首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The fine structure of an ommatidium of a skipper butterfly, Parnara guttata, has been studied using the electron microscope. Each ommatidium has nine retinula cells, which were classified into three groups: two distal, six medial and one basal retinula cells. The rhabdomeres of the distal retinula cells are localized in the distal part of the rhabdom, while those of the six medial retinula cells appear throughout most of the rhabdom. The rhabdomere of the basal retinula cell occupies only the basal part of the rhabdom. The rhabdomeres of four medial cells are constructed of parallel microvilli, while fan-like microvilli form the rhabdomeres of other two medial retinula cells. The distal and basal retinula cells have rhabdomeres consisting of both parallel and fan-like microvilli. This is the first time the construction of the rhabdomeres of the distal and basal retinula cells has been described in such fine detail for a skipper butterfly. Nine retinula cell axons of each ommatidium extend to the first neuropile of the optic lobe, the lamina ganglionaris. No difference was found in the number of retinula cells of an ommatidium or the shape of the rhabdom between the dorsal and ventral regions of the compound eye.  相似文献   

2.
许曼飞  李孟园  姜岩  孟召娜  谭畅  王国昌  边磊 《昆虫学报》2022,65(10):1277-1286
【目的】明确灰茶尺蠖Ectropis grisescens成虫复眼的超微结构及其明暗适应中的变化,探究其调光机制。【方法】采用超景深显微镜测定了灰茶尺蠖成虫复眼的小眼数量、间角、直径和曲率半径等外部参数,并通过组织切片、光学显微镜和透射电子显微镜等技术观察了复眼的内部超微结构;通过光学显微镜观察了灰茶尺蠖成虫复眼在明暗环境中分别适应2 h后晶锥结构及色素颗粒的位置变化。【结果】灰茶尺蠖成虫复眼呈半球形,雌、雄虫单个复眼分别有2 502±105和3 123±78个小眼。小眼自远端至近端由角膜、晶锥、透明区构成的屈光层和由15个视网膜细胞构成的感光层组成。2个初级色素细胞包裹着晶锥,自角膜近端延伸至视网膜细胞核区的远端;每个小眼外围由6个次级色素细胞围绕,自角膜近端延伸至基膜;在透明区内14个视网膜细胞聚集成束(非感杆束),远端与晶锥束末端连接,在感光层内形成闭合型感杆束,延伸至第15个视网膜细胞(基部视网膜细胞)。在明暗适应时,灰茶尺蠖复眼的晶锥细胞间出现开闭,色素颗粒进行纵向位移,以适应外界的光强度的变化。【结论】灰茶尺蠖成虫复眼属于重叠像眼,感杆束为“14+1”模式;屏蔽色素颗粒的移...  相似文献   

3.
Ultrastructure of the eye of a euphausiid crustacean   总被引:1,自引:0,他引:1  
The compound eye of the Antarctic euphausiid Euphausia superba is a spherical clear zone eye. The dioptric system consists of a hexagonally-faceted cornea, two corneagenous cells, two crystalline cone cells which form the bipartite crystalline cone, and two accessory cone cells. The dioptric system of each ommatidium is separated from that of adjacent ommatidia by six distal pigment cells and a basement membrane. The proximal tip of the crystalline cone is cupped by the distal ends of the seven retinula cells whose nuclei are arranged in a staggered array slightly distal to the middle of the clear zone. In the distal half of the clear zone, each narrow retinula cell column is surrounded by large proximal extensions of the six distal pigment cells. The pigment cells narrow more proximally and terminate at the proximal basement membrane. A specialized axial channel complex extends from the crystalline cone through the clear zone, and is continuous with a conical refractive element which caps the distal end of the rhabdom. The rhabdom is fused, and made up of alternating highly birefringent layers of orthogonally-oriented microvilli. It is surrounded by a narrow extra-cellular space which is continuous with the distal refractive element and a second conical refractive element at the proximal end of the rhabdom.  相似文献   

4.
Among ants, Cataglyphis bicolor shows the best performance in optical orientation. Its eye is of the apposition type with a fused rhabdom. Morphological studies on the general struture of the eye as well as the effect of light have been carried out with transmission and scanning electron microscopy. An ommatidium is composed of a dioptric apparatus, consisting of a cornea, corneal process and a crystalline cone, the sensory retinula, which is made up of eight retinula cells in the distal half and of an additional ninth one in the proximal half. The ommatidia are separated from each other by two primary pigment cells, which surround the crystalline cone and an average of 12 secondary pigment cells, which reach from cornea to the basement membrane. The eye of Cataglyphis bicolor possesses a light intensity dependent adaptation mechanism, which causes a radial and distal movement of the pigment granules within the retinula cells and a dilatation of cisternae of the ER along the rhabdom. Until now, no overall order in arrangement of retinula cells or direction of microvilli has been found from ommatidium to ommatidium. Such an order, however, must exist, either on the retina or the lamina level, since we have proven the ant's capacity for polarized light analysis.  相似文献   

5.
The retinula of the compound eye of the worker honey-bee has been examined with the electron microscope. The rhabdom lies on the ommatidial axis; it is usually cylindrical in shape, about 3 to 4 µ in diameter, and lacks an axial cavity. Cross-sections show it to be four parted, although it is formed from eight retinular cells (Figs. 2, 3). Each quadrant of the rhabdom consists of a closely packed parallel array of tubules with long axes perpendicular to the axis of the rhabdom. The tubules in adjacent quadrants of the rhabdom are mutually perpendicular. At the distal end of the ommatidium these tubules are seen to be microvilli of the retinular cells. Immediately surrounding the rhabdom, the cytoplasm of the retinular cells contains a membranous endoplasmic reticulum which is oriented approximately radially with respect to the axis of the ommatidium. Farther away from the rhabdom the cytoplasm contains numerous mitochondria.  相似文献   

6.
Summary The ultrastructural organization of ommatidial components of the retina of the moth, Galleria mellonella are described from electron microscopic observations. Each ommatidium is composed of 12 common retinula cells and one basal eccentric cell. The retinula cells are connected together by a desmosomal strip along their length. The rhabdom occupies the basal thirty percent of the ommatidium and can be divided into nine segments of parallel microvilli. Several cells may contribute to an individual rhabdomere. The rhabdomeres are arranged in a cross with single cell rhabdomeres lying between the arms of the cross. Thin sections of ommatidium absorb polarized light differentially. The total amount of plane polarized light absorbed varies with angle of rotation for an entire ommatidium but there are also differences between the amount of absorption of adjacent rhabdomeric segments. Galleria appears to be the only lepidopteran in which the possibility of the polarized light reception has been reported.  相似文献   

7.
Summary The compound eyes of two species of damsel-flies, Ishunura senegalensis and Cersion calamorum, were examined by electron microscopy. Each ommatidium is composed of eight retinula cells which are semistratified in the receptor layer. The retinula cells are divided into four types from the difference of levels in the rhabdom formation; one distal large cell having the rhabdomere only in the distal layer, four middle cells forming the rhabdom in the middle layer, two proximal cells making up the rhabdom in the proximal layer and one distal small cell having no rhabdomere in any layers. In addition, the lamina ganglionaris was partly observed. Some retinula axons terminate at an different level from the other axons. The functional differentiation among these different types of cells is discussed with relation to the analysis of the polarized light and the discrimination of the diffraction images.This work is supported by a grant from the U.S. Army Research and Development Group (Far East), Department of the Army (DA-CRD-AG-S29-544-67-G61).The authors wish to express their gratitude to Drs. H. Morita and H. Tateda for their helpful discussions throughout this study.  相似文献   

8.
The distal aspect of the housefly ommatidium was surveyed by the scanning electron microscope. Attention was directed to the somal eminence of the superior central cell and the lens to large pigment cell junction. The underside of each lens facet exhibits six hexagonally arranged incisures. Into each of these indentations are fitted several large pigment cells. This hexagonal indentation appears to be a tenacious anchorage. Two corneal pigment cells laterally encircle the pseudocone and at their proximal extension they enclose the Semper cells and neck of the retinula. The somal eminence of the superior central cell is about 10 mum from the base of the corneal pigment cell enclosure. Micrographs were used to construct a diagram of the ommatidium above the basement membrane. Suggestions are made as to the functional correlates of the observed ommatidial structures.  相似文献   

9.
A number of differences exists between the compound eyes of larval and adult rock lobsters, Panulirus longipes. The larval eye more closely resembles the apposition type of compound eye, in which retinula cells and rhabdom lie immediately below the cone cells. The adult eye, on the other hand, is a typical clear-zone photoreceptor in which cones and retinula cell layers are separated by a wide transparent region. The rhabdom of the larval eye, if cut longitudinally, exhibits a "banded" structure over its entire length; in the adult the banded part is confined to the distal end, and the rhabdom is tiered. Both eyes have in common an eighth, distally-located retinula cell, which possesses orthogonally-oriented microvilli, and a peculiar lens-shaped "crystal", which appears to focus light onto the narrow column of the distal rhabdom. Migration of screening pigment on dark-light adaptation is accompanied by changes in sensitivity and resolution of the eye. Retinula cells belonging to one ommatidium do not arrange into one single bundle of axons, but interweave with axons of four neighbouring facets in an extraordinarily regular fashion.  相似文献   

10.
The lateral compound eye of Scutigera coleoptrata was examined by electron microscopy. Each ommatidium consists of a dioptric apparatus, formed by a cornea and a multipartite eucone crystalline cone, a bilayered retinula and a surrounding sheath of primary pigment and interommatidial pigment cells. With reference to the median eye region, each cone is made up of eight cone segments belonging to four cone cells. The nuclei of the cone cells are located proximally outside the cone near the transition area between distal and proximal retinula cells. The connection between nuclear region and cone segment is via a narrow cytoplasmic strand, which splits into two distal cytoplasmic processes. Additionally, from the nuclear region of each cone cell a single cytoplasmic process runs in a proximal direction to the basement membrane. The bilayered rhabdom is usually made up of the rhabdomeres of 9–12 distal retinula cells and four proximal retinula cell. The pigment shield is composed of primary pigment cells (which most likely secrete the corneal lens) and interommatidial pigment cells. The primary pigment cells underlie the cornea and surround, more or less, the upper third of the crystalline cone. By giving rise to the cornea and by functioning as part of the pigment shield these pigment cells serve a double function. Interommatidial pigment cells extend from the cornea to the basement membrane and stabilise the ommatidium. In particular, the presence of cone cells, primary pigment cells as well as interommatidial pigment cells in the compound eye of S. coleoptrata is seen as an important morphological support for the Mandibulata concept. Furthermore, the phylogenetic significance of these cell types is discussed with respect to the Tetraconata.  相似文献   

11.
Summary The eye of the honey bee drone is composed of approximately 8,000 photoreceptive units or ommatidia, each topped by a crystalline cone and a corneal facet. An ommatidium contains 9 visual or retinula cells whose processes or axons pierce a basement membrane and enter the optic lobe underlying the sensory retina. The visual cells of the ommatidium are of unequal size: six are large and three, small. In the center of the ommatidium, the visual cells bear a brush of microvilli called rhabdomere. The rhabdome is a closed-type one and formed mainly by the rhabdomeres of the six large retinula cells. The rhabdomeric microvilli probably contain the photopigment (rhodopsin), whose modification by light lead to the receptor potential in the retinula cells. The cytoplasm of the retinula cells contains various organelles including pigment granules (ommochromes), and peculiar structures called the subrhabdomeric cisternae. The cisternae, probably composed of agranular endoplasmic reticulum undergo swelling during dark adaptation and appear in frequent connection with Golgi cisternae. Three types of pigment cells are associated with each ommatidium. The crystalline cone is entirely surrounded by two corneal pigment cells. The ommatidium, including its dioptric apparatus and corneal pigment cells, is surrounded by a sleeve of about 30 elongated cells called the outer pigment cells. These extend from the base of the corneal facet to the basement membrane. Near the basement membrane the center of the ommatidium is occupied by a basal pigment cell. Open extracellular channels are present between pigment cells as well as between retinula cells. Tight junctions within the ommatidium are restricted to the contact points between the rhabdomeric microvilli. These results are discussed in view of their functional implications in the drone vision, as well as in view of the data of comparative morphology.This work was supported by a grant from the Fonds National Suisse de la Recherche Scientifique.  相似文献   

12.
Horridge GA 《Tissue & cell》1969,1(3):425-442
The eye of Dytiscus (Coleoptera) has rhabdomeres at three different levels. The crystalline threads stretch from the ends of the crystalline cones only as far as the distal layer of rhabdomeres. There is one distal rhabdo-mere per ommatidium, and in this system the ommatidia are anatomically separate. Between the distal rhabdomere and the rhabdomeres of the next six retinula cells is a wide clear zone in which light entering by one facet could possibly reach deep rhabdomeres of a different ommatidium. Of the six proximal rhabdomeres, four have rhabdomere tubules which lie horizontal with reference to the normal posture, the other two having vertically oriented tubules. The eighth cell, with nucleus near the basement membrane, has a small rhabdomere. All eight retinula cells have axons and there is no other class of axons in the eye.  相似文献   

13.
Retinal fine structure and optics of the eye of the dung beetle Euoniticellus africanus have been studied and compared with those of three other scarabaeid beetles: Repsimus manicatus, Anoplognathus pallidicollis and Sericesthis geminata. The eye of Euoniticellus, in common with that of the other three species, possesses a dioptric system in which light first passes through a thick optically homogeneous cornea, and then enters a non-homogeneous crystalline cone. The lens cylinder properties of the latter cause the light rays to become partially focused across the clear-zone upon the rhabdom layer. Rays traced through a large scale drawing of the eye, with refractive indices measured for each component, predict an acceptance angle of approximately 26°. Since no significant aperture changes, lengthening of crystalline thread, cell or pigment migrations appear to be associated with dark/light adaptation, the eye may be assumed to be permanently poorly focused. In optomotor experiments the beetles did not show their characteristic antennal following response to black and white stripes when the latter had repeat periods of <30°. Structurally the eye of Euoniticellus differs markedly from that of other scarabaeids. It is totally divided into dorsal and ventral eye which are of a different size (the dorsal eye is smaller), but whose structural organization is basically the same. Principal pigment cells (they do not fully surround the cone) as well as accessory pigment cells (they accompany the retinula cells in an extraordinarily regular fashion as far as to the basement membrane) exhibit some unusual features. On the proximal side of the clear-zone, at a level where all retinula cell membranes form complex meanders and convolutions, cell 1 is the first to possess a rhabdomere. In it, all microvilli run parallel. This rhabdomere becomes part of the rectangular proximal rhabdom over the upper 20% of its length. Below this level the rhabdom consists of 6 rhabdomeres, but throughout its length microvilli are oriented in 2 orthogonal directions. It is thought that polarization sensitivity in dung beetles generally is related to the rhabdom organization described for Euoniticellus. An eighth (basal) cell is present in each ommatidium, but it lacks a rhabdomere. A tracheal tapetum is not developed. Finally, the point is made not to regard all different eye structures in insects as perfect adaptations to a particular environment or way of living, for specializations of photoreceptors may either follow, parallel or precede any ecological adaptation.  相似文献   

14.
栖境不同的两种跳甲复眼结构比较   总被引:4,自引:1,他引:3  
郭炳群  李世文 《昆虫学报》1996,39(3):260-265
栖息于荫暗隐蔽处的蛇莓跳甲(Altica fragariae)和向阳开阔地的萎陵跳甲(A.Ampelophaga)的复眼外部形态及小眼微细结构有如下相同特征:两复眼均比较小,呈“八”字型排列在头部近背方的两侧;每个小眼含有一个双凸面的角膜锥体、4个森氏细胞和7个小网膜细胞;2个主色素细胞及11-12个附色素细胞围绕在小眼的外缘;小网膜细胞和色素细胞内均有丰富色素颗粒,当光照强度发生变化时,小网膜细胞内的色素颗粒发生位移;在视杆中段横切面上,视杆由7个微绒毛呈平行排列的矩形视小杆组成,其中的6个视小杆互相连成一个近似六边形的框架,将另一个视小杆围在中央。两种跳甲复眼结构的主要差异有:蛇莓跳甲每个复眼大约仅有150个小眼,而萎陵跳甲约有2印个;复眼曲率半径前者只有后者的一半;视杆中段横切面上,视杆占整个小网膜面积的比率两虫分别为37%和25%,蛇莓跳甲高于萎陵跳甲。对以上形态结构特征可能具有的功能意义进行了初步讨论。  相似文献   

15.
The evolutionary origin of holometabolous larvae is a long‐standing and controversial issue. The Mecoptera are unique in Holometabola for their larvae possessing a pair of compound eyes instead of stemmata. The ultrastructure of the larval eyes of the scorpionfly Panorpa dubia Chou and Wang, 1981 was investigated using transmission electron microscopy. Each ommatidium possesses a cornea, a tetrapartite eucone crystalline cone, eight retinula cells, two primary pigment cells, and an undetermined number of secondary pigment cells. The rhabdomeres of the eight retinula cells form a centrally‐fused, tiered rhabdom of four distal and four proximal retinula cells. The rhabdomeres of the four distal retinula cells extend distally into a funnel shape around the basal surface of the crystalline cone. Based on the similarity of the larval eyes of Panorpidae to the eyes of the hemimetabolous insects and the difference from the stemmata of the holometabolous larvae, the evolutionary origin of the holometabolous larvae is briefly discussed. Morphol., 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
The structure of the eye of Ligia oceanica L   总被引:1,自引:0,他引:1  
Edwards AS 《Tissue & cell》1969,1(2):217-228
There are eight retinula cells in each ommatidium. Two of these cells are half the size of the others, and there is a small basal cell with large vesicles in its cytoplasm but no rhabdomere. The rbabdomeres are separate and the cytoplasm of the basal cell extends into the space between them at the central end. The rhabdomere tubules are regularly arranged at the periphery and irregular at the central end. The extent of irregular arrangement is increased if animal is kept in dark. There are eight axons from each ommatidium.  相似文献   

17.
Summary The superposition eye of the cockchafer, Melolontha melolontha, exhibits the typical features of many nocturnal and crepuscular scarabaeid beetles: the dioptric apparatus of each ommatidium consists of a thick corneal lens with a strong inner convexity attached to a crystalline cone, that is surrounded by two primary and 9–11 secondary pigment cells. The clear zone contains the unpigmented extensions of the secondary pigment cells, which surround the cell bodies of seven retinula (receptor) cells per ommatidium and a retinular tract formed by them. The seven-lobed fused rhabdoms are composed by the rhabdomeres of the receptor cells 1–7. The rhabdoms are optically separated from each other by a tracheal sheath around the retinulae. The orientation of the microvilli diverges in a fan-like fashion within each rhabdomere. The proximally situated retinula cell 8 does not form a rhabdomere. This standard form of ommatidium stands in contrast to another type of ommatidium found in the dorsal rim area of the eye. The dorsal rim ommatidia are characterized by the following anatomical specializations: (1) The corneal lenses are not clear but contain light-scattering, bubble-like inclusions. (2) The rhabdom length is increased approximately by a factor of two. (3) The rhabdoms have unlobed shapes. (4) Within each rhabdomere the microvilli are parallel to each other. The microvilli of receptor 1 are oriented 90° to those of receptors 2–7. (5) The tracheal sheaths around the retinulae are missing. These findings indicate that the photoreceptors of the dorsal rim area are strongly polarization sensitive and have large visual fields. In the dorsal rim ommatidia of other insects, functionally similar anatomical specializations have been found. In these species, the dorsal rim area of the eye was demonstrated to be the eye region that is responsible for the detection of polarized light. We suggest that the dorsal rim area of the cockchafer eye subserves the same function and that the beetles use the polarization pattern of the sky for orientation during their migrations.  相似文献   

18.
The fine structure of the compound eyes of the adult diving beetle Agabus japonicus is described with light, scanning, and transmission electron microscopy. The eye of A. japonicus is mango‐shaped and consists of about 985 ommatidia. Each ommatidium is composed of a corneal facet lens, an eucone type of crystalline cone, a fused layered rhabdom with a basal rhabdomere, seven retinula cells (including six distal cells and one basal cell), two primary pigment cells and an undetermined number of secondary pigment cells that are restricted to the distalmost region of the eye. A clear‐zone, separating dioptric apparatus from photoreceptive structures, is not developed and the eye thus resembles an apposition eye. The cross‐sectional areas of the rhabdoms are relatively large indicative of enhanced light‐sensitivity. The distal and central region of the rhabdom is layered with interdigitating microvilli suggesting polarization sensitivity. According to the features mentioned above, we suggest that 1) the eye, seemingly of the apposition type, occurs in a taxon for which the clear‐zone (superposition) eye is characteristic; 2) the eye possesses adaptations to function in a dim‐light environment; 3) the eye may be sensitive to underwater polarized light or linearly water‐reflected polarized light. J. Morphol. 275:1273–1283, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
大草蛉成虫复眼的外部形态及其显微结构   总被引:2,自引:0,他引:2  
张海强  朱楠  范凡  魏国树 《昆虫学报》2007,50(5):454-460
用扫描电镜和光学显微镜观察了大草蛉Chrysopa pallens Ramber成虫复眼的外部形态及明、暗适应和性别对其显微结构的影响。结果发现:(1)其复眼呈半球形,位于头部两侧,略成“八”字形排列,单个复眼约由3 600个小眼组成,最前和最后小眼之间的夹角约为180°,最上和最下小眼之间的夹角约200°;(2)小眼主要由角膜、晶锥和6~8个小网膜细胞、基膜组成,外围环绕有2个初级虹膜色素细胞和6个次级虹膜色素细胞,基膜处有色素颗粒分布;(3)暗适应时,晶锥开裂程度较大,远端5~7个网膜细胞核向远端移动,与晶锥近端相接或接近,次级虹膜色素颗粒亦向远端移动包围晶锥;明适应时,晶锥开裂程度小或闭合,远端网膜细胞核向近端移动,透明带显现,大部分次级虹膜色素颗粒亦向近端移动分布在小网膜细胞柱周围,包被透明带;(4)在相同的明、暗适应下,雌、雄成虫复眼的显微结构无明显差异。结果表明大草蛉复眼为透明带明显的重叠象眼,其小眼不但具有次级虹膜色素颗粒纵向移动的常规调光机制,还存在晶锥开闭、远端网膜细胞核移动和基膜色素颗粒纵向扩散的调光新机制。  相似文献   

20.
The compound eye of Munida irrasa differs in several respects from the typical decapod eye. The proximal pigment is found only in retinula cells. The eccentric cell is extremely large and expanded to fill the interstices of the crystalline tract area; thus, a typical "clear-zone" is absent. Six retinula cells course distally to screen two sides of the crystalline cone. There are approximately 12,500 ommatidia in each compound eye. There are several similarities to the typical decapod eye. Each ommatidium is composed of a typical cornea, corneagenous cells, crystalline cone cells, crystalline cone, crystalline cone tract and eight retinula cells. Distal pigment cells are present and surround the crystalline cone. The distal processes of the retinula cells also contain pigment. The retinula cell processes penetrate the basement membrane as fascicles composed of processes from adjacent retinulae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号