首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acute hypoxic pulmonary vasoconstriction can be inhibited by high doses of the carbonic anhydrase inhibitor acetazolamide. This study aimed to determine whether acetazolamide is effective at dosing relevant to human use at high altitude and to investigate whether its efficacy against hypoxic pulmonary vasoconstriction is dependent on carbonic anhydrase inhibition by testing other potent heterocyclic sulfonamide carbonic anhydrase inhibitors. Six conscious dogs were studied in five protocols: 1) controls, 2) low-dose intravenous acetazolamide (2 mg.kg(-1).h(-1)), 3) oral acetazolamide (5 mg/kg), 4) benzolamide, a membrane-impermeant inhibitor, and 5) ethoxzolamide, a membrane-permeant inhibitor. In all protocols, unanesthetized dogs breathed spontaneously during the first hour (normoxia) and then breathed 9-10% O(2) for the next 2 h. Arterial oxygen tension ranged between 35 and 39 mmHg during hypoxia in all protocols. In controls, mean pulmonary artery pressure increased by 8 mmHg and pulmonary vascular resistance by 200 dyn.s.cm(-5) (P <0.05). With intravenous acetazolamide, mean pulmonary artery pressure and pulmonary vascular resistance remained unchanged during hypoxia. With oral acetazolamide, mean pulmonary artery pressure increased by 5 mmHg (P < 0.05), but pulmonary vascular resistance did not change during hypoxia. With benzolamide and ethoxzolamide, mean pulmonary artery pressure increased by 6-7 mmHg and pulmonary vascular resistance by 150-200 dyn.s.cm(-5) during hypoxia (P < 0.05). Low-dose acetazolamide is effective against acute hypoxic pulmonary vasoconstriction in vivo. The lack of effect with two other potent carbonic anhydrase inhibitors suggests that carbonic anhydrase is not involved in the mediation of hypoxic pulmonary vasoconstriction and that acetazolamide acts on a different receptor or channel.  相似文献   

2.
Angiotensin converting enzyme inhibitors are widely used in therapy of cardiovascular diseases. However, the consensus on effects of these inhibitors in control of myocardial oxygen consumption during the process of experimental hypercholesterolemia and under the condition of endothelial dysfunction has not been reached. Here we examined effects of captopril, an angiotensin converting enzyme inhibitor, on serum lipid levels and oxygen consumption rate in mitochondria isolated from heart of rabbits treated by hypercholesterolemic diet. During the twelve-week period, the Chinchilla male rabbits were daily treated by saline (controls); 1 % cholesterol diet; 5 mg/kg/day captopril or 1 % cholesterol + 5 mg/kg/day captopril. Total- and high-density lipoprotein cholesterol and triglyceride in serum were measured spectrophotometrically. The left ventricle mitochondrial fraction was isolated and myocardial oxygen consumption was measured by Biological Oxygen Monitor. Mitochondria isolated from hearts of rabbits exposed to hypercholesterolemic diet showed significantly reduced respiration rates (state 3 and state 4) with altering adenosine diphosphate/oxygen ratio, whereas the respiratory control ratio was not affected when compared to controls. Mitochondria from cholesterol/captopril-treated animals showed significantly reduced respiration rates without altering adenosine diphosphate/oxygen ratio index or respiratory control ratio. Although captopril did not exert the favorable effect on serum lipid levels in cholesterol-treated animals, it restored the mitochondrial oxygen consumption. Further studies should be performed to define the underlying physiological and/or pathophysiological mechanisms and clinical implications.  相似文献   

3.
Protective effect of purinergic agonist ATPgammaS against acute lung injury   总被引:1,自引:0,他引:1  
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are major causes of acute respiratory failure associated with high morbidity and mortality. Although ALI/ARDS pathogenesis is only partly understood, pulmonary endothelium plays a major role by regulating lung fluid balance and pulmonary edema formation. Consequently, endothelium-targeted therapies may have beneficial effects in ALI/ARDS. Recently, attention has been given to the therapeutic potential of purinergic agonists and antagonists for the treatment of cardiovascular and pulmonary diseases. Extracellular purines (adenosine, ADP, and ATP) and pyrimidines (UDP and UTP) are important signaling molecules that mediate diverse biological effects via cell-surface P2Y receptors. We previously described ATP-induced endothelial cell (EC) barrier enhancement via a complex cell signaling and hypothesized endothelial purinoreceptors activation to exert anti-inflammatory barrier-protective effects. To test this hypothesis, we used a murine model of ALI induced by intratracheal administration of endotoxin/lipopolysaccharide (LPS) and cultured pulmonary EC. The nonhydrolyzed ATP analog ATPgammaS (50-100 muM final blood concentration) attenuated inflammatory response with decreased accumulation of cells (48%, P < 0.01) and proteins (57%, P < 0.01) in bronchoalveolar lavage and reduced neutrophil infiltration and extravasation of Evans blue albumin dye into lung tissue. In cell culture model, ATPgammaS inhibited junctional permeability induced by LPS. These findings suggest that purinergic receptor stimulation exerts a protective role against ALI by preserving integrity of endothelial cell-cell junctions.  相似文献   

4.
5.
In this work we describe the ability of living cells of Trypanosoma brucei brucei to hydrolyze extracellular ATP. In these intact parasites there was a low level of ATP hydrolysis in the absence of any divalent metal (4.72+/-0.51 nmol Pi x 10(-7) cells x h(-1)). The ATP hydrolysis was stimulated by MgCl(2) and the Mg-dependent ecto-ATPase activity was 27.15+/-2.91 nmol Pi x 10(-7) cells x h(-1). This stimulatory activity was also observed when MgCl(2) was replaced by MnCl(2). CaCl(2) and ZnCl(2) were also able to stimulate the ATPase activity, although less than MgCl(2). The apparent K(m) for ATP was 0.61 mM. This ecto-ATPase activity was insensitive to inhibitors of other ATPase and phosphatase activities. To confirm that this Mg-dependent ATPase activity is an ecto-ATPase activity, we used an impermeable inhibitor, DIDS (4, 4'-diisothiocyanostylbene 2'-2'-disulfonic acid), as well as suramin, an antagonist of P(2) purinoreceptors and inhibitor of some ecto-ATPases. These two reagents inhibited the Mg(2+)-dependent ATPase activity in a dose-dependent manner. Living cells sequentially hydrolyzed the ATP molecule generating ADP, AMP and adenosine, and supplementation of the culture medium with ATP was able to sustain the proliferation of T. brucei brucei as well as adenosine supplementation. Furthermore, the E-NTPDase activity of T. brucei brucei is modulated by the availability of purines in the medium. These results indicate that this surface enzyme may play a role in the salvage of purines from the extracellular medium in T. brucei brucei.  相似文献   

6.
The effect of oral ribose supplementation on the resynthesis of adenine nucleotides and performance after 1 wk of intense intermittent exercise was examined. Eight subjects performed a random double-blind crossover design. The subjects performed cycle training consisting of 15 x 10 s of all-out sprinting twice per day for 7 days. After training the subjects received either ribose (200 mg/kg body wt; Rib) or placebo (Pla) three times per day for 3 days. An exercise test was performed at 72 h after the last training session. Immediately after the last training session, muscle ATP was lowered (P < 0.05) by 25 +/- 2 and 22 +/- 3% in Pla and Rib, respectively. In both Pla and Rib, muscle ATP levels at 5 and 24 h after the exercise were still lower (P < 0.05) than pretraining. After 72 h, muscle ATP was similar (P > 0.05) to pretraining in Rib (24.6 +/- 0.6 vs. 26.2 +/- 0.2 mmol/kg dry wt) but still lower (P < 0.05) in Pla (21.1 +/- 0.5 vs. 26.0 +/- 0.2 mmol/kg dry wt) and higher (P < 0.05) in Rib than in Pla. Plasma hypoxanthine levels after the test performed at 72 h were higher (P < 0.05) in Rib compared with Pla. Mean and peak power outputs during the test performed at 72 h were similar (P > 0.05) in Pla and Rib. The results support the hypothesis that the availability of ribose in the muscle is a limiting factor for the rate of resynthesis of ATP. Furthermore, the reduction in muscle ATP observed after intense training does not appear to be limiting for high-intensity exercise performance.  相似文献   

7.
Adenosine has been shown in vitro to be a potent antilipolytic agent and an inhibitor of insulin-stimulated glucose utilization in skeletal muscle. To test whether endogenously produced adenosine (e.g., from ATP hydrolysis) shares these deleterious effects on substrate mobilization and utilization and thus limits maximum thermogenesis in vivo, adenosine deaminase (converts adenosine to inosine) was given to rats 15 min before cold exposure. Significant (P less than 0.05) increases in thermogenesis were observed under both well-fed (100 units/kg ip) and food-rationed (200 units/kg ip) states. Significant (P less than 0.05) increases in thermogenesis and cold resistance were also observed after pretreatment with selective adenosine receptor antagonists [8-cyclopentyltheophylline (1 microgram/kg ip) greater than 1,3-dipropyl-8-p-sulfophenylxanthine (1.25 mg/kg ip) greater than aminophylline (18.7 mg/kg ip)], indicating an A1-receptor-mediated effect. These results indicate that endogenously released adenosine can indeed attenuate the thermogenic capacity in severe cold and that adenosine antagonists, especially those selective for A1-receptor, are useful in improving cold resistance under varying nutritional states.  相似文献   

8.
The cardiovascular effects of endothelin (ET)-1 and the recently sequenced homologous trout ET were examined in unanesthetized trout, and vascular capacitance curves were constructed to evaluate the responsiveness of the venous system to ET-1. A bolus dose of 667 pmol/kg ET-1 doubled ventral aortic pressure; produced a triphasic pressor-depressor-pressor response in dorsal aortic pressure (P(DA)); increased central venous pressure, gill resistance, and systemic resistance; and decreased cardiac output, heart rate, and stroke volume. These responses were dose dependent. Bolus injection of trout ET (333 or 1,000 pmol/kg) produced essentially identical, dose-dependent cardiovascular responses as ET-1. Dorsal aortic infusion of 1 and 3 pmol. kg(-1). min(-1) ET-1 and central venous infusion into the ductus Cuvier of 0.3 and 1 pmol. kg(-1). min(-1) produced similar dose-dependent cardiovascular responses, although the increase in P(DA) became monophasic. The heightened sensitivity to central venous infusion was presumably due to the more immediate exposure of the branchial vasculature to the peptide. Infusion of 1 pmol. kg(-1). min(-1) ET-1 decreased vascular compliance but had no effect on unstressed blood volume. These results show that ETs affect a variety of cardiovascular functions in trout and that branchial vascular resistance and venous compliance are especially sensitive. The multiplicity of effectors stimulated by ET suggests that this peptide was extensively integrated into cardiovascular function early on in vertebrate phylogeny.  相似文献   

9.
We investigated the mechanism of ethanol-induced pulmonary vasoconstriction in lambs, by a pharmacological approach. We chronically instrumented 28 lambs to determine whether phentolamine (alpha-block), propranolol (beta-block), promethazine and cimetidine (H1- and H2-block), high-dose indomethacin, or low- and high-dose meclofenamate (cyclooxygenase block) altered the vasoconstriction. Ethanol alone increased pulmonary vascular resistance from 0.14 to 0.49 Torr.ml-1.kg-1.min (U). Only indomethacin (7-8 mg/kg po) and high-dose meclofenamate (7-8 mg/kg iv) abolished the pulmonary vascular response to ethanol infusion. Pulmonary vascular resistance was 0.14 U after ethanol plus indomethacin and was 0.2 U after ethanol plus high-dose meclofenamate (P = NS vs. base line). Low-dose meclofenamate (2 mg/kg) attenuated the vasoconstrictor response. Systemic vascular resistance increased moderately after ethanol and had a similar pattern of inhibition by cyclooxygenase blockade. Cardiac output and heart rate decreased nearly significantly after ethanol (P less than 0.06), a tendency that was also ablated by cyclooxygenase inhibition. Thus the acute cardiocirculatory response to ethanol involves an intact prostaglandin synthase system in lambs. To our knowledge, these data are the first documentation that cyclooxygenase enzyme blockade can eliminate the acute cardiac and vascular effects of ethanol in a whole-animal system.  相似文献   

10.
Fourteen New Zealand White rabbits with respiratory signs of naturally occurring Pasteurella multocida infections were treated with either an injectable or water-soluble oral formulation of enrofloxacin. Antimicrobial efficacy was evaluated by scoring clinical signs in the rabbits and recovery of the organisms. Seven (87%) of eight rabbits treated with the injectable regimen (5 mg/kg every 12 hours for 14 days) became culture-negative with no clinical signs within 72 hours after initiation of treatment. Six rabbits treated with the oral formulation (200 mg/liter of drinking water for 14 days) also became culture-negative and had no clinical signs 3 to 7 days after treatment began, but P. multocida was recovered from several sites in three (50%) rabbits. No rabbits showed any signs of gastroenteric disturbances.  相似文献   

11.
Compelling clinical evidence implicates the potential role of adenosine in development of airway hyperresponsiveness and suggests involvement of pulmonary sensory receptors. This study was carried out to determine the effect of a low dose of adenosine infusion on sensitivity of pulmonary C-fiber afferents in anesthetized open-chest rats. Infusion of adenosine (40 microg x kg-1x min-1 i.v. for 90 s) mildly elevated baseline activity of pulmonary C fibers. However, during adenosine infusion, pulmonary C-fiber responses to chemical stimulants and lung inflation (30 cmH2O tracheal pressure) were markedly potentiated; e.g., the response to right atrial injection of capsaicin (0.25 or 0.5 microg/kg) was increased by more than fivefold (change in fiber activity = 2.64 +/- 0.67 and 16.27 +/- 3.11 impulses/s at control and during adenosine infusion, n = 13, P < 0.05), and this enhanced response returned to control in approximately 10 min. The potentiating effect of adenosine infusion was completely blocked by pretreatment with 8-cyclopentyl-1,3-dipropylxanthine (100 microg/kg), a selective antagonist of the adenosine A1 receptor, but was not affected by 3,7-dimethyl-1-propargylxanthine (1 mg/kg), an A2-receptor antagonist, or 3-ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate (2 mg/kg), an A3-receptor antagonist. This potentiating effect was also mimicked by N6-cyclopentyladenosine (0.25 microg x kg-1 x min-1 for 90 s), a selective agonist of the adenosine A1 receptor. In conclusion, our results showed that infusion of adenosine significantly elevated the sensitivity of pulmonary C-fiber afferents in rat lungs and that this potentiating effect is likely mediated through activation of the adenosine A1 receptor.  相似文献   

12.
Zhou X  Wu X  Yin Y  Zhang C  He L 《Amino acids》2012,43(2):813-821
The objective of this study was to evaluate the effect of oral supplementation with a combination of arginine and glutamine on the intestinal mucosa and inflammatory cytokines of lipopolysaccharide (LPS)-induced adult rats. Fifty Sprague-Dawley rats (average weight of 185 ± 15 g) were randomly divided into five groups: control group A (CA) and control group B (CB), both orally supplemented with 0.9% saline; group Arg, supplemented with 300 mg/kg day(-1) arginine; group Gln, supplemented with 300 mg/kg day(-1) glutamine; group AG, supplemented with 150 mg/kg day(-1) arginine and 150 mg/kg day(-1) glutamine. The experiment lasted for 2 weeks. Food intake and body weight were measured during the experiment. At 10.00 h of day 15, animals were injected with 4 mg/kg LPS (group CB, Arg, Gln, and AG) or sterile saline (group CA) after supplementation. Then at 14.00 h, all animals were killed and blood and tissue collected. The results showed that compared with group CB, arginine concentration tended to be increased (P > 0.05) in group Arg and AG, while there was no significant difference in glutamine concentration among the groups challenged with LPS. Oral supplementation with arginine or/and glutamine mitigated morphology impairment (lower villus height, P < 0.05) in the jejunum and ileum induced by LPS challenge. LPS administration resulted in a significant increase in TNF-α, IL-1β, IL-6 and IL-10 mRNA abundance. Arginine only significantly decreased TNF-α mRNA abundance in the ileum, while glutamine significantly decreased both TNF-α and IL-10 mRNA in the ileum. A combination of arginine and glutamine significantly decreased TNF-α and IL-1β mRNA abundance in both the jejunum and ileum, while they also significantly decreased anti-inflammatory IL-10 in the ileum. These results revealed that an oral supply of combined arginine and glutamine had more favorable effects on the intestinal mucosa and inflammatory cytokines than a supply of arginine or glutamine alone.  相似文献   

13.
Pulmonary hypertension (PHT) in neonates is often refractory to the current best therapy, inhaled nitric oxide (NO). The utility of a new class of pulmonary vasodilators, Rho-kinase (ROCK) inhibitors, has not been examined in neonatal animals. Our objective was to examine the activity and expression of RhoA/ROCK in normal and injured pulmonary arteries and to determine the short-term pulmonary hemodynamic (assessed by pulse wave Doppler) effects of ROCK inhibitors (15 mg/kg ip Y-27632 or 30 mg/kg ip fasudil) in two neonatal rat models of chronic PHT with pulmonary vascular remodeling (chronic hypoxia, 0.13 Fi(O(2)), or 1 mg.kg(-1).day(-1) ip chronic bleomycin for 14 days from birth). Activity of the RhoA/ROCK pathway and ROCK expression were increased in hypoxia- and bleomycin-induced PHT. In both models, severe PHT [characterized by raised pulmonary vascular resistance (PVR) and impaired right ventricular (RV) performance] did not respond acutely to inhaled NO (20 ppm for 15 min) or to a single bolus of a NO donor, 3-morpholinosydnonimine hydrochloride (SIN-1; 2 mug/kg ip). In contrast, a single intraperitoneal bolus of either ROCK inhibitor (Y-27632 or fasudil) completely normalized PVR but had no acute effect on RV performance. ROCK-mediated vasoconstriction appears to play a key role in chronic PHT in our two neonatal rat models. Inhibitors of ROCK have potential as a testable therapy in neonates with PHT that is refractory to NO.  相似文献   

14.
BACKGROUND : Angiogenesis plays a key role in embryo–fetal development and, based on nonclinical safety data, the majority of vascular endothelial growth factor (VEGF)-targeted antiangiogenic agents used in cancer therapy are not recommended during pregnancy. We investigated the effects of sunitinib (an oral inhibitor of multiple receptor tyrosine kinases [RTKs] including VEGF-receptors) on embryo–fetal development. METHODS : Presumed-pregnant Sprague-Dawley rats and New Zealand White rabbits received repeated daily oral doses of sunitinib (0–30 mg/kg/day), during the major period of organogenesis. Clinical/physical examinations were performed throughout the gestation phase, and blood samples were collected to determine systemic exposure. Necropsy (including uterine examination) was performed on all animals and fetal morphology was examined. RESULTS : The no-observed-adverse-effect level was 1–5 mg/kg/day for maternal toxicity and 3 mg/kg/day for developmental toxicity in rats; 1 and 0.5 mg/kg/day, respectively, in rabbits. Embryo–fetal toxicity included decreases in the number of live fetuses and increases in the numbers of resorptions and post-implantation/complete litter losses; these were observed at doses of ≥5 mg/kg/day in rats and 5 mg/kg/day in rabbits. Malformations included fetal skeletal malformations (generally thoracic/lumbar vertebral alterations) in rats and cleft lip/palate in rabbits. These developmental effects were observed at ∼5.5- (rats) and ∼0.3-times (rabbits) the human systemic exposure at the approved sunitinib dose (50 mg/day). CONCLUSIONS : Similar effects have been reported with the prototype monoclonal antibody bevacizumab. As is typically observed for potent inhibitors of RTKs involved in angiogenesis, sunitinib was associated with embryo–fetal developmental toxicity in rats and rabbits at clinically relevant dose levels. Birth Defects Res (Part B) 33:204–213, 2009. © 2009 Wiley-Liss, Inc.  相似文献   

15.
We used the model of bilateral cervical vagotomy of adult rabbits to cause respiratory failure characterized by pulmonary edema, decreased lung compliance, and atelectasis. We documented an 18-fold increase in radiolabeled albumin leak from the vascular space into alveolar washes of vagotomy vs. sham-operated rabbits (P less than 0.01). Despite a twofold increase in percent of prelabeled saturated phosphatidylcholine secreted (P less than 0.01), the alveolar wash saturated phosphatidylcholine pool sizes were not different. The minimum surface tensions were 19.6 +/- 2.5 vs. 9.4 +/- 2.2 dyn/cm for alveolar washes from vagotomy and control rabbits, respectively (P less than 0.01). The soluble proteins from alveolar washes inhibited the surface tension lowering properties of natural surfactant, whereas those from the control rabbits did not (P less than 0.01). When vagotomy rabbits in respiratory failure were treated with 50 mg natural surfactant lipid per kilogram arterial blood gas values and compliances improved relative to control rabbits. Vagotomy results in alveolar pulmonary edema, and surfactant dysfunction despite normal surfactant pool sizes and respiratory failure. A surfactant treatment can improve the respiratory failure.  相似文献   

16.
Xanthine oxidase (XO)-derived reactive oxygen species (ROS) formation contributes to experimental chronic hypoxic pulmonary hypertension in adults, but its role in neonatal pulmonary hypertension has received little attention. In rats chronically exposed to hypoxia (13% O(2)) for 14 days from birth, we examined the effects of ROS scavengers (U74389G 10 mg.kg(-1).day(-1) or Tempol 100 mg.kg(-1).day(-1) ip) or a XO inhibitor, Allopurinol (50 mg.kg(-1).day(-1) ip). Both ROS scavengers limited oxidative stress in the lung and attenuated hypoxia-induced vascular remodeling, confirming a critical role for ROS in this model. However, both interventions also significantly inhibited somatic growth and normal cellular proliferation in distal air spaces. Hypoxia-exposed pups had evidence of increased serum and lung XO activity, increased vascular XO-derived superoxide production, and vascular nitrotyrosine formation. These changes were all prevented by treatment with Allopurinol, which also attenuated hypoxia-induced vascular remodeling and partially reversed inhibited endothelium-dependent arterial relaxation, without affecting normal growth and proliferation. Collectively, our findings suggest that XO-derived superoxide induces endothelial dysfunction, thus impairing pulmonary arterial relaxation, and contributes to vascular remodeling in hypoxia-exposed neonatal rats. Due to the potential for adverse effects on normal growth, targeting XO may represent a superior "antioxidant" strategy to ROS scavengers for neonates with pulmonary hypertension.  相似文献   

17.
The role of ATP-sensitive K(+) (K(ATP)(+)) channels in vasomotor tone regulation during metabolic stimulation is incompletely understood. Consequently, we studied the contribution of K(ATP)(+) channels to vasomotor tone regulation in the systemic, pulmonary, and coronary vascular bed in nine treadmill-exercising swine. Exercise up to 85% of maximum heart rate increased body O(2) consumption fourfold, accommodated by a doubling of both cardiac output and body O(2) extraction. Mean aortic pressure was unchanged, implying that systemic vascular conductance (SVC) also doubled, whereas pulmonary artery pressure increased almost in parallel with cardiac output, so that pulmonary vascular conductance (PVC) increased only 25 +/- 9% (both P < 0.05). Myocardial O(2) consumption tripled during exercise, which was paralleled by an equivalent increase in O(2) supply so that coronary venous PO(2) was maintained. Selective K(ATP)(+) channel blockade with glibenclamide (3 mg/kg iv), decreased SVC by 29 +/- 4% at rest and by 10 +/- 2% at 5 km/h (both P < 0.05), whereas PVC was unchanged. Glibenclamide decreased coronary vascular conductance and hence myocardial O(2) delivery, necessitating an increase in O(2) extraction from 76 +/- 2% to 86 +/- 2% at rest and from 79 +/- 2% to 83 +/- 1% at 5 km/h. Consequently, coronary venous PO(2) decreased from 25 +/- 1 to 17 +/- 1 mmHg at rest and from 23 +/- 1 to 20 +/- 1 mmHg at 5 km/h (all values are P < 0.05). In conclusion, K(ATP)(+) channels dilate the systemic and coronary, but not the pulmonary, resistance vessels at rest and during exercise in swine. However, opening of K(ATP)(+) channels is not mandatory for the exercise-induced systemic and coronary vasodilation.  相似文献   

18.
Purines are putative neurotransmitters which appear to be involved in regulating several vegetative functions. We examined the effect of purines and their antagonist, caffeine, on colonic temperature of rats. Adenosine injected ip lowered colonic temperature in a dose responsive manner at ambient room temperatures. Adenine and AMP also lowered body temperature whereas 7-methylinosine and inosine only slightly influenced colonic temperature. Caffeine (50 mg/kg) injected sc, increased colonic temperature and when injected within 60 seconds of adenosine, counteracted the hypothermic effect of adenosine (50 mg/kg). Low ambient temperature (4°C) accentuated the thermoregulatory effects of adenosine. Thus adenosine appears to have a hypothermic effect on body temperature regulation when administered peripherally which can be reversed by caffeine.  相似文献   

19.
Septic shock is characterized by an increase in cardiac output and a fall in systemic vascular resistance index and mean arterial pressure. Endotoxin alters the smooth muscle function of blood vessels, probably by means of an increased production of the potent vasodilator nitric oxide (NO). The present study was accomplished to determine how the inhibition of NO synthesis influences cardiovascular performance in an ovine model of hyperdynamic endotoxemia. Endotoxemia was induced in five range ewes (41 +/- 2 kg) by continuous infusion of Escherichia coli endotoxin (LPS, 10 ng.kg-1.min-1) over the entire study period. After 24 h of LPS infusion, cardiac output increased from 5.2 +/- 0.3 to 7.9 +/- 0.6 (SE) 1/min (P less than 0.05) and mean arterial pressure and systemic vascular resistance index fell from 92 +/- 5 to 79 +/- 6 mmHg (P = 0.08) and from 1,473 +/- 173 to 824 +/- 108 dyn.s.cm-5.m2 (P less than 0.05), respectively. The pulmonary shunt fraction increased from 0.23 +/- 0.03 to 0.32 +/- 0.03 (P less than 0.05). The intravenous administration of the NO synthase inhibitor N omega-nitro-L-arginine methyl ester (25 mg/kg) 24 h after the start of the LPS infusion changed these values to approximately baseline levels over the subsequent 4 h. Although N omega-nitro-L-arginine methyl ester increased pulmonary arterial pressure and pulmonary vascular resistance (P less than 0.05), right and left ventricular stroke volume index showed no significant changes. It is concluded that NO has a major function in cardiovascular performance in endotoxemia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Five women and 3 men (29.8 +/- 1.4 yr) performed dynamic knee-extension exercise inside a magnetic resonance system (means +/- SE). Two trials were performed 7-14 days apart, consisting of a 4- to 5-min exhaustive exercise bout. To determine quadriceps cost of contraction, brief static and dynamic contractions were performed pre- and postexercise. (31)P spectra were used to determine pH and relative concentrations of P(i), phosphocreatine (PCr), and betaATP. Subjects consumed 0.3 g. kg(-1). day(-1) of a placebo (trial 1) or creatine (trial 2) for 5 days before each trial. After creatine supplementation, resting DeltaPCr increased from 40.7 +/- 1.8 to 46. 6 +/- 1.1 mmol/kg (P = 0.04) and PCr during exercise declined from -29.6 +/- 2.4 to -34.1 +/- 2.8 mmol/kg (P = 0.02). Muscle static (DeltaATP/N) and dynamic (DeltaATP/J) costs of contraction were unaffected by creatine supplementation as well as were ATP, P(i), pH, PCr resynthesis rate, and muscle strength and endurance. DeltaATP/J and DeltaATP/N were greatest at the onset of the exercise protocol (P < 0.01). In summary, creatine supplementation increased muscle PCr concentration, which did not affect muscle ATP cost of contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号