首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The uterine cervix is highly innervated by the sensory nerves containing neuropeptides which change during pregnancy and are regulated, in part, by estrogen. These neuropeptides act as transmitters both in the spinal cord and cervix. The present study was undertaken to determine the expression pattern of the neuropeptide pituitary adenylate cyclase activating peptide (PACAP) in the cervix and its nerves during pregnancy and the influence of estrogen on this expression using immunohistochemistry, radioimmunoassay and RT-PCR. PACAP immunoreactivity was detected in nerves in the cervix, lumbosacral (L6-S1) dorsal root ganglia (DRG) and spinal cord. PACAP immunoreactivity was highest at day 15 of pregnancy in the cervix and dorsal spinal cord, but then decreased over the last trimester of pregnancy. However, levels of PACAP mRNA increased in the L6-S1 DRG at late pregnancy relative to early pregnancy. DRG of ovariectomized rats treated with estrogen showed increased PACAP mRNA synthesis in a dose-related manner, an effect partially blocked by the estrogen receptor (ER) antagonist ICI 182,780. We postulate that synthesis of PACAP in L6-S1 DRG and utilization in the cervix and spinal cord increase over pregnancy and this synthesis is the under influence of the estrogen-ER system. Since PACAP is expressed by sensory nerves and may have roles in nociception and vascular function, collectively, these data are consistent with the hypothesis that sensory nerve-derived neuronal factors innervate the cervix and play a role in cervical ripening.  相似文献   

3.
4.
Detection of estrogen receptor-beta mRNA in breast cancer using RT-PCR   总被引:2,自引:0,他引:2  
The estrogen receptor (ER) is the most useful marker currently available for breast cancer, being used both to predict response to therapy and assess prognosis. Recently, a new form of the ER, known as ER-beta, was identified. In this preliminary study we show that ER-beta mRNA was expressed less frequently in breast cancers than ER-alpha. ER-alpha but not ER-beta levels correlated with ER protein as determined by ELISA. We conclude that ER-beta is expressed in approximately 50% of breast cancers but it does not appear to be detected by a widely available ELISA.  相似文献   

5.
The protein ER-alpha has been exhaustively characterized in estrogen-sensitive tissues and cell lines. However, little is known regarding the expression and cellular distribution of the newly identified ER-beta protein. We first quantified the specific estradiol binding site content in the estrogen-responsive cell lines MCF-7 (mammary) and SHM (myometrial). In the two cell types, these sites were associated to the expression of both ER-alpha and -beta isoforms. Native ER-beta was visualized to reside inside the nucleus by means of conventional indirect immunofluorescence. The cells expressed ER-beta as a tight approximately 50 kDa triplet when resolved by sodium dodecyl sulfate-polyacrylamide gels (SDS-PAGE) and blotted using antibodies mapping different domains of the cloned ER-beta version. When the cells were subjected to homogenization and differential centrifugation, a substantial proportion of ER-beta immunolabeling was localized at membrane subfractions. ER-beta expression and partitioning was confirmed by Ligand blotting assays using estrogen derivatives coupled to different macromolecular tags. However, ER-alpha was expressed as the major estrogen binding protein in both cell lines. Similar localization experiments were performed on HeLa cells (cervix). Though usually considered ER-negative, this cell line displayed basal significant estrogen binding capacity and co-expression of both ER isoforms. Taken as a whole, the results indicate that ER-beta could be expressed as functional estrogen binding proteins among a dominant population of ER-alpha sites in the cell lines under study.  相似文献   

6.
ATP, an intracellular energy source, is released from cells during tissue stress, damage, or inflammation. The P2X subtype of the ATP receptor is expressed in rat dorsal root ganglion (DRG) cells, spinal cord dorsal horn, and axons in peripheral tissues. ATP binding to P2X receptors on nociceptors generates signals that can be interpreted as pain from damaged tissue. We have hypothesized that tissue stress or damage in the uterine cervix during late pregnancy and parturition can lead to ATP release and sensory signaling via P2X receptors. Consequently, we have examined sensory pathways from the cervix in nonpregnant and pregnant rats for the presence of purinoceptors. Antiserum against the P2X3-receptor subtype showed P2X3- receptor immunoreactivity in axon-like structures of the cervix, in small and medium-sized neurons in the L6/S1 DRG, and in lamina II of the L6/S1 spinal cord segments. Retrograde tracing confirmed the projections of axons of P2X3-receptor-immunoreactive DRG neurons to the cervix. Some P2X3-receptor-positive DRG neurons also expressed estrogen receptor- immunoreactivity and expressed the phosphorylated form of cyclic AMP response-element-binding protein at parturition. Western blots showed a trend toward increases of P2X3-receptor protein between pregnancy (day 10) and parturition (day 22–23) in the cervix, but no significant changes in the DRG or spinal cord. Since serum estrogen rises over pregnancy, estrogen may influence purinoceptors in these DRG neurons. We suggest that receptors responsive to ATP are expressed in uterine cervical afferent nerves that transmit sensory information to the spinal cord at parturition.  相似文献   

7.
Pulmonary alveoli, especially in females, are estrogen-responsive structures: ovariectomy in wild-type (WT) adult mice results in alveolar loss, and estradiol replacement induces alveolar regeneration. Furthermore, estrogen receptor (ER)-alpha and ER-beta are required for the developmental formation of a full complement of alveoli in female mice. We now show ovariectomy resulted in alveolar loss in adult ER-beta(-/-) mice but not in adult ER-alpha(-/-) mice. Estradiol treatment of ovariectomized ER-beta(-/-) mice induced alveolar regeneration. In ovariectomized WT mice, estradiol treatment resulted, within 1 h, in RNA-level gene expression supportive of processes needed to form an alveolar septum, e.g., cell replication, angiogenesis, extracellular matrix remodeling, and guided cell motion. Among these processes, protein expression supporting angiogenesis and cell replication was elevated 1 and 3 h, respectively, after estradiol treatment; similar findings were not present in either mutant. We conclude: 1) loss of signaling via ER-beta is not required for postovariectomy-induced alveolar loss or estradiol-induced regeneration; this indicates ER-alpha is key for estrogen-related alveolar loss and regeneration in adult female mice; 2) taken together with prior work showing that developmental formation of a full complement of alveoli requires ER-alpha and ER-beta, the present findings indicate the developmental and regenerative formation of alveoli are regulated differently, i.e., signaling for alveolar regeneration is not merely a recapitulation of signaling for developmental alveologenesis; and 3) the timing of estradiol-induced gene expression in lung supportive of processes required to form a septum differs between ovariectomized WT and ER-beta(-/-) mice.  相似文献   

8.
Teleost fishes have three distinct oestrogen receptor (ER) subtypes: ER-alpha, ER-beta a (or ER-gamma) and ER-beta b. ER-beta a and ER-beta b arose from a duplication of an ancestral ER-beta gene early in the teleost lineage. Here, we describe the distribution of the three ER mRNAs in the hypothalamus and cerebellum of the Atlantic croaker to address two issues: the specific functions of multiple ERs in the neuroendocrine system and the evolution and fate of duplicated genes. ER-alpha was detected in nuclei of the preoptic area (POA) and hypothalamus previously shown to possess ER-alphas in teleosts. AcER-beta b, but not ER-beta a, labelling was detected in the magnocellular neurons of the POA, nucleus posterior tuberis, the nucleus recessus posterior and cerebellum. By contrast, acER-beta a, but not ER-beta b, was detected in the dorsal anterior parvocellular POA and suprachiasmatic nucleus. Both ER-betas were found in posterior parvocellular and ventral anterior POA nuclei, the ventral hypothalamus, and periventricular dorsal hypothalamus. The differences we observed in ER subtype mRNA distribution within well-characterized brain nuclei suggest that ER-beta a and ER-beta b have distinct functions in the neuroendocrine control of reproduction and behaviour, and provide evidence that the teleost ER-beta paralogues have partitioned functions of the ancestral ER-beta gene they shared with tetrapods.  相似文献   

9.
OBJECTIVE: To localize estrogen receptor-alpha (ER-alpha) and estrogen receptor-beta (ER-beta) within the growth plate and adjacent bony tissue of children in the prepubertal and pubertal age period. METHODS: Tissue was taken during orthopedic surgery (epiphysiodesis) for correction of congenital or traumatic leg length difference in 2 prepubertal females and 2 adolescent males. Immunohistochemistry was performed on paraffin-embedded or cryostat sections by using commercially available rabbit polyclonal antibodies for ER-alpha and ER-beta. RESULTS: Both ER-alpha and ER-beta were detected within the growth plate in all sections investigated. Immunostaining was restricted to hypertrophic chondrocytes. In the bony tissue adjacent to the growth plate, osteoblasts stained positive for both ER-alpha and ER-beta, whereas osteocytes and osteoclasts were negative. Staining with ER-alpha was mainly nuclear but some cells also showed cytoplasmic signals, while ER-beta staining was predominantly cytoplasmic, only few nuclei stained positive. There was no difference in the local distribution of both ERs between tissue from prepubertal and pubertal patients. CONCLUSION: Our findings indicate that the hypertrophic chondrocyte is the main target cell for estrogen action within the growth plate. The presence of ER in prepubertal children suggests that estrogens play a role in skeletal maturation under physiological conditions also in this age-group.  相似文献   

10.
11.
Central nervous system nuclei and circuits, such as the medial preoptic, ventromedial and paraventricular nuclei of the hypothalamus, play important roles in reproduction and parturition, and are influenced by estrogen. Peripheral autonomic and sensory neurons also play important roles in pregnancy and parturition. Moreover, the steroid hormone estrogen acts directly, not only on the reproductive tract organs (uterus and cervix), but also on the central and peripheral nerves by regulating expression of various neuronal genes. The peripheral primary afferent neurons innervating the uterine cervix relay mechanical and biochemical sensory information induced by local cervical events and by passage of fetuses, to the spinal cord and supraspinal centers. Consequently, the birth process in mammals is influenced by the combined action of neurons and hormones. Peripheral sensory stimuli, induced physiologically by fetal expulsion or mechanically by vaginocervical stimulation, alter behavior, as well as autonomic and neuroendocrine systems. Recent evidence indicates that primary afferent neurons innervating the cervix, in addition to their sensory effects, likely exert local "efferent" actions on the ripening cervix near term. These efferent effects may involve estrogen-regulated production of such neuropeptides as substance P and calcitonin gene-related peptide in lumbosacral dorsal root ganglia, and their release in the cervix. Collectively, these findings suggest an interrelationship among estrogen, cervix-related sensory neurons, and local cervical events near term.  相似文献   

12.
Harris HA  Bapat AR  Gonder DS  Frail DE 《Steroids》2002,67(5):379-384
Estrogens and selective estrogen receptor modulators are used for the treatment and prevention of conditions resulting from menopause. Since estrogens exert their activity by binding to nuclear receptors, there is intense interest in developing new ligands for the two known estrogen receptor subtypes, ER-alpha and ER-beta. Characterization assays used to profile new estrogen receptor ligands often utilize receptors from different species, with the assumption that they behave identically. To test this belief, we have profiled a number of estrogens, other steroids, phytoestrogens and selective estrogen receptor modulators in a solid phase radioligand binding assay using recombinant protein for human, rat, and mouse ER-alpha and ER-beta. Certain compounds show species dependent binding preferences for ER-alpha or ER-beta, leading to differences in receptor subtype selectivity. The amino acids identified by crystallography as lining the ligand binding cavity are the same among the three species, suggesting that as yet unidentified amino acids contribute to the structure of the binding site. We conclude from this analysis that the ability of a compound to selectively bind to a particular ER subtype can be species dependent.  相似文献   

13.
Cervical softening is crucial for a normal parturition and corresponds to remodeling of the dominating cervical extra cellular matrix (ECM). The onset of labor as well as cervical ripening is under hormonal control. To get further information about the endocrine regulation of term cervical ripening the following study was undertaken: cervical biopsies were obtained vaginally at elective caesareans, after normal vaginal delivery and after PGE2 or antiprogestin RU486. Biopsies from non-pregnant women served as controls. The concentrations of estrogen receptor (ER) and progesterone receptor (PR) protein were quantitated by EIA and the mRNA levels by solution hybridization. The ERalpha and beta were localized by immunohistochemistry, identified by RT-PCR and quantitated by solution hybridization. The co-localizations of CD45 (leukocyte antigen) and CD68 (macrophage antigen) were studied by immunohistochemistry. The cervical concentrations of ER and PR proteins decreased at term to 15 and 25%, respectively, compared to the non-pregnant levels. A further decrease was measured in the maximal ripened cervix at parturition. The mRNA levels were unchanged but IGF-I mRNA reached a maximum at term. ERalpha mRNA was significantly decreased until delivery, whereas ERbeta mRNA, like IGF-I; was maximum at term. By immunostaining ERbeta could be co-localized with CD45 leukocyte antigen and CD68 macrophage specific antigen. Oral administration of RU486 induced a significant increase in ER protein concentration, whereas PGE2 and spontaneous ripening did not. These findings indicate that cervical ripening is related to significant local hormonal changes.  相似文献   

14.
Bilateral neurectomy of the pelvic nerve (BLPN) that carries uterine cervix-related sensory nerves induces dystocia, and administration of its vasoactive neuropeptides induces changes in the cervical microvasculature, resembling those that occur in the ripening cervix. This study was designed to test the hypothesis that (a) the cervix of pregnant rats expresses vascular endothelial growth factor (VEGF) and components of the angiogenic signaling pathway [VEGF receptors (Flt-1, KDR), activity of protein kinase B, Akt (phosphorylated Akt), and endothelial nitric oxide synthase (eNOS)] and von Willebrand Factor (vWF) and that these molecules undergo changes with pregnancy, and (b) bilateral pelvic neurectomy (BLPN) alters levels of VEGF concentration in the cervix. Using RT-PCR and sequencing, two VEGF isoforms, 120 and 164, were identified in the rat cervix. VEGF, VEGF receptor-1 (Flt-1), eNOS, and vWF immunoreactivities (ir) were localized in the microvasculature of cervical stroma. Their protein levels increased during pregnancy but decreased to control levels by 2 days postpartum. VEGF receptor-2 (KDR)-ir was confined to the epithelium of the endocervix. BLPN downregulated levels of VEGF by a third. Therefore, the components of the angiogenic signaling pathway are expressed in the cervix and change over pregnancy. Furthermore, angiogenic and sensory neuronal factors may be important in regulating the dynamic microvasculature in the ripening cervix and may subsequently play a role in cervical ripening and the birth process.  相似文献   

15.
16.
17.
Although administration of 17beta-estradiol (estrogen) following trauma-hemorrhage attenuates the elevation of cytokine production and mitogen-activated protein kinase (MAPK) activation in epidermal keratinocytes, whether the salutary effects of estrogen are mediated by estrogen receptor (ER)-alpha or ER-beta is not known. To determine which estrogen receptor is the mediator, we subjected C3H/HeN male mice to trauma-hemorrhage (2-cm midline laparotomy and bleeding of the animals to a mean blood pressure of 35 mmHg and maintaining that pressure for 90 min) followed by resuscitation with Ringer's lactate (four times the shed blood volume). At the middle of resuscitation we subcutaneously injected ER-alpha agonist propyl pyrazole triol (PPT; 5 microg/kg), ER-beta agonist diarylpropionitrile (DPN; 5 microg/kg), estrogen (50 microg/kg), or ER antagonist ICI 182,780 (150 microg/kg). Two hours after resuscitation, we isolated keratinocytes, stimulated them with lipopolysaccharide for 24 h (5 microg/mL for maximum cytokine production), and measured the production of interleukin (IL)-6, IL-10, IL-12, and TNF-alpha and the activation of MAPK. Keratinocyte cytokine production markedly increased and MAPK activation occurred following trauma-hemorrhage but were normalized by administration of estrogen, PPT, and DPN. PPT and DPN administration were equally effective in normalizing the inflammatory response of keratinocytes, indicating that both ER-alpha and ER-beta mediate the salutary effects of estrogen on keratinocytes after trauma-hemorrhage.  相似文献   

18.
There is now evidence that the recently identified estrogen receptor (ER) beta is more widely distributed in the body than is ER-alpha. In order to gain more information about the role of ER-beta in reproduction, we have investigated by in situ hybridization the localization of mRNA expression of this ER subtype in adult monkey reproductive organs. In the pituitary gland of animals of both sexes, in both the anterior and intermediate lobes, a large number of cells were positive. No specific signal was observed in the posterior lobe. In the ovary, granulosa cells in primary and growing follicles highly expressed ER-beta mRNA. The theca interna cells were also strongly labeled. In some corpora lutea, the luteal cells were strongly labeled, while in other ones, the signal was weak. A hybridization signal was also detected in the ovarian surface epithelium. In the uterus, ER-beta mRNA was found in high concentration in glandular epithelial cells and stromal cells of the endometrium, while weaker labeling was consistently observed in smooth muscle cells. In the mammary gland, labeling was detected in the epithelial cells of acini and interlobular ducts as well as stromal cells. In the testis, specific labeling was detected in the seminiferous epithelium whereas the interstitial Leydig cells were unlabeled. Although it was not possible to clearly identify all the positive cell types, it appears that Sertoli cells as well as the vast majority of germinal cells express ER-beta mRNA. In the prostate, the secretory epithelial cells exhibited a specific autoradiographic reaction while the stromal cells did not show mRNA expression. The epithelial cells of the prostatic urethra showed a strong labeling. No hybridization signal was detected in the seminal vesicles. It then appears quite clear that ER-beta is expressed in a cell-specific manner in all the monkey reproductive organs studied. In the female, the wide distribution of these receptors in the ovary and uterus suggests that ER-beta may play an important role in the mediation of the known effects of estrogen in reproduction functions. In the male testis and prostate, ER-beta has been found in cells that contain very little or no ER-alpha. The role of circulating or locally produced estrogens in the male reproductive system remains to be clarified.  相似文献   

19.
20.
用兔抗人ER-α和ER-β多克隆抗体对文昌鱼神经系统、轮器哈氏窝和性腺进行免疫细胞化学的定位研究。结果揭示幼年和成年两性不同发育时期文昌鱼在这些部位分布ER-α和ER-β蛋白。ER-α定位在端脑、中脑、后脑和神经管中大多数神经细胞核,少数在胞质及其突起和神经纤维,ER-β则定位在细胞质或细胞膜上,少数在核内。ER—α免疫阳性物质主要分布在哈氏窝下层的上皮细胞核,少数在上层细胞质,β受体则在上层细胞核。在性腺,ER-α分布在卵巢中卵原细胞和小生长期卵母细胞胞质与核仁,生发泡(核)显免疫阴性,在大生长期卵母细胞核膜和核仁的免疫阳性显著增强,成熟期则在卵细胞生发泡表达,ER-β免疫阳性物质分布在卵原细胞和早期卵母细胞质以及成熟卵细胞的卵被膜检测到,生发泡显免疫阴性。在精巢,这两种ER亚型均定位在精原细胞、初级与次级精母细胞和足细胞质,精子细胞在胞核,精子显免疫阴性。另外,双染结果还揭示ER-α和ER-β在上述部位多数共存于同一细胞,少数在不同细胞表达,且在细胞定位有不同。首次发现这两种雌激素受体亚型在文昌鱼有广泛分布,它们介导雌激素对文昌鱼神经内分泌组织的调节作用。α和β受体在靶细胞定位的不同,提示两者在介导雌激素信号路线和基因转录机制可能有不同生理作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号