the sw,chest versus body temperature or versusf sw relationships. Neither the body temperature threshold for initiation of chest or forearm sweating nor the slope of thef sw- b relationship differed between groups. We concluded that, during light exercise at moderate ambient temperature, the sw,chest in the subjects who had undergone long-term physical training was greater than that in the untrained subjects while the sw,forearm was not changed. The greater sw,chest in the trained subjects was concluded to be due to an increase of sensitivity of peripheral mechanisms.  相似文献   

3.
The aim of this study was to estimate the characteristic exercise intensity CL which produces the maximal steady state of blood lactate concentration (MLSS) from submaximal intensities of 20 min carried out on the same day and separated by 40 min. Ten fit male adults [maximal oxygen uptake max 62 (SD 7) ml · min–1 · kg–1] exercisOed for two 30-min periods on a cycle ergometer at 67% (test 1.1) and 82% of max (test 1.2) separated by 40 min. They exercised 4 days later for 30 min at 82% of max without prior exercise (test 2). Blood lactate was collected for determination of lactic acid concentration every 5 min and heart rate and O2 uptake were measured every 30 s. There were no significant differences at the 5th, 10th, 15th, 20th, 25th, or 30th min between , lactacidaemia, and heart rate during tests 1.2 and 2. Moreover, we compared the exercise intensities CL which produced the MLSS obtained during tests 1.1 and 1.2 or during tests 1.1 and 2 calculated from differential values of lactic acid blood concentration ([1a]b) between the 30th and the 5th min or between the 20th and the 5th min. There was no significant difference between the different values of CL [68 (SD 9), 71 (SD 7), 73 (SD 6),71 (SD 11) % of max (ANOVA test,P<0.05). Four subjects ran for 60 min at their CL determined from periods performed on the same day (test 1.1 and 1.2) and the difference between the [la]b at 5 min and at 20 min ( ([la]b)) was computed. The [la]b remained constant during exercise and ranged from 2.2 to 6.7 mmol · l–1 [mean value equal to 3.9 (SD 1) mmol · l–1]. These data suggest that the CL protocol did not overestimate the exercise intensity corresponding to the maximal fractional utilization of max at MLSS. For half of the subjects the CL was very close to the higher stage (82% of max where an accumulation of lactate in the blood with time was observed. It can be hypothesized that CL was very close to the real MLSS considering the level of accuracy of [la]b measurement. This study showed that exercise at only two intensities, performed at 65% and 80% of max and separated by 40 min of complete rest, can be used to determine the intensity yielding a steady state of [la–1]b near the real MLSS workload value.  相似文献   

4.
The purpose of the present study was to assess the relationship between the rapidity of increased gas exchange (i.e. oxygen uptake ) and increased cardiac output ( ) during the transient phase following the onset of exercise. Five healthy male subjects performed multiple rest-exercise or light exercise (25 W)-exercise transitions on an electrically braked ergometer at exercise intensities of 50, 75, or 100 W for 6 min, respectively. Each transition was performed at least eight times for each load in random order. The was obtained by a breath-by-breath method, and was measured by an impedance method during normal breathing, using an ensemble average. On transitions from rest to exercise, rapidly increased during phase I with time constants of 6.8–7.3 s. The also showed a similar rapid increment with time constants of 6.0–6.8 s with an apparent increase in stroke volume (SV). In this phase I, increased to about 29.7%–34.1% of the steady-state value and increased to about 58.3%–87.0%. Thereafter, some 20 s after the onset of exercise a mono-exponential increase to steady-state occurred both in and with time constants of 26.7–32.3 and 23.7–34.4 s, respectively. The insignificant difference between and time constants in phase I and the abrupt increase in both and SV at the onset of exercise from rest provided further evidence for a cardiodynamic contribution to following the onset of exercise from rest.  相似文献   

5.
Summary Six Standardbred horses were used to evaluate the time course of pulmonary gas exchange, ventilation, heart rate (HR) and acid base balance during different intensities of constant-load treadmill exercise. Horses were exercised at approximately 50%, 75% and 100% maximum oxygen uptake ( max) for 5 min and measurements taken every 30 s throughout exercise. At all work rates, the minute ventilation, respiratory frequency and tidal volume reached steady state values by 60 s of exercise. At 100% max, the oxygen consumption ( ) increased to mean values of approximately 130 ml/kg·min, which represents a 40-fold increase above resting . At the low and moderate work rates, showed no significant change from 30 s to 300 s of exercise. At the high work rate, the mean at 30 s was 80% of the value at 300 s. The HR showed no significant change over time at the moderate work rate but differing responses at the low and high work rates. At the low work rate, the mean HR decreased from 188 beats/min at 30 s to 172 beats/min at 300 s exercise, whereas at the high work rate the mean HR increased from 204 beats/min at 30 s to 221 beats/min at 300 s exercise. No changes in acid base status occurred during exercise at the low work rate. At the moderate work rate, a mild metabolic acidosis occurred which was nonprogressive with time, whereas the high work rate resulted in a progressive metabolic acidosis with a base deficit of 16 mmol/l by 300 s exercise. It is concluded that the kinetics of gas exchange during exercise are more rapid in the horse than in man, despite the relatively greater change in in the horse when going from rest to high intensity exercise.Symbols and abbreviations E minute ventilation - V T tidal volume - oxygen uptake - carbon dioxide output - oxygen pulse - ventilatory equivalent for oxygen - ventilatory equivalent for carbon dioxide - R respiratory exchange ratio - HR heart rate - SBC standard bicarbonate - STPD standard temperature and pressure dry - BTPS body temperature and pressure saturated - arterial oxygen content - arteriovenous oxygen content difference - Rf respiratory frequency  相似文献   

6.
The effect of severe acute hypoxia (fractional concentration of inspired oxygen equalled 0.104) was studied in nine male subjects performing an incremental exercise test. For power outputs over 125 W, all the subjects in a state of hypoxia showed a decrease in oxygen consumption ( O2) relative to exercise intensity compared with normoxia (P < 0.05). This would suggest an increased anaerobic metabolism as an energy source during hypoxic exercise. During submaximal exercise, for a given O2, higher blood lactate concentrations were found in hypoxia than in normoxia (P < 0.05). In consequence, the onset of blood lactate accumulation (OBLA) was shifted to a lower O2 ( O2 1.77 l·min–1 in hypoxia vs 3.10 l·min–1 in normoxia). Lactate concentration increases relative to minute ventilation ( E) responses were significantly higher during hypoxia than in normoxia (P < 0.05). At OBLA, E during hypoxia was 25% lower than in the normoxic test. This study would suggest that in hypoxia subjects are able to use an increased anaerobic metabolism to maintain exercise performance.  相似文献   

7.
Based on the hypothesis that the relation between sweating rate and body temperature should be different during exercise and rest after exercise, we compared the sweating response during exercise and recovery at a similar body temperature. Healthy male subjects performed submaximal exercise (Experiment 1) and maximal exercise (Experiment 2) in a room at 27° C and 35% relative humidity. During exercise and recovery of 20 min after exercise, esophageal temperature (Tes), mean skin temperature, mean body temperature ( ), chest sweating rate ( ), and the frequency of sweat expulsion (F SW) were measured. In both experiments, andF SW were clearly higher during exercise than recovery at a similar body temperature (Tes, ). was similar during exercise and recovery, or a little less during the former, at a similarF SW. It is concluded that the sweating rate during exercise is greater than that during recovery at the same body temperature, due to greater central sudomotor activity during exercise. The difference between the two values is thought to be related to non-thermal factors and the rate of change in mean skin temperature.  相似文献   

8.
The purpose of this study was to examine whether cardiorespiratory responses to combined rhythmic exercise (60 contractions · min–1) was affected by different combinations of upper and lower limb exercise in seven healthy women. Six different rhythmic exercises were compared: 6-min rhythmic handgrip at 10% of isometric maximal voluntary contraction (MVC) (H10); 6-min rhythmic plantar flexion at 10% MVC (P10); exhausting rhythmic handgrip at 50% MVC (H50); exhausting rhythmic plantar flexion at 50% MVC (P50); H50 was added to P10 (P1OH50); and P50 was added to H10 (H10P50). Exercise duration, after handgrip was combined with plantar flexion (P10H50), was shorter than that of H50, although the exercise duration of HIOP50 was not significantly different from P50. No significant difference was found between the difference from rest in oxygen uptake ( O2) during H10P50 and the sum of O2 during H10 and P50. Also, the differences from rest in forearm blood flow ( FBF) and calf blood flow ( CBF) during H10P50 were not significantly different from FBF in H10 and from CBF in P50. In contrast, O2 in P10H50 was lower than the sum of O2 in P10 and H50 (P < 0.05), and J FBF in P10H50 was lower than that in H50 (P < 0.05) , while CBF was not significantly different between P1OH50 and P10. The changes in heart rate from rest (d HR) during the combined exercises were lower than the sums of HR in the corresponding single exercises (P < 0.05). These results demonstrated an inhibitory summation of several cardiorespiratory responses to combined exercise resulting in a reduction in exercise performance which would seem to occur easily when upperlimb exercise is added to lower limb exercise.  相似文献   

9.
The aim of this study was to measure running times to exhaustion (Tlim) on a treadmill at 100% of the minimum velocity which elicits max max in 38 elite male long - distance runners max = 71.4 ± 5.5 ml.kg–1.min–1 and max = 21.8 ± 1.2 km.h–1). The lactate threshold (LT) was defined as a starting point of accelerated lactate accumulation around 4 mM and was expressed in max. Tlim value was negatively correlated with max (r = -0.362, p< 0.05) and max (r = –0.347, p< 0.05) but positively with LT (%v max) (r = 0.378, p < 0.05). These data demonstrate that running time to exhaustion at max in a homogeneous group of elite male long-distance runners was inversely related to max and experimentally illustrates the model of Monod and Scherrer regarding the time limit-velocity relationship adapted from local exercise for running by Hughson et al. (1984) .  相似文献   

10.
The position of the body and use of the respiratory muscles in the act of rowing may limit ventilation and thereby reduce maximal aerobic power relative to that achieved in cycling or running, in spite of the greater muscle mass involved in rowing. This hypothesis was investigated for three groups of male subjects: nine elite senior oarsmen, eight former senior oarsmen and eight highly trained athletes unskilled in rowing. The subjects performed graded exercise to maximal effort on a rowing ergometer, cycle ergometer and treadmill while respiratory minute volume and oxygen consumption were monitored continuously. The VE at a given during intense submaximal exercise (greater than 75% of maximal ) was not significantly lower in rowing compared with that in cycling and treadmill running for any group, which would suggest that submaximal rowing does not restrict ventilation. At maximal effort, and for rowing were less than those for the other types of exercise in all the groups, although the differences were not statistically significant in the elite oarsmen. These data are consistent with a ventilatory limitation to maximal performance in rowing that may have been partly overcome by training in the elite oarsmen. Alternatively, a lower maximal VE in rowing might have been an effect rather than a cause of a lower maximal if maximal was limited by the lower rate of muscle activation in rowing.  相似文献   

11.
This study investigated cardiovascular responses to 2 min sustained submaximal (20% MVC) and maximal (100% MVC) voluntary isometric contractions of the finger flexors in healthy young women. Cardiovascular variables investigated were: heart rate (f c), mean arterial pressure ( a), and stroke volume (SV). Doppler echocardiography was used to estimate SV from measures of aortic diameter (AD) and time-velocity integrals. Preliminary studies indicated that AD did not change significantly after 2 min sustained 100% MVC. Therefore, pre-exercise AD values were used to calculate SV before, during and after exercise. During the 2-min 100% MVC period, f c and aincreased significantly during the first 30 s of contraction. f c then remained constant during the remainder of the 2-min contraction period, while acontinued to rise. SV did not change significantly during the 100% MVC task but increased significantly during recovery from sustained 100% MVC. The data suggest that the magnitude of cardiovascular responses to isometric exercise is dependent on the specific task performed, and that there is a different pattern of response for f c, a, and SV during 20% and 100% MVC tasks. Unlike f c and a, SV did not change significantly during isometric exercise, but increased significantly after sustained 100% MVC.  相似文献   

12.
To assess the rate-limiting factor of oxygen uptake ( ) kinetics at the onset of exercise, six healthy male sedentary subjects performed repeated one-legged constant-load cycle exercise. The one-legged constant-load exercise test consisted of two 5-min periods of pedalling at an exercise intensity of 50 W, with a 5-min rest between periods (these exercise periods, i.e. first and second exercises, were performed by the same leg). The exercise was then repeated using the other leg. In addition, two-legged incremental exercise was investigated to establish whether kinetics were affected by slower heart rate kinetics. The incremental exercise test consisted of two-legged pedalling first with the cycle unloaded as a warm-up for 5 min followed by 50-W exercise for 5 min. The exercise intensity was then increased to 100 W for 5 min. During exercise, gas exchange parameters were determined by the breath-by-breath method and cardiac output ( ) was determined continuously by an impedance technique with a computer-based automated system. To determine the kinetics of heart rate (HR), and , a best fit procedure was employed using least-squares criteria with a time delay, except during the initial increase. During the one-legged constant-load exercise test, kinetics were significantly accelerated by repeated exercise using the same leg. On the other hand, when the exercise was changed to the other leg, kinetics were significantly slower, although kinetics continued to be faster. During the incremental exercise test, although the HR response was slower at the transition from 50-W to 100-W exercise than at the transition from warm-up to 50-W exercise, there were no significant changes in kinetics. These findings suggest that kinetics may be affected by metabolic conditions in the muscle, but not by blood flow ( and/or HR) kinetics.  相似文献   

13.
Summary The complete sequence of the 5S rRNA from the bioluminescent bacterium,Beneckea harveyi has been determined to be p U G C U U G G C G C C A U A G C G A U U-G G A C C C A C U G A (U) C U U C A U U C C-G A A C C A G A A G U G A A C G A A U U A-G G C C G A U G G U G U G U G G G G C U-C C C C A U G U A G A G U A G G A A U C G-C C A G G U (U)OH.Two sites of sensitivity to ribonuclease T2 cleavage were identified; at A41 and either A54 or A55. Comparison with existing sequence information fromEscherichia coli andPhotobacterium phosphoreum clarifies the amount of diversity among the bioluminescent bacteria and provides further insight into their phylogenetic position. Sequence heterogeneities were encountered and the importance of these in interpreting 5S rRNA data is discussed.  相似文献   

14.
To investigate the hypothesis that facial cooling (FC) exerts a greater influence on the cardiovascular system at lower versus higher levels of exercise, this study examined the effect of facial cooling [mean (SE): 0 (2)°C at 0.8 m·s–1 wind velocity] during 30 min low [35% maximum oxygen consumption ( O2max)] and moderate (70% O2max) levels of cycle ergometry in the supine position. Five male subjects were assigned in random order to four exercise conditions: (1) FC at 35% O2max(FC35), (2) no cooling (NFC35), (3) FC at 70% O2max(FC70), and (4) no cooling (NFC70). Heart rate (f c), stroke volume (V s), and cardiac output ( c) were measured at rest and every 10 min of exercise using impedance cardiography. During FC35, the change in f c [mean (SE)] was significantly lower (P < 0.05) than NFC35 at 10 [22 (5) vs 31 (3) beats· min–1], 20 [29 (6) vs 35 (3) beats·min–1], and 30 [29 (5) vs 38 (4) beats·min–1] min. No differences in f c were observed between FC70 and NFC70. Furthermore, FC had no effect on V s or cat either exercise intensity. However, when comparing the FC70 and NFC70 conditions, there was a significant main effect (P<0.05) in mean arterial pressure (P a) response with cooling despite the fact that neither V s or cwere different from the NFC70 control. The increase (P < 0.05) in the estimated change in systemic vascular resistance ( a· c –1) could partly explain the relative rise in aat FC70. No pressor effect of cooling was observed at 35% O2max. The results suggest that the FC condition promotes exercise bradycardia at low levels of exercise and exerts a greater pressor response during moderate exercise.  相似文献   

15.
Summary Rates of protein synthesis and oxygen consumption ( O2) in cod were compared in both fasted and refed animals. During a 14-day fast both protein synthesis and respiration rates fell to stable values after 6 days. When a meal of whole sandeel at 6% body weight was fed to fish fasted for 6 days, protein synthesis and ( O2) increased to a maximum at between 12 and 18 h after feeding. Peak ( O2) was about twice the pre-feeding values, while whole animal protein synthesis increased four-fold. There were differences between tissues in the timing of maximum protein synthesis; the liver and stomach responded faster than the remainder of the body. Maximum protein synthesis rates in the liver and stomach occurred at 6 h after feeding, at which time their calculated contribution to total ( O2) was 11%. Similar calculations suggested that the integrated increment in whole animal protein synthesis contributed between 23% and 44% of the post-prandial increase in ( O2). It was concluded that protein synthesis is an important contributor to increased ( O2) after feeding in cod.Abbreviations A s absolute rate of protein synthesis - ASDA apparent specific dynamic action - ATP adenosine triphosphate - k s fractional rate of protein synthesis - k s/RNA amount of protein synthesized per unit RNA - ( O2) oxygen consumption - PCA perchloric acid - RNA ribonucleic acid  相似文献   

16.
The degree to which the y-intercept (Y-int) of the linear regression of maximal work output on exercise duration represented anaerobic capacity was determined in ten well-trained male cyclists [peak oxygen uptake ( = 69.8 (SD 4.2) ml · kg –1 · min –1). Each cyclist performed three exhausting cycle sessions on separate occasions; the mean exercise durations were 312, 243 and 141 s for the low (approximately 104% , medium (approximately 108% and high (approximately 113% intensities respectively, and Y-int (kilojoules; joules per kilogram was derived from the regression of work output on exercise duration. The muscle anaerobic adenosine 5-triphosphate (ATP) yield (ATP) and anaerobic capacity (AC) were estimated from changes in metabolites in the vastus lateralis muscle and blood lactate concentration during the high intensity cycling session. The activities of glycogen phosphorylase, phosphofructokinase and citrate synthase, as well as muscle buffer value (in vitro ) were also determined. The Y-int (kilojoules) was positively correlated (P0.05) with AC (r=0.73), ATP (r=0.70) and in vitro (r=0.71); similar correlations (P0.05) were observed for Y-int (joules per kilogram). The Y-int was not correlated (P>0.05) with any enzyme activity. When the Y-int was transformed into oxygen equivalents [litres of oxygen equivalent (1 O2 Eq)] it was, on average, 0.92 1 O2 Eq lower than AC (P0.05); however, an alternative method of establishing the work-duration regression yielded a mean Y-int which was only 0.19 1 O2 Eq less than AC (P0.05). These findings support the validity of Y-int as a work estimate of anaerobic capacity in well-trained cyclists.  相似文献   

17.
We investigated the aerobic and anaerobic contributions to performance during the Wingate test in sprint and middle-distance runners and whether they were related to the peak aerobic and anaerobic performances determined by two commonly used tests: the force-velocity test and an incremental aerobic exercise test. A group of 14 male competitive runners participated: 7 sprinters, aged 20.7 (SEM 1.3) years, competing in 50, 100 and 200-m events and 7 middle-distance runners, aged 20.0 (SEM 1.0) years, competing in 800, 1,000 and 1,500 m-events. The oxygen uptake ( ) was recorded breath-by-breath during the test (30 s) and during the first 20 s of recovery. Blood samples for venous plasma lactate concentrations were drawn at rest before the start of the test and during the 20-min recovery period. During the Wingate test mean power ( ) was determined and three values of mechanical efficiency, one individual and two arbitrary, 16% and 25%, were used to calculate the contributions of work by aerobic ( aer,ind,16%,25%) and anaerobic ( an,ind,16%,25%) processes. Peak anaerobic power ( an,peak) was estimated by the force-velocity test and maximal aerobic energy expenditure ( aer,peak) was determined during an incremental aerobic exercise test. During the Wingate test, the middle-distance runners had a significantly greater than the sprinters (P < 0.001), who had significantly greater venous plasma lactate concentrations (P < 0.001). Moreover, aer,ind,16%,25% were also significantly higher (P < 0.05) in the middle-distance runners [ aer,ind 45 (SEM 4) % vs 28 (SEM 2) %; aer,16% 30 (SEM 3) % vs 19 (SEM 2) %; aer,25% 46 (SEM 3) % vs 29 (SEM 2)%]; an,ind,16%,25% in the sprint runners (P < 0.05) [ an,ind 72 (SEM 3) % vs 55 (SEM 4) %; an,16% 81 (SEM 2) % vs 70 (SEM 3) %; an,25% 71 (SEM 2) % vs 54 (SEM 3) %]. The aer,ind/ aer,peak and × an,ind/ an,peak ratios, however, were not significantly different between the two groups of athletes. These results would indicate that the sprinters and middle-distance runners used preferentially a metabolic system according to their speciality. Nevertheless, under the conditions of its experiment, they seemed to rely on the same percentage of both peak anaerobic and peak aerobic performance for a given exercise task.  相似文献   

18.
Summary The evidence that all energy transducing membranes can generate a proton electrochemical potential difference, H, across the membrane and that this potential can be used to transfer energy among energy transducing units and to generate ATP, has increased the interest for the view that H plays an obligatory role in energy transduction and ATP synthesis. In the present article we shall concentrate on two experimental questions related with the generation and role of H: (a) the charge/site ratio; (b) the relation between the proton electrochemical potential on one side and the cation electrochemical potential, the phosphate potential and the redox potential on the other. We shall then discuss the view that energy transduction corresponds to a molecular energy machine rather than to a fuel cell.  相似文献   

19.
The hand blood flow ( ) was investigated in response to a wide range of general and local cutaneous thermal stimuli (0–36°C and 4–42°C respectively), the local stimulus consisting of a thermostatically controlled water bath for the right hand (Tw), and the general stimulus, the ambient room temperature (Ta). was measured at the right wrist by strain gauge plethysmography; it was seen to respond more significantly to variations in Tw than to those in Ta at cold to comfortable ambient temperatures (Ta<22°C). A paradoxical vasodilatation was observed at Tw=4°C (Lewis' hunting phenomenon). The graphs of versus T at average to high local cutaneous temperatures (Tw > 33°C) are remarkably similar, except for an upward shift at successively higher values of Tw. The slope (or vasomotor reactivity) is interpreted as being controlled by variations in Ta. The curves exhibited maximum values at Ta = 31°C. Their subsequent decrease could represent a thermoregulatory adaptation to environment-organism heat transfer, the relative vasoconstriction tending to reduce the transfer. Although the qualitative response was the same for both sexes, the absolute value of was generally greater in male than in female subjects.  相似文献   

20.
Summary The influence of local temperature changes within the posterior portion of the body on dorsal aorta blood flow ( ), femoral arterial pressure (P a ), peripheral resistance (R), skin blood flow ( ) and skeletal muscle blood flow ( ) was examined in unanesthetized lizards (Iguana iguana andTubinambis nigropunctatus). In response to local heating of the hind legs and tail and increased,P a was generally unchanged,R decreased and decreased or was unchanged (Fig. 2). It is suggested that the acquisition of heat may be favored by diverting the increase in away from the muscle to the warmer skin. In response to cooling and decreased,P a was generally unchanged, R increased and increased or was unchanged. Hence, during cooling the retention of heat may be favored by diverting blood away from the skin to the deeper muscle. The muscle-skin shunt is under sympathetic control since following blockade with phenoxybenzamine HCL (Dibenzyline) muscle blood flow changes in response to temperature were qualitatively similar to those of skin (Fig. 4). These changes in peripheral circulatory patterns are independent of changes in heart rate or deep body temperature.Baker and Weathers were predoctoral and postdoctoral trainees, respectively, under USPHS Grant HE-05696. This study was also supported by NSF Grant GB-8523 and Los Angeles County Heart Association Grant 437IG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号