首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When day 1 cultures of chick myogenic cells were exposed to the mutagenic alkylating agent ethyl methanesulfonate (EMS) for 3 d, 80% of the replicating cells were killed, but postmitotic myoblasts survived. The myoblasts fused to form unusual multinucleated "myosheets": extraordinarily wide, flattened structures that were devoid of myofibrils but displayed extensive, submembranous stress fiber-like structures (SFLS). Immunoblots of the myosheets indicated that the carcinogen blocked the synthesis and accumulation of the myofibrillar myosin isoforms but not that of the cytoplasmic myosin isoform. When removed from EMS, widely spaced nascent myofibrils gradually emerged in the myosheets after 3 d. Striking co-localization of fluorescent reagents that stained SFLS and those that specifically stained myofibrils was observed for the next 2 d. By both immunofluorescence and electron microscopy, individual nascent myofibrils appeared to be part of, or juxtaposed to, preexisting individual SFLS. By day 6, all SFLS had disappeared, and the definitive myofibrils were displaced from their submembranous site into the interior of the myosheet. Immunoblots from recovering myosheets demonstrated a temporal correlation between the appearance of the myofibrillar myosin isoforms and the assembly of thick filaments. The assembly of definitive myofibrils did not appear to involve desmin intermediate filaments, but a striking aggregation of sarcoplasmic reticulum elements was seen at the level of each I-Z-band. Our findings suggest that SFLS in the EMS myosheets function as early, transitory assembly sites for nascent myofibrils.  相似文献   

2.
The distribution of titin during myofibrillogenesis was examined using rat skeletal muscle myogenic cultures and fluorescent-antibody staining. Efforts were made to compare the distribution and temporal sequence of incorporation of titin relative to that of the alpha- and gamma-isoforms of actin. The present observations suggested the following sequence of titin assembly: (1) newly synthesized titin molecules are distributed in a diffuse pattern throughout the sarcoplasm, (2) the titin molecules gradually associate with alpha- and gamma-actin-positive stress fiber-like structures (SFLS), (3) groups of titin molecules begin to segregate on the SFLS, and (4) titin molecules align in a mature doublet configuration in the sarcomeres of nascent myofibrils. Titin assembly on the SFLS often appeared prior to the onset of either alpha- or gamma-actin periodicity on nascent myofibrils; the latter result suggested a role for titin in sarcomeric organization. Actin distribution on SFLS and its periodicity on nascent myofibrils was usually identical between the alpha- and gamma-isoforms. This suggested that gamma-actin participated in myofibrillogenesis in a manner indistinguishable from that of alpha-actin. The transition seen from continuous actin staining of SFLS to the I-band staining pattern of mature myofibrils is discussed in relation to the corresponding reorganization of actin filaments and the molecular associations that this would entail.  相似文献   

3.
Experiments are described supporting the proposition that the assembly of stress fibers in non-muscle cells and the assembly of myofibrils in cardiac cells share conserved mechanisms. Double staining with a battery of labeled antibodies against membrane-associated proteins, myofibrillar proteins, and stress fiber proteins reveals the following: (a) dissociated, cultured cardiac myocytes reconstitute intercalated discs consisting of adherens junctions (AJs) and desmosomes at sites of cell-cell contact and sub-sarcolemmal adhesion plaques (SAPs) at sites of cell-substrate contact; (b) each AJ or SAP associates proximally with a striated myofibril, and conversely every striated myofibril is capped at either end by an AJ or a SAP; (C) the invariant association between a given myofibril and its SAP is especially prominent at the earliest stages of myofibrillogenesis; nascent myofibrils are capped by oppositely oriented SAPs; (d) the insertion of nascent myofibrils into AJs or into SAPs invariably involves vinculin, alpha-actin, and sarcomeric alpha-actinin (s-alpha-actinin); (e) AJs are positive for A-CAM but negative for talin and integrin; SAPs lack A-CAM but are positive for talin and integrin; (f) in cardiac cells all alpha-actinin-containing structures invariably are positive for the sarcomeric isoform, alpha-actin and related sarcomeric proteins; they lack non-s-alpha-actinin, gamma-actin, and caldesmon; (g) in fibroblasts all alpha-actinin-containing structures are positive for the non-sarcomeric isoform, gamma-actin, and related non-sarcomeric proteins, including caldesmon; and (h) myocytes differ from all other types of adherent cultured cells in that they do not assemble authentic stress fibers; instead they assemble stress fiber-like structures of linearly aligned I-Z-I-like complexes consisting exclusively of sarcomeric proteins.  相似文献   

4.
《The Journal of cell biology》1989,108(6):2355-2367
Successive stages in the disassembly of myofibrils and the subsequent assembly of new myofibrils have been studied in cultures of dissociated chick cardiac myocytes. The myofibrils in trypsinized and dispersed myocytes are sequentially disassembled during the first 3 d of culture. They split longitudinally and then assemble into transitory polygons. Multiples of single sarcomeres, the cardiac polygons, are analogous to the transitory polygonal configurations assumed by stress fibers in spreading fibroblasts. They differ from their counterparts in fibroblasts in that they consist of muscle alpha-actinin vertices and muscle myosin heavy chain struts, rather than of the nonmuscle contractile protein isoforms of stress fiber polygons. EM sections reveal the vertices and struts in cardiac polygons to be typical Z and A bands. Most cardiac polygons are eliminated by day 5 of culture. Concurrent with the disassembly and elimination of the original myofibrils new myofibrils are rapidly assembled elsewhere in the same myocyte. Without exception both distal tips of each nascent myofibril terminate in adhesion plaques. The morphology and composition of the adhesion plaques capping each end of each myofibril are similar to those of the termini of stress fibers in fibroblasts. However, whereas the adhesion complexes involving stress fibers in fibroblasts consist of vinculin/nonmuscle alpha-actinin/beta- and gamma-actins, the analogous structures in myocytes involving myofibrils consist of vinculin/muscle alpha-actinin/alpha-actin. The addition of 1.7-2.0 microns sarcomeres to the distal tips of an elongating myofibril, irrespective of whether the myofibril consists of 1, 10, or several hundred tandem sarcomeres, occurs while the myofibril appears to remain linked to its respective adhesion plaques. The adhesion plaques in vitro are the equivalent of the in vivo intercalated discs, both in terms of their molecular composition and with respect to their functioning as initiating sites for the assembly of new sarcomeres. How 1.7-2.0 microns nascent sarcomeres can be added distally during elongation while the tips of the myofibrils remain inserted into submembranous adhesion plaques is unknown.  相似文献   

5.
Obscurin is a recently identified giant multidomain muscle protein whose functions remain poorly understood. The goal of this study was to investigate the process of assembly of obscurin into nascent sarcomeres during the transition from non-striated myofibril precursors to striated structure of differentiating myofibrils in cell cultures of neonatal rat cardiac myocytes. Double immunofluorescent labeling and high resolution confocal microscopy demonstrated intense incorporation of obscurin in the areas of transition from non-striated to striated regions on the tips of developing myofibrils and at the sites of lateral fusion of nascent sarcomere bundles. We found that obscurin rapidly and precisely accumulated in the middle of the A-band regions of the terminal newly assembled half-sarcomeres in the zones of transition from the continuous, non-striated pattern of sarcomeric α-actinin distribution to cross-striated structure of laterally expanding nascent Z-discs. The striated pattern of obscurin typically ended at these points. This occurred before the assembly of morphologically differentiated terminal Z-discs of the assembling sarcomeres on the tips of growing myofibrils. The presence of obscurin in the areas of the terminal Z-discs of each new sarcomere was detected at the same time or shortly after complete assembly of sarcomeric structure. Many non-striated fibers with very low concentration of obscurin were already immunopositive for sarcomeric actin and myosin. This suggests that obscurin may serve for organization and alignment of myofilaments into the striated pattern. The comparison of obscurin and titin localization in these areas showed that obscurin assembly into the A-bands occurred soon after or concomitantly with incorporation of titin. Electron microscopy of growing myofibrils demonstrated intense formation and integration of myosin filaments into the “open” half-assembled sarcomeres in the areas of the terminal Z–I structures and at the lateral surfaces of newly formed, terminally located nascent sarcomeres. This process progressed before the assembly of the second-formed, terminal Z-discs of new sarcomeres and before the development of ultrastructurally detectable mature M-lines that define the completion of myofibril assembly, which supports the data of immunocytochemical study. Abundant non-aligned sarcomeres in immature myofibrils located on the growing tips were spatially separated and underwent the transition to the registered, aligned pattern. The sarcoplasmic reticulum, the organelle known to interact with obscurin, assembled around each new sarcomere. These results suggest that obscurin is directly involved in the proper positioning and alignment of myofilaments within nascent sarcomeres and in the establishment of the registered pattern of newly assembled myofibrils and the sarcoplasmic reticulum at advanced stages of myofibrillogenesis. This paper is dedicated to the memory of Professor Pavel P. Rumyantsev (1927–1988), a pioneer in studies of cardiac muscle differentiation, who is a lasting inspiration to all who worked with him.  相似文献   

6.
This study reports the first development of a fluorescently labeled filamin. Smooth muscle filamin was labeled with fluorescent dyes in order to study its interaction with stress fibers and myofibrils, both in living cells and in permeabilized cells. The labeled filamin bound to the Z bands of isolated cross-striated myofibrils and to the Z bands and intercalated discs in both permeabilized embryonic cardiac myocytes and in frozen sections of adult rat ventricle. In permeabilized embryonic chick myotubes, filamin bound to early myotubes but was absent at later stages. In living embryonic chick myotubes, the fluorescently labeled filamin was incorporated into the Z bands of myofibrils during early and late stages of development but was absent during an intermediate stage. In living cardiac myocytes, filamin-IAR was incorporated into nascent as well as fully formed sarcomeres throughout development. In permeabilized nonmuscle cells, labeled filamin bound to attachment plaques and foci of polygonal networks and to the dense bodies in stress fibers. The periodic bands of filamin in stress fibers had a longer spacing in fibroblasts than in epithelial cells. When injected into living cells, filamin was readily incorporated into stress fibers in a striated pattern. The fluorescent filamin bands were broader in injected cells, however, than they were in permeabilized cells. We have interpreted these results from living and permeabilized cells to mean that native filamin is distributed along the full length of the actin filaments in the stress fibers, with a higher concentration present in the dense bodies. A sarcomeric model is presented indicating the position of filamin with respect to other proteins in the stress fiber.  相似文献   

7.
Cardiac myofibrillogenesis was examined in cultured chick cardiac cells by immunofluorescence using antibodies against titin, actin, tropomyosin, and myosin. Primitive cardiomyocytes initially contained stress fiber-like structures (SFLS) that stained positively for alpha actin and/or muscle tropomyosin. In some cases the staining for muscle tropomyosin and alpha actin was disproportionate; this suggests that the synthesis and/or assembly of these two isoforms into the SFLS may not be stoichiometric. The alpha actin containing SFLS in these myocytes could be classified as either central or peripheral; central SFLS showed developing sarcomeric titin while peripheral SFLS had weak titin fluorescence and a more uniform stain distribution. Sarcomeric patterns of titin and myosin were present at multiple sites on these structures. A pair of titin staining bands was clearly associated with each developing A band even at the two or three sarcomere stage, although occasional examples of a titin band being associated with a half sarcomere were noted. The appearance of sarcomeric titin patterns coincided or preceded sarcomere periodicity of either alpha actin or muscle tropomyosin. The early appearance of titin in myofibrillogenesis suggests it may have a role in filament alignment during sarcomere assembly.  相似文献   

8.
To study whether the first myofibrils are separate from or firmly bound to the myocytic cell membranes, whole mount preparations of 6-12-somite-stage chick embryonic hearts were examined by fluorescence microscopy after double labeling with antibodies to vinculin (fluorescein-conjugated) and rhodamine-phalloidin, or with antibodies to titin (rhodamine-conjugated) and nitrobenz-oxadiazole-phallacidin. When a small number of myofibrils appeared for the first time at the nine somite stage, most of them were already bound to the cell membranes through zonulae adherentes, fasciae adherentes, or costameres. In the outer of the two myocardial cell layers, in which the myocytes were closely in contact with each other along polygonal boundaries, fasciae adherentes and costameres developed at the boundaries, apparently by conversion of preexisting zonulae adherentes. On the other hand, in the inner cell layer, in which myocytes were more loosely associated with each other, both costameres and fasciae adherentes appeared to develop de novo, the former in association with the inner surface of the myocardial wall and the latter at the intercellular boundaries. The myofibrillar tracks in the inner layer followed long and smooth courses and were as a whole aligned in the circumferential direction of the tubular heart wall from the earliest stage of myofibril formation. Those in the outer layer were arranged in a pattern of two- or three-dimensional networks in the 9-10 somite stage, although many myofibrils were also circumferentially directed. The fact that the majority of the first myofibrils were already bound to the cell membranes in a directed manner suggests that myocytes at the earliest stage of myofibril formation are endowed with spatial information that directs the organization of nascent myofibrils. It is proposed that the myocyte cell membranes perform an essential role in cardiac myofibrillogenesis.  相似文献   

9.
The nebulin family of actin-binding proteins plays an important role in actin filament dynamics in a variety of cells including striated muscle. We report here the identification of a new striated muscle Z-disc associated protein: lasp-2 (LIM and SH3 domain protein-2). Lasp-2 is the most recently identified member of the nebulin family. To evaluate the role of lasp-2 in striated muscle, lasp-2 gene expression and localization were studied in chick and mouse tissue, as well as in primary cultures of chick cardiac and skeletal myocytes. Lasp-2 mRNA was detected as early as chick embryonic stage 25 and lasp-2 protein was associated with developing premyofibril structures, Z-discs of mature myofibrils, focal adhesions, and intercalated discs of cultured cardiomyocytes. Expression of GFP-tagged lasp-2 deletion constructs showed that the C-terminal region of lasp-2 is important for its localization in striated muscle cells. Lasp-2 organizes actin filaments into bundles and interacts directly with the Z-disc protein alpha-actinin. These results are consistent with a function of lasp-2 as a scaffolding and actin filament organizing protein within striated muscle Z-discs.  相似文献   

10.
Sarcomere assembly in striated muscles has long been described as a series of steps leading to assembly of individual proteins into thick filaments, thin filaments and Z-lines. Decades of previous work focused on the order in which various structural proteins adopted the striated organization typical of mature myofibrils. These studies led to the view that actin and α-actinin assemble into premyofibril structures separately from myosin filaments, and that these structures are then assembled into myofibrils with centered myosin filaments and actin filaments anchored at the Z-lines. More recent studies have shown that particular scaffolding proteins and chaperone proteins are required for individual steps in assembly. Here, we review the evidence that N-RAP, a LIM domain and nebulin repeat protein, scaffolds assembly of actin and α-actinin into I-Z-I structures in the first steps of assembly; that the heat shock chaperone proteins Hsp90 & Hsc70 cooperate with UNC-45 to direct the folding of muscle myosin and its assembly into thick filaments; and that the kelch repeat protein Krp1 promotes lateral fusion of premyofibril structures to form mature striated myofibrils. The evidence shows that myofibril assembly is a complex process that requires the action of particular catalysts and scaffolds at individual steps. The scaffolds and chaperones required for assembly are potential regulators of myofibrillogenesis, and abnormal function of these proteins caused by mutation or pathological processes could in principle contribute to diseases of cardiac and skeletal muscles.  相似文献   

11.
From the four known vertebrate tropomyosin genes (designated TPM1, TPM2, TPM3, and TPM4) over 20 isoforms can be generated. The predominant TPM1 isoform, TPM1alpha, is specifically expressed in both skeletal and cardiac muscles. A newly discovered alternatively spliced isoform, TPM1kappa, containing exon 2a instead of exon 2b contained in TPM1alpha, was found to be cardiac specific and developmentally regulated. In this work, we transfected quail skeletal muscle cells with green fluorescent proteins (GFP) coupled to chicken TPM1alpha and chicken TPM1kappa and compared their localizations in premyofibrils and mature myofibrils. We used the technique of fluorescence recovery after photobleaching (FRAP) to compare the dynamics of TPM1alpha and TPM1kappa in myotubes. TPM1alpha and TPM1kappa incorporated into premyofibrils, nascent myofibrils, and mature myofibrils of quail myotubes in identical patterns. The two tropomyosin isoforms have a higher exchange rate in premyofibrils than in mature myofibrils. F-actin and muscle tropomyosin are present in the same fibers at all three stages of myofibrillogenesis (premyofibrils, nascent myofibrils, mature myofibrils). In contrast, the tropomyosin-binding molecule nebulin is not present in the initial premyofibrils. Nebulin is gradually added during myofibrillogenesis, becoming fully localized in striated patterns by the mature myofibril stage. A model of thin filament formation is proposed to explain the increased stability of tropomyosin in mature myofibrils. These experiments are supportive of a maturing thin filament and stepwise model of myofibrillogenesis (premyofibrils to nascent myofibrils to mature myofibrils), and are inconsistent with models that postulate the immediate appearance of fully formed thin filaments or myofibrils.  相似文献   

12.
The relationship of nascent myofibrils with the accumulation of adhesion plaque proteins and the formation of focal cell contacts was studied in embryonic chick cardiac myocytes in vitro. The cultures were double-stained with various combinations of the specific antiactin drug phalloidin and antibodies against vinculin, alpha-actinin, connectin (titin), myosin heavy chain, fibronectin, and desmin and examined under fluorescence and interference reflection microscopy. In the areas of myofibril assembly, vinculin and alpha-actinin plaques were formed at the ventral sarcolemmae. These areas overlapped with the sites of cell-to-substrate focal contacts and extracellular fibronectin. Because the myofibrils always ran in a straight line between these sites, polarized lines appeared to be generated within the cells in response to their physical (e.g., stress) and/or biochemical environment (e.g., adhesion plaque proteins). The possible presence of other factors cannot be ruled out for the proper alignment of myofibrils. As soon as myofibrils came to span between these adhesion sites, they exhibited typically mature cross-striated characteristics. Thus, the formation of these inferred lines has some relation to, or is in fact necessary for, the maturation of myofibrils, in addition to the directional arrangement of sarcomeric proteins. Additionally, synthesis and distribution of myosin and connectin were tightly linked during early developmental (premyofibril and myofibril) stages. The spatial deployment of desmin was not coupled with vinculin. Thus, connectin and desmin do not appear to form the initial scaffold of sarcomeres.  相似文献   

13.
The lengths of the actin (thin) filaments in sarcomeres directly influence the physiological properties of striated muscle. Although electron microscopy techniques provide the highest precision and accuracy for measuring thin filament lengths, significant obstacles limit their widespread use. Here, we describe distributed deconvolution, a fluorescence-based method that determines the location of specific thin filament components such as tropomodulin (Tmod) or probes such as phallacidin (a phalloidin derivative). Using Tmod and phallacidin fluorescence, we were able to determine the thin filament lengths of isolated chicken pectoralis major myofibrils with an accuracy and precision comparable to electron microscopy. Additionally, phallacidin fluorescence intensity at the Z line provided information about the width of Z lines. Furthermore, we detected significant variations in thin filaments lengths among individual myofibrils from chicken posterior latissimus dorsai and embryonic chick cardiac myocytes, suggesting that a ruler molecule (e.g., nebulin) does not strictly determine thin filament lengths in these muscles. This versatile method is applicable to myofibrils in living cells that exhibit significant variation in sarcomere lengths, and only requires a fluorescence microscope and a CCD camera.  相似文献   

14.
Summary Sarcomere assemblage in striated muscle of the early developing chick embryo was studied with the electron microscope. In myogenic chick somites, non-striated myofibrils are seen with the electron microscope, prior to striated ones. These crude myofibrils are traversed at regular periodic intervals by a tubular system which is associated with dense Z-line material shortly after its appearance. Longer sarcomeres as well as banding patterns similar to those found in mature striated muscle follow and possibly depend on prior Z-line formation.Research supported by Muscular Dystrophy Association, U.S.A.  相似文献   

15.
Although disruption of the microtubule (MT) array inhibits myogenesis in myocytes, the relationship between the assembly of microtubules (MT) and the organization of the contractile filaments is not clearly defined. We now report that the assembly of mature myofibrils in hypertrophic cardiac myocytes is disrupted by myoseverin, a compound previously shown to perturb the MT array in skeletal muscle cells. Myoseverin treated cardiac myocytes showed disruptions of the striated Z-bands containing alpha-actinin and desmin and the localization of tropomyosin, titin and myosin on mature sarcomeric filaments. In contrast, MT depolymerization by nocodazole did not perturb sarcomeric filaments. Similarly, expression of constitutively active stathmin as a non-chemical molecular method of MT depolymerization did not prevent sarcomere assembly. The extent of MT destabilization by myoseverin and nocodazole were comparable. Thus, the effect of myoseverin on sarcomere assembly was independent of its capacity for MT inhibition. Furthermore, we found that upon removal of myoseverin, sarcomeres reformed in the absence of an intact MT network. Sarcomere formation in cardiac myocytes therefore, does not appear to require an intact MT network and thus we conclude that a functional MT array appears to be dispensable for myofibrillogenesis.  相似文献   

16.
Obscurin is a newly identified giant muscle protein whose functions remain to be elucidated. In this study we used high-resolution confocal microscopy to examine the dynamics of obscurin localization in cultures of rat cardiac myocytes during the assembly and disassembly of myofibrils. Double immunolabeling of neonatal and adult rat cells for obscurin and sarcomeric alpha-actinin, the major protein of Z-lines, demonstrated that, during myofibrillogenesis, obscurin is intensely incorporated into M-band areas of A-bands and, to a lesser extent, in Z-lines of newly formed sarcomeres. Presarcomeric structural precursors of myofibrils were intensely immunopositive for alpha-actinin and, unlike mature myofibrils, weakly immunopositive or immunonegative for obscurin. This indicates that most of the obscurin assembles in developing myofibrils after abundant incorporation of alpha-actinin and that massive integration of obscurin occurs at more advanced stages of sarcomere assembly. Immunoreactivity for obscurin in the middle of A-bands and in Z-lines of sarcomeres bridged the gaps between individual bundles of newly formed myofibrils, suggesting that this protein appears to be directly involved in their primary lateral connection and registered alignment into larger clusters. Close sarcomeric localization of obscurin and titin suggests that they may interact during myofibril assembly. Interestingly, the laterally aligned striated pattern of obscurin formed at a stage when desmin, traditionally considered as a molecular linker responsible for the lateral binding and stabilization of myofibrils at the Z-bands, was still diffusely localized. During the disassembly of the contractile system in adult myocytes, disappearance of the cross-striated pattern of obscurin preceded the disorganization of registered alignment and intense breakdown of myofibrils. The cross-striated pattern of desmin typical of terminally differentiated myocytes disappeared before or simultaneously with obscurin. During redifferentiation, as in neonatal myocytes, sarcomeric incorporation of obscurin closely followed that of alpha-actinin and occurred earlier than the striated arrangement of desmin intermediate filaments. The presence of obscurin in the Z-lines and its later assembly into the A/M-bands indicate that it may serve to stabilize and align sarcomeric structure when myosin filaments are incorporated. Our data suggest that obscurin, interacting with other muscle proteins and possibly with the sarcoplasmic reticulum, may have a role as a flexible structural integrator of myofibrils during assembly and adaptive remodeling of the contractile apparatus.  相似文献   

17.
Obscurin is a giant structural and signaling protein that participates in the assembly and structural integrity of striated myofibrils. Previous work has examined the physical interactions between obscurin and other cytoskeletal elements but its in vivo role in cell signaling, including the functions of its RhoGTPase Exchange Factor (RhoGEF) domain have not been characterized. In this study, morpholino antisense oligonucleotides were used to create an in-frame deletion of the active site of the obscurin A RhoGEF domain in order to examine its functions in zebrafish development. Cardiac myocytes in the morphant embryos lacked the intercalated disks that were present in controls by 72 and, in the more severely affected embryos, the contractile filaments were not organized into mature sarcomeres. Neural abnormalities included delay or loss of retinal lamination. Rescue of the phenotype with co-injection of mini-obscurin A expression constructs demonstrated that the observed effects were due to the loss of small GTPase activation by obscurin A. The immature phenotype of the cardiac myocytes and the retinal neuroblasts observed in the morphant embryos suggests that obscurin A-mediated small GTPase signaling promotes tissue-specific cellular differentiation. This is the first demonstration of the importance of the obscurin A-mediated RhoGEF signaling in vertebrate organogenesis and highlights the central role of obscurin A in striated muscle and neural development.  相似文献   

18.
《The Journal of cell biology》1987,105(6):2795-2801
In whole mount preparations of the 9 somite stage chick embryonic hearts that were immunofluorescently double labeled for titin and alpha- actinin, presumptive myofibrils were recognized as rows of several periodically aligned titin spots. Within these titin spots, smaller alpha-actinin dots were observed. These periodical arrangements of titin spots and alpha-actinin dots were not found in the 7 somite stage hearts. In wide myofibrils in the 10 somite stage hearts, the alpha- actinin dots and titin spots simultaneously became 'lines.' To study the ultrastructural features of the titin-positive regions in the 6-9 somite stage hearts, the thoracic portions of the embryos were immunofluorescently labeled for titin and embedded in resin. Ultrathin sections were mounted on electron microscopic grids and examined in immunofluorescence optics. The titin-positive regions thus identified were then examined in the electron microscope. No readily discernable specific ultrastructural features were found in titin-positive regions of the 6 somite stage cardiac primodia. Examination of the sections of the 9 somite stage hearts, on the other hand, revealed the occasional presence of small dense bodies, Z bodies, in the titin-positive regions. These observations strongly suggest that these Z bodies are the ultrastructural counterparts of the alpha-actinin dots seen by immunofluorescence optics and that they are formed nearly at the time of the formation of the first myofibrils. In some of the nascent myofibrils the Z bodies were found to be considerably narrower than the myofibrils, implying that the Z bodies are required not for the assembly of myofibrils per se but for their stabilization. Immunofluorescent labeling for titin and alpha-actinin revealed that the length of the shortest sarcomeres in the first myofibrils is approximately 1.5 micron, approximately the width of the A bands of mature myofibrils. The possibility that the A bands might define the initial length of nascent sarcomeres was indicated.  相似文献   

19.
The distribution of intermediate filament (IF) subunits during maturation of skeletal myotubes in vitro was examined by immunofluorescence, using antibodies against two different types of chick IF subunits: (a) 58-kdalton subunits of fibroblasts (anti-58K), and (b) 55-kdalton subunits of smooth muscle (anti-55K). Anti-58K bound to a filament network in replicating presumptive myoblasts and fibroblasts, as well as in immature myotubes. The distribution in immature myotubes was in longitudinal filaments throughout the cytoplasm. With maturation, staining of myotubes by anti-58K diminished and eventually disappeared. Anti-55K selectively stained myotubes, and the fluorescence localization underwent a drastic change in distribution with maturation--from dense, longitudinal filaments in immature myotubes to a cross-striated distribution in mature myotubes that was associated with the I--Z region of myofibrils. However, the emergence of a cross-striated anti-55K pattern did not coincide temperally with the emergence of striated myofibrils, but occurred over a period of days thereafter.  相似文献   

20.
Ubiquitin, a highly conserved 76-residue protein found in all eukaryotic cells, can be covalently bound to a wide variety of proteins in the nucleus, cytosol, cytoskeleton, and plasmalemma. This diversity of target proteins reflects a diversity of functions for ubiquitin conjugation. Previous studies have showed enhanced localization of ubiquitin conjugates to Z-bands of normal skeletal muscle and increased ubiquitination in atrophic muscles. These results have implicated a ubiquitin-mediated pathway in protein turnover and degradation in striated muscle. To investigate whether such a pathway might also exist in cardiac striated muscle, we used an affinity-purified polyclonal antibody (conjugate specific) and indirect immunofluorescence to localize ubiquitin conjugates in neonatal and adult rat cardiac myocytes both in vitro and in vivo. In both cultured myocytes and heart tissue, fluorescent ubiquitin conjugates were found in the nucleus as aggregates, in the cytoplasm in a striated pattern indicative of Z-bands, and in intercellular junctions at the intercalated discs between myocytes. Although the acceptor proteins and the physiological significance of ubiquitination at these locations are unknown, the targeting of ubiquitin to specific sites within the nucleus, myofibrils, and sarcolemma could provide a means for selective processing of individual components within these larger macromolecular assemblies, thus implying a regulatory role for ubiquitin conjugation in turnover or stability of proteins in the heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号