首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nijboer  R.C.  Schmidt-Kloiber  A. 《Hydrobiologia》2004,516(1-3):347-363
The present study aims to investigate whether taxa with a small distribution range or taxa with low abundances indicate specific habitats or a high ecological quality and what the effect is if these taxa are excluded from ecological assessment. We compared autecological features between stream dwelling taxa with a mean abundance >5 individuals per sample and a mean abundance ≤5 individuals per sample as well as between taxa with a small distribution range and taxa with a large distribution range. The number of rare taxa (either with a small distribution range or with low abundances) in a sample was related to the ecological quality classes. To test the effect of exclusion of rare taxa we constructed 8 data sets all including 142 samples of Dutch lowland streams. From each data set we stepwise excluded taxa that had low abundances or taxa that were known to be restricted in their distribution range. With help of the AQEM assessment software we calculated the final ecological quality classes and the metrics that were included in the multimetric for the original data and the 8 selected data sets. Autecological features of the taxa within the different selections showed that taxa with small distribution ranges were often running water taxa, living on stones and gravel and indicating oligosaprobic water conditions in contrast to taxa that had a large distribution range. There were only small differences between taxa with low and high abundances. However, current velocity preference was lower for taxa with abundance ≤5 individuals per sample, saprobic values were higher and scores for typical stream habitats, such as lithal, psammal and akal were lower compared to high abundant taxa. If taxa with low abundances were excluded a higher ecological quality class was achieved in most cases, while excluding taxa with a small distribution range resulted in lower ecological quality classes. In conclusion, excluding taxa with a small distribution range led to worse ecological quality classes because these taxa have special autecological features that often indicate natural streams. On the other hand, excluding taxa with low abundances resulted in higher ecological quality classes because these taxa indicate more disturbed situations and because the number of taxa per sample was strongly reduced. Although the documentation of rare taxa (either with low abundances or with small distribution ranges) is often time and cost-intensive regarding field work, laboratory work, data processing, and analyses, the indicative power of these taxa for natural circumstances is essential and therefore rare taxa should be included in ecological assessment studies.  相似文献   

2.
In many studies, rare bacterial taxa have been found to increase in response to environmental changes. These changes have been proposed to contribute to the insurance of ecosystem functions. However, it has not been systematically tested if rare taxa are more likely to increase in abundance than dominant taxa. Here, we study whether rare soil bacterial taxa are more likely to respond to environmental disturbances and if rare taxa are more opportunistic than dominant taxa. To test this, we applied nine different disturbance treatments to a grassland soil and observed changes in bacterial community composition over 7 days. While 12% of the dominant taxa changed in abundance, only 1% of the rare taxa showed any effect. Rare taxa increased in response to a single disturbance treatment only, while dominant taxa responded to up to five treatments. We conclude that rare taxa are not more likely to contribute to community dynamics after disturbances than dominant taxa. Nevertheless, as rare taxa outnumber abundant taxa with here 230 taxa that changed significantly, the chance is high that some of these rare taxa might act as ecologically important keystone taxa. Therefore, rare and abundant taxa might both contribute to ecosystem insurance.  相似文献   

3.
江苏野菜资源的利用与开发   总被引:17,自引:0,他引:17  
江苏野菜资源丰富,共计192种,隶属44科108属,其中蕨类植物7科15属51种,种子植物37科93属141种。江苏野菜利用历史悠久,近年已发展成为规模种植,产生良好的经济效益和社会效益。  相似文献   

4.
Despite their recognized contribution to species richness, the importance of rare taxa richness in bioassessment is unclear. This study aimed to characterize the environmental factors affecting the number of rare diatom taxa in western U.S. streams and rivers, and to evaluate whether this number can be used to differentiate streams with contrasting human disturbance. Three different categories of rare taxa were used: satellite (taxa with low occurrence and low abundance), rural (taxa with high occurrence and low abundance), and urban (taxa with low occurrence and high abundance). Common taxa were included as a separate category of core taxa (taxa with high occurrence and high abundance). We analyzed 987 diatom samples collected over the period of 5 years (2000–2004) for the U.S. Environmental Protection Agency’s (EPA) Western Environmental Monitoring and Assessment Program (WEMAP). The results showed that rural taxa richness (number of rural taxa per site) increased along a longitudinal gradient from mountainous, fast‐flowing oligotrophic streams with fewer fine substrates to large, slow‐moving, nutrient‐rich rivers with abundance of fine substrates. Rural taxa richness was the only rarity metric that distinguished least disturbed (reference) sites from the most disturbed (impacted) sites, but it was significantly different only in the mountains ecoregion. Core taxa richness distinguished reference from impacted sites in the West and in each one of the three ecoregions (mountains, plains, and xeric). Our findings revealed that rural taxa richness can be used as an indicator of human disturbance in streams/rivers, especially in the mountains ecoregion, and that rarity definition is important in bioassessment.  相似文献   

5.
The distribution of Rose Bengal stained calcareous benthic foraminifera was determined in six ☐ cores raised from water depths between 200 and 3000 m on the Nova Scotian continental margin and Gulf of Maine. The taxa can be separated into four microhabitats within the surficial sediments. Epifaunal taxa are generally found in the top cm, intermediate infaunal taxa are found from about 1 to 4 cm and deep infaunal taxa are found at > 4 cm sediment depth in at least one ☐ core. A fourth group, shallow infaunal taxa, is found in the top 2 cm and is inferred to be infaunal based on wall porosity characteristics and test shapes similar to infaunal taxa. The epifaunal, shallow infaunal and intermediate infaunal taxa maintain their positions within the sediments from core to core, whereas the deep infaunal taxa are found at progressively shallower sediment depths in cores within increasing organic carbon contents from shallower water depths.Each microhabitat category has distinct morphological characteristics. Epifaunal taxa have plano-covex or biconvex cross sections, trochospiral coiling and large pores absent or found on only one side. Shallow infaunal taxa have uniserial, triserial, or planispiral coiling, with surface ornamentation present on a number of taxa. The intermediate infaunal taxa have rounded peripheries, pores over the entire test and planispiral coiling, with the exception ofCibicidoides bradyi which has trochospiral coiling. The deep infaunal taxa have, in general, planispiral or triserial coiling with cylindrical or ovate shaped tests.  相似文献   

6.
Aim Indicators for biodiversity are needed to facilitate the identification of complementary reserve networks for biodiversity conservation. One widely adopted approach is to use indicator taxa, i.e. a single taxon such as birds or butterflies, despite the ongoing debate regarding their usefulness as indicators of broader biodiversity. Here we assess several aspects, such as influence of species number, of indicator taxa for three extensive data sets to improve our insight into the effectiveness of indicator taxa. Location Denmark, sub‐Saharan Africa and Uganda. Methods First, we investigate to what extent variation in species number between indicator taxa (e.g. 488 mammal spp. vs. 210 snake spp.) is causing the differences in effectiveness between indicator taxa. Second, we investigate whether indicator taxa are capable of outperforming indicator groups composed of random sets of species chosen among all taxa. Finally, we assess the correlation of specific properties such as mean range size of the indicator taxa to their effectiveness. We investigate these aspects of the effectiveness of indicator taxa through the separate analysis of three distinct distributional species data sets: sub‐Saharan Africa (4,039 spp.), Denmark (847 spp.) and Uganda (2,822 spp.). Results We overall found that indicator taxa comprising a greater number of species tend to perform better than indicator taxa with fewer species (e.g. 488 mammal spp. outperform 210 snake spp.), although there are some exceptions. Second, we found most indicator taxa to perform worse than indicator groups consisting of a comparable number of species selected among all taxa. Finally, the effectiveness of indicator taxa was seen to correlate poorly with selected distributional properties such as mean range size of the indicator taxa, suggesting that it is difficult to predict which taxa are efficient biodiversity indicators. Main conclusions Overall, these findings might suggest that focus should simply be on increasing the number of species among all taxa as basis for priority setting, rather than striving to obtain the ‘perfect’ indicator taxa.  相似文献   

7.
The Hawaiian flora, because of its great isolation, high levels of endemism, known lineages, and high rates of endangerment, offers unique opportunities to explore patterns of endangerment related to phylogeny, ecological and life history traits, and geographic patterns. Nine percent of the native flora of 1159 taxa are already extinct, and 52.5% are at risk (extinct, endangered, vulnerable, or rare). Risk is strongly associated with limited geographic distribution at several scales: endemic taxa (native only to the Hawaiian Islands) are at far greater risk than indigenous taxa (with both Hawaiian and extra-Hawaiian ranges); single-island endemics are more at risk than multi-island endemics; small islands have the highest proportion of endemic taxa at risk; and endemics with more limited habitat distributions (elevation, community type) are more at risk. Historic population density is a strong predictor of risk, and taxa with low historic population densities are at greatest risk with rapid anthropogenic changes. Among the major islands, Maui Nui has the highest percent of taxa that are extinct. Kaua'i has the lowest percent of extinct taxa and the highest proportion of single-island endemic taxa that are rare. Endemic taxa at risk are associated with distributions in shrublands, forests, bogs, and cliff habitats. Endemic taxa with distributions in low elevation dry habitats have the highest proportion of taxa at risk, but the greatest absolute numbers of taxa at risk have distributions in mesic lowland and montane forests, and in wet montane forests. The life history patterns associated with risk are complicated, and inclusion of the effects of evolutionary relationships (lineages) changes some of these patterns. Species level analyses without respect to lineage shows risk associated with monomorphic (hermaphroditic) breeding systems and bird pollination because of the large number of hermaphroditic, bird-pollinated species in the Campanulaceae. Analyses incorporating the effect of lineage greatly reduce the impact of large lineages and result in an association of risk with insect pollination, and no effect of breeding system. There is no association of lineage size and the percent of taxa at risk within the lineage; endemic taxa from lineages with large radiations are at no greater risk than endemic single-taxon lineages. The percentages of taxa at risk at the family level in the Hawaiian Islands and worldwide (excluding Hawaiian taxa) are positively correlated, although flowering plant families in the Hawaiian Islands have a much greater proportion of taxa at risk. Some of the approaches described here may be useful to predict geographical and biological patterns of endangerment in island and island-like ecosystems under increasing pressures of endangerment and extinction.  相似文献   

8.
The problem of missing data is often considered to be the most important obstacle in reconstructing the phylogeny of fossil taxa and in combining data from diverse characters and taxa for phylogenetic analysis. Empirical and theoretical studies show that including highly incomplete taxa can lead to multiple equally parsimonious trees, poorly resolved consensus trees, and decreased phylogenetic accuracy. However, the mechanisms that cause incomplete taxa to be problematic have remained unclear. It has been widely assumed that incomplete taxa are problematic because of the proportion or amount of missing data that they bear. In this study, I use simulations to show that the reduced accuracy associated with including incomplete taxa is caused by these taxa bearing too few complete characters rather than too many missing data cells. This seemingly subtle distinction has a number of important implications. First, the so-called missing data problem for incomplete taxa is, paradoxically, not directly related to their amount or proportion of missing data. Thus, the level of completeness alone should not guide the exclusion of taxa (contrary to common practice), and these results may explain why empirical studies have sometimes found little relationship between the completeness of a taxon and its impact on an analysis. These results also (1) suggest a more effective strategy for dealing with incomplete taxa, (2) call into question a justification of the controversial phylogenetic supertree approach, and (3) show the potential for the accurate phylogenetic placement of highly incomplete taxa, both when combining diverse data sets and when analyzing relationships of fossil taxa.  相似文献   

9.
We evaluated 516 species and/or subspecies of European stoneflies for vulnerability to climate change according to autoecological data. The variables considered were stream zonation preference, altitude preference, current preference, temperature range preference, endemism and rare species. Presence in ecoregions was used to analyse the vulnerability of taxa in relation to their distribution. We selected the variables that provided information on vulnerability to change in climate. Thus, we chose strictly crenal taxa, high-altitude taxa, rheobionts, cold stenotherm taxa, micro-endemic taxa and rare taxa. Our analysis showed that at least 324 taxa (62.79%) can be included in one or more categories of vulnerability to climate change. Of these, 43 taxa would be included in three or more vulnerability categories, representing the most threatened taxa. The most threatened species and the main factors affecting their distribution are discussed. Endangered potamal species, with populations that have decreased mainly as a consequence of habitat alteration, also could suffer from the effects of climate change. Thus, the total number of taxa at risk is particularly high. Not only are a great diversity of European stoneflies concentrated in the Alps, Pyrenees and Iberian Peninsula, but so are the most vulnerable taxa. These places are likely to be greatly affected by climate change according to climate models. In general, an impoverishment of European Plecoptera taxa will probably occur as a consequence of climate change, and only taxa with wide tolerance ranges will increase in abundance, resulting in lower overall faunal diversity.  相似文献   

10.

The fern and lycophyte flora of Japan comprising 721 native taxa (including subspecies and varieties) plus 371 interspecific hybrids was reassessed using a nearly comprehensively sampled distribution map at 10 km resolution vouchered by 216,687 specimens, up-to-date cytotaxonomic information covering 74% of the taxa, and an rbcL sequence dataset covering 97.9% of the taxa. Spatial distribution of species richness and phylogenetic diversity was visualized. Apomixis was observed in 11.0% of the native taxa whose reproductive modes are known. The number of sexually reproducing polyploid taxa (n = 199) is less than sexual diploids (n = 241), and 30 of them are evidently allopolyploid, in contrast with the low number of possible autopolyploids (n = 4). Apomictic taxa were found to have smaller latitudinal ranges than sexual taxa or taxa with multiple reproductive modes. A morphological character dataset in Lucid format is provided for taxonomic identification of the native taxa.

  相似文献   

11.
An overview of macroinvertebrates associated with wood debris is given, with the main focus on Central European fauna. In general, three categories of macroinvertebrate wood relations are distinguished: taxa frequently associated with wood but not xylophagous, facultative xylophagous taxa and obligate xylophagous taxa. The adaptations in the life history, ethology and physiology of species representing these three groups are reviewed. From literature and our own investigations, 15 taxa inhabiting Central European freshwater ecosystems are known to be obligate xylophagous, 22 taxa are facultatively xylophagous. From field observations another 41 taxa presumably feed on wood although no gut content analyses and laboratory experiments have yet been carried out. From 25 taxa other forms of close association to CWD are known (feeding on epixylic biofilm, use as a refuge, or as an attachment point). Possible pathways of xylophagy evolution are discussed and unresolved aspects of aquatic invertebrate wood relations are listed.  相似文献   

12.
Epizoochory has been less studied than other seed dispersal mechanisms, such as endozoochory, and generally only a small percentage of plant species show adaptations to this strategy. Nevertheless, epizoochorous seed dispersal can affect an appreciable number of herb species in forests and man-made habitats. Also, few studies have dealt with temporal variation in epizoochory. In this paper, medium-long distance epizoochory is analyzed in a hedgerow habitat for the first time, using a domestic dog in an area in northwest Spain. Special attention is paid to seasonal variation and differential traits of plant taxa involved. Approximately 30 % of available herb taxa were found attached to hair. The intermonthly difference in the frequency of the taxa involved in epizoochory was significant, and the overall peak was reached in June–October linked with diaspore ripening phenology. Ninety-three percent of the plant taxa adhered to hair had diaspores with traits facilitating epizoochory (hooks, spines, awns, rigid hairs), in comparison with 17 % for available plant taxa not adhered to hair. The taxa involved in epizoochory had larger diaspores than the rest of the available taxa, but ranged considerably in size. Numerous hooks covered the largest, heaviest diaspores, and allowed them to attach to hair. There was no significant difference in mean plant height between taxa involved in epizoochory and the rest of the available taxa. The difference in life span between taxa involved in epizoochory and the rest of available taxa was not significant, most of them being perennials in both cases. Seventy-three percent of all the available plant taxa were potential forest plants typically found in edges and gaps, and 64 % of the plant taxa involved in epizoochory were these kinds of potential forest plants. High or medium involuntary positive selection by the dog of diaspores of Taraxacum gr. officinale, Galium aparine, Geum urbanum, and Agrimonia eupatoria was observed. In conclusion, epizoochorous dispersal can be quantitatively and functionally important in hedgerow habitats during summer-autumn, affecting mainly herb taxa with specialized diaspores.  相似文献   

13.
Differences in the direction and degree to which invasive alien and native plants are influenced by mycorrhizal associations could indicate a general mechanism of plant invasion, but whether or not such differences exist is unclear. Here, we tested whether mycorrhizal responsiveness varies by plant invasive status while controlling for phylogenetic relatedness among plants with two large grassland datasets. Mycorrhizal responsiveness was measured for 68 taxa from the Northern Plains, and data for 95 taxa from the Central Plains were included. Nineteen percent of taxa from the Northern Plains had greater total biomass with mycorrhizas while 61% of taxa from the Central Plains responded positively. For the Northern Plains taxa, measurable effects often depended on the response variable (i.e., total biomass, shoot biomass, and root mass ratio) suggesting varied resource allocation strategies when roots are colonized by arbuscular mycorrhizal fungi. In both datasets, invasive status was nonrandomly distributed on the phylogeny. Invasive taxa were mainly from two clades, that is, Poaceae and Asteraceae families. In contrast, mycorrhizal responsiveness was randomly distributed over the phylogeny for taxa from the Northern Plains, but nonrandomly distributed for taxa from the Central Plains. After controlling for phylogenetic similarity, we found no evidence that invasive taxa responded differently to mycorrhizas than other taxa. Although it is possible that mycorrhizal responsiveness contributes to invasiveness in particular species, we find no evidence that invasiveness in general is associated with the degree of mycorrhizal responsiveness. However, mycorrhizal responsiveness among species grown under common conditions was highly variable, and more work is needed to determine the causes of this variation.  相似文献   

14.
All 8237 species-group taxa of Coleoptera known to occur in Canada and Alaska are recorded by province/territory or state, along with their author(s) and year of publication, in a classification framework. Only presence of taxa in each Canadian province or territory and Alaska is noted. Labrador is considered a distinct geographical entity. Adventive and Holarctic species-group taxa are indicated. References to pertinent identification keys are given under the corresponding supraspecific taxa in the data archive.  相似文献   

15.
Abstract Most biogeographical studies propose that southern temperate faunal disjunctions are either the result of vicariance of taxa originated in Gondwana or the result of transoceanic dispersal of taxa originated after the breakup of Gondwana. The aim of this paper is to show that this is a false dichotomy. Antarctica retained a mild climate until mid‐Cenozoic and had lasting connections, notably with southern South America and Australia. Both taxa originally Gondwanan and taxa secondarily on Gondwanan areas were subjected to tectonic‐induced vicariance, and there is no need to invoke ad hoc transoceanic dispersal, even for post‐Gondwanan taxa. These different elements with circumantarctic distributions are here called ‘allochronic taxa’– taxa presently occupying the same area, but whose presence in that area does not belong to the same time period. This model allows accommodation of conflicting sources of evidence now available for many groups with circumantarctic distributions. The fact that the species from both layers are mixed up in the current biodiversity implies the need to use additional sources of evidence – such as biogeographical, palaeontological, geological and molecular – to discriminate which are the original Gondwanan and which are post‐Gondwanan elements in austral landmasses.  相似文献   

16.
JJ Wiens  J Tiu 《PloS one》2012,7(8):e42925

Background

Phylogenies are essential to many areas of biology, but phylogenetic methods may give incorrect estimates under some conditions. A potentially common scenario of this type is when few taxa are sampled and terminal branches for the sampled taxa are relatively long. However, the best solution in such cases (i.e., sampling more taxa versus more characters) has been highly controversial. A widespread assumption in this debate is that added taxa must be complete (no missing data) in order to save analyses from the negative impacts of limited taxon sampling. Here, we evaluate whether incomplete taxa can also rescue analyses under these conditions (empirically testing predictions from an earlier simulation study).

Methodology/Principal Findings

We utilize DNA sequence data from 16 vertebrate species with well-established phylogenetic relationships. In each replicate, we randomly sample 4 species, estimate their phylogeny (using Bayesian, likelihood, and parsimony methods), and then evaluate whether adding in the remaining 12 species (which have 50, 75, or 90% of their data replaced with missing data cells) can improve phylogenetic accuracy relative to analyzing the 4 complete taxa alone. We find that in those cases where sampling few taxa yields an incorrect estimate, adding taxa with 50% or 75% missing data can frequently (>75% of relevant replicates) rescue Bayesian and likelihood analyses, recovering accurate phylogenies for the original 4 taxa. Even taxa with 90% missing data can sometimes be beneficial.

Conclusions

We show that adding taxa that are highly incomplete can improve phylogenetic accuracy in cases where analyses are misled by limited taxon sampling. These surprising empirical results confirm those from simulations, and show that the benefits of adding taxa may be obtained with unexpectedly small amounts of data. These findings have important implications for the debate on sampling taxa versus characters, and for studies attempting to resolve difficult phylogenetic problems.  相似文献   

17.
The early MIS 3 (55–40 Kyr BP associated with Middle Palaeolithic archaeology) bird remains from Pin Hole, Creswell Crags, Derbyshire, England are analysed in the context of the new dating of the site’s stratigraphy. The analysis is restricted to the material from the early MIS 3 level of the cave because the upper fauna is now known to include Holocene material as well as that from the Late Glacial. The results of the analysis confirm the presence of the taxa, possibly unexpected for a Late Pleistocene glacial deposit including records such as Alpine swift, demoiselle crane and long-legged buzzard with southern and/or eastern distributions today. These taxa are accompanied by more expected ones such as willow ptarmigan /red grouse and rock ptarmigan living today in northern and montane areas. Finally, there are temperate taxa normally requiring trees for nesting such as wood pigeon and grey heron. Therefore, the result of the analysis is that the avifauna of early MIS 3 in England included taxa whose ranges today do not overlap making it a non-analogue community similar to the many steppe-tundra mammalian faunas of the time. The inclusion of more temperate and woodland taxa is discussed in the light that parts of northern Europe may have acted as cryptic northern refugia for some such taxa during the last glacial. These records showing former ranges of taxa are considered in the light of modern phylogeographic studies as these often assume former ranges without considering the fossil record of those taxa. In addition to the anomalous combination of taxa during MIS 3 living in Derbyshire, the individuals of a number of the taxa are different in size and shape to members of the species today probably due to the high carrying capacity of the steppe-tundra.  相似文献   

18.
Seed germination triggered by light exposure (positive photoblastism) has been determined in quantitative studies for numerous plant families and species. For Cactaceae, positive photoblastism is thought to be associated with life form and seed mass, but this association has never been evaluated. To explore hypotheses on associations between seed mass, seed dispersal, seed dormancy, life form, taxa and plant height with Relative Light Germination (RLG) in Cactaceae, we evaluated the effect of light on seed germination of 136 taxa. The taxa studied are native to several countries: México, Chile, Argentina, Brazil, Perú, USA, and Venezuela. Seed traits contrasted with RLG were life form, seed mass, seed dispersal, seed dormancy, adult plant height and taxon. We found some differences between RLG among taxa; Cacteae, Pachycereeae and Trichocereeae had higher RLG than Notocacteae. RLG was lower for seeds from taller than for shorter taxa, and lower for taxa with heavier seeds than for taxa with lighter seeds. Dispersal syndrome groups varied with RLG. RLG did not differ between cylindrical and globose taxa. Trends found here were in agreement with expectations for small-seeded species to have a light requirement to germinate more often than large-seeded species. This is the first time that cactus height is related to photoblastism. It is possible that seeds from tall plants are larger and thus have the capacity to produce taller seedlings than those from small plants, and that seedlings from large seeds with more resources have the ability to emerge from greater soil depths than those from small seeds.  相似文献   

19.
The index of biotic integrity (IBI) is a commonly used bioassessment tool that integrates abundance and richness measures to assess water quality. In developing IBIs that are both responsive to human disturbance and resistant to natural variability and sampling error, water managers must decide how to weigh information about rare and abundant taxa, which in turn requires an understanding of the sensitivity of indices to rare taxa. Herein, we investigated the influence of rare fish taxa (within the lower 5% of rank abundance curves) on IBI metric and total scores for stream sites in two of Minnesota's major river basins, the St. Croix (n = 293 site visits) and Upper Mississippi (n = 210 site visits). We artificially removed rare taxa from biological samples by (1) separately excluding each individual taxon that fell within the lower 5% of rank abundance curves; (2) simultaneously excluding all taxa that had an abundance of one (singletons) or two (doubletons); and (3) simultaneously excluding all taxa that fell within the lower 5% of rank abundance curves. We then compared IBI metric and total scores before and after removal of rare taxa using the normalized root mean square error (nRMSE) and regression analysis. The difference in IBI metric and total scores increased as more taxa were removed. Moreover, when multiple rare taxa were removed, the nRMSE was related to sample abundance and to total taxa richness, with greater nRMSE observed in samples with a larger number of taxa or sample abundance. Metrics based on relative abundance of fish taxa were less sensitive to the loss of rare taxa, whereas those based on taxa richness were more sensitive, because taxa richness metrics give more weight to rare taxa compared to the relative abundance metrics.  相似文献   

20.
Achene anatomy and stomatal characteristics of eighteen Crepis taxa from Turkey are here described for the first time. In all taxa examined the pericarp is composed of several layers of sclerenchymatous and parenchymatous cells. As for the achene, differences among taxa mainly concern the pericarp structure and its thickness and width. Stomata are present on both surface of the leaf in all studied taxa and all taxa have anomocytic type stomata. However, the dimensions (length and width) and density of the stomata differ significantly among the studied taxa. In addition, the dimensions of stomata are negatively correlated with stomata density. It is concluded that achene anatomy and stomatal characteristics are useful for delimitation of Crepis taxa and a key to taxa based on these characters is provided. However, based on achene anatomy and stomatal characteristics, we found no argument for an exclusion of the Lagoseris group from Crepis as has previously been proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号