首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Maleylacetate reductase (EC 1.3.1.32) plays a major role in the degradation of chloroaromatic compounds by channeling maleylacetate and some of its substituted derivatives into the 3-oxoadipate pathway. The enzyme was purified to apparent homogeneity from an extract of 2,4-dichlorophenoxyacetate (2,4-D)-grown cells of Alcaligenes eutrophus JMP134. Maleylacetate reductase appears to be a dimer of two identical subunits of 35 kDa. The pI was determined to be at pH 5.4. There was no indication of a flavin prosthetic group. The enzyme was inactivated by p-chloromercuribenzoate but not by EDTA, 1,10-phenanthroline, or dithiothreitol. Maleylacetate and 2-chloromaleylacetate were converted with similar efficiencies (with NADH as cosubstrate, Km = 31 microM for each substrate and kcat = 8,785 and 7,280/min, respectively). NADH was preferred to NADPH as the cosubstrate. Upon reduction of 2-chloramaleylacetate by the purified enzyme, chloride was liberated and the resulting maleylacetate was further reduced by a second NADH. These results and the kinetic parameters suggest that the maleylacetate reductase is sufficient to channel the 2,4-D degradation intermediate 2-chloromaleylacetate into the 3-oxoadipate pathway. In a data base search the NH2-terminal sequence of maleylacetate reductase was found to be most similar to that of TfdF, a pJP4-encoded protein of as-yet-unknown function in 2,4-D degradation.  相似文献   

2.
The Alcaligenes eutrophus JMP134 plasmid pJP4 contains genes necessary for the complete degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) and 3-chlorobenzoic acid. tfdA encodes 2,4-D monooxygenase, the initial enzyme in the 2,4-D catabolic pathway. The tfdA locus has recently been localized to a region on pJP4 13 kilobases away from a cluster of five genes, tfdB to tfdF, which encode the enzymes responsible for the further degradation of 2,4-D to chloromaleylacetic acid (W.R. Streber, K. N. Timmis, and M. H. Zenk, J. Bacteriol. 169:2950-2955, 1987). A second, dissimilar locus on pJP4, tfdAII, has been observed which encodes 2,4-D monooxygenase activity. Gas chromatographic analysis of the 2,4-D metabolites of A. eutrophus harboring pJP4 or subclones thereof localized tfdAII to within a 9-kilobase SstI fragment of pJP4 which also carries the genes tfdBCDEF. This fragment was further characterized in Escherichia coli by deletion and subcloning analysis. A region of 2.5 kilobases, adjacent to tfdC, enabled E. coli extracts to degrade 2,4-D to 2,4-dichlorophenol. Hybridization under low-stringency conditions was observed between tfdA and tfdAII, signifying that the 2,4-D monooxygenase gene was present as two related copies on pJP4.  相似文献   

3.
This study evaluated the potential for gene transfer of a large catabolic plasmid from an introduced organism to indigenous soil recipients. The donor organism Alcaligenes eutrophus JMP134 contained the 80-kb plasmid pJP4, which contains genes that code for mercury resistance. Genes on this plasmid plus chromosomal genes also allow degradation of 2,4-dichloruphenoxyacetic acid (2,4-D). When JMP134 was inoculated into a nonsterile soil microcosm amended with 1,000 micrograms of 2,4-D g-1, significant (10(6) g of soil-1) populations of indigenous recipients or transconjugants arose. These transconjugants all contained an 80-kb plasmid similar in size to pJP4, and all degraded 2,4-D. In addition, all transconjugants were resistant to mercury and contained the tfdB gene of pJP4 as detected by PCR. No mercury-resistant, 2,4-D-degrading organisms with large plasmids or the tfdB gene were found in the 2,4-D-amended but uninoculated control microcosm. These data clearly show that the plasmid pJP4 was transferred to indigenous soil recipients. Even more striking is the fact that not only did the indigenous transconjugant population survive and proliferate but also enhanced rates of 2,4-D degradation occurred relative to microcosms in which no such gene transfer occurred. Overall, these data indicate that gene transfer from introduced organisms is an effective means of bioaugmentation and that survival of the introduced organism is not a prerequisite for biodegradation that utilizes introduced biodegradative genes.  相似文献   

4.
Abstract: To use deliberately released beneficial microorganisms in the rhizosphere, we need a better understanding of the process of root colonization by seed-borne or soil-borne inocula. In this study, we determine the survival of Pseudomonas fluorescens Ag1 and Alcaligenes eutrophus JMP134, their colonization ability as affected by substrates, and the relative importance of migration versus competition for colonization of the root. Ag1 and the 2,4-dichlorophenoxy-acetic acid (2,4-D) degrader JMP134 were inoculated in sterile barley rhizosphere systems. After inoculation of seeds with individual strains, comparable population sizes were established in the rhizosphere as determined by immunofluorescence microscopic total cell counts. Both strains were motile and able to colonize the entire root system without percolating water to stimulate passive transport. Comparing immunofluorescence microscopic cell counts with colony-forming units demonstrated that a subpopulation of A. eutrophus JMP134 closely associated with the root was non-culturable in contrast to the population in rhizosphere soil. Hence, the sole use of culture-dependent methods may give misleading information about the distribution of bacteria in the rhizosphere. Colonization studies with both strains showed that co-inoculation of Ag1 and JMP134 caused a decrease of the population size of JMP134 if 2,4-D was not added to the soil as a specific carbon source for this strain. Thus, competition for limited carbon sources might influence the composition of the bacterial community in the rhizosphere. We also found that the presence of an established inoculum in the soil reduced subsequent root colonization by a seed-inoculated strain, probably by filling available niches, also indicating that competition from other bacteria may be an important factor determining the distribution of seed-borne inocula. This factor may be just as important for the distribution of bacteria as migration.  相似文献   

5.
2-Chloro-4-methylphenoxyacetate is not a growth substrate for Alcaligenes eutrophus JMP 134 and JMP 1341. It is, however, being transformed by enzymes of 2,4-dichlorophenoxyacetic acid metabolism to 2-chloro-4-methyl-cis, cis-muconate, which is converted by enzymatic 1,4-cycloisomerization to 4-carboxymethyl-2-chloro-4-methylmuconolactone as a dead end metabolite. Chemically, only 3,6-cycloisomerization occurs, giving rise to both diastereomers of 4-carboxychloromethyl-3-methylbut-2-en-4-olide. Those lactones harbonring a chlorosubstituent on the 4-carboxymethyl side chain were surprisingly stable under physiological as well as acidic conditions.  相似文献   

6.
2,4-Dichloro-cis,cis-muconate is established as ringcleavage product in the degradation of 3,5-dichlorocatechol by Alcaligenes eutrophus JMP 134. The formerly described isomerization of 2-chloro-trans- to 2-chlorocis-4-carboxymethylenebut-2-en-4-olide as an essential catabolic step could not be certified.  相似文献   

7.
Both Alcaligenes eutrophus JMP 134 and its plasmid-free derivative Alcaligenes eutrophus JMP 222 utilize 2,6-dinitrophenol as sole source of carbon, energy, and nitrogen. In the presence of ammonia resting cells of these strains release two mol of nitrite per mol of 2,6-dinitrophenol. Alcaligenes eutrophus JMP 222-1D, a mutant of strain JMP 222 obtained by transposon (Tn5) mutagenesis, is able to use 2,6-dinitrophenol as nitrogen source but not as source of carbon and energy. Resting cells of this mutant liberate only one mol of nitrite per mol of 2,6-dinitrophenol. A single metabolite was detected by high-pressure liquid chromatography and identified as 2-hydroxy-5-nitropenta-2,4-dienoic acid from the mass spectrum, the 1H-, and 13C-NMR spectra. Strain JMP 222-1S, a spontaneous mutant of strain JMP 222-1D, accumulates 4-nitropyrogallol which was identified as the initial metabolite of 2,6-dinitrophenol degradation.Non-standard abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - 2,6-DNP 2,6-dinitrophenol - HNMA 2-hydroxy-5-nitromuconic acid - HNPA 2-hydroxy-5-nitropenta-2,4-dienoic acid - NB nutrient broth - NMR nuclear magnetic resonance - NPG 4-nitropyrogallol - O.D. optical density - tR retention time - UV/Vis ultraviolet/visible  相似文献   

8.
2,3-, 2,4-, 2,5-, 3,4-, and 3,5-dimethylphenols were cometabolized by 2,4-dichlorophenoxyacetate-grown Alcaligenes eutrophus JMP 134 or the constitutive derivative JMP 134-1 via the ortho pathway into dimethylmuconolactones as dead-end products. Formation of two distinct lactones from 3,4-dimethylphenol is indicative of 2- as well as 6-hydroxylation. Induction of the meta-cleavage pathway by 2,3- and 3,4-dimethylphenols resulted in growth and no accumulation of products. In contrast, 3,5-dimethylphenol is not metabolized by the meta-cleavage pathway.  相似文献   

9.
2,4-Dichlorophenoxyacetate (2,4-D) in Alcaligenes eutrophus JMP134 (pJP4) is degraded via 2-chloromaleylacetate as an intermediate. The latter compound was found to be reduced by NADH in a maleylacetate reductase catalyzed reaction. Maleylacetate and chloride were formed as products of 2-chloromaleylacetate reduction, the former being funnelled into the 3-oxoadipate pathway by a second reductive step. There was no indication for an involvement of a pJP4-encoded enzyme in either the reduction or the dechlorination reaction.Abbreviations 2,4-D 2,4-dichlorophenoxyacetate  相似文献   

10.
The bacterium Alcaligenes eutrophus JMP134(pJP4) degrades trichloroethylene (TCE) by a chromosomal phenol-dependent pathway and by the plasmid-encoded 2,4-dichlorophenoxyacetic acid pathway. The two pathways were independent and exhibited different rates of removal and capacities for quantity of TCE removed. The phenol-dependent pathway was more rapid (0.2 versus 0.06 nmol of TCE removed per min per mg of protein) and consumed all detectable TCE. The 2,4-dichlorophenoxyacetic acid-dependent pathway removed 40 to 60% of detectable TCE.  相似文献   

11.
Abstract 2,4-Dichlorophenoxyacetate-grown cells of Alcaligenes eutrophus JMP134 [1] metabolized 4-methylphenoxyacetate via a modified ortho -cleavage pathway. 4-Carboxymethyl-4-methylbut-2-en-1,4-olide (4-methyl-2-enelactone), 4-carboxymethyl-3-methylbut-2-en-1,4-olide (3-methyl-2-enelactone) and 4-methyl-3-oxoadipate, were identified as intermediates.  相似文献   

12.
The bacterium Alcaligenes eutrophus JMP134(pJP4) degrades trichloroethylene (TCE) by a chromosomal phenol-dependent pathway and by the plasmid-encoded 2,4-dichlorophenoxyacetic acid pathway. The two pathways were independent and exhibited different rates of removal and capacities for quantity of TCE removed. The phenol-dependent pathway was more rapid (0.2 versus 0.06 nmol of TCE removed per min per mg of protein) and consumed all detectable TCE. The 2,4-dichlorophenoxyacetic acid-dependent pathway removed 40 to 60% of detectable TCE.  相似文献   

13.
Plasmid pJP4 permits its host bacterium, strain JMP134, to degrade and utilize as sole sources of carbon and energy 3-chlorobenzoate and 2,4-dichlorophenoxyacetic acid (R. H. Don and J. M. Pemberton, J. Bacteriol. 145:681-686, 1981). Mutagenesis of pJP4 by transposons Tn5 and Tn1771 enabled localization of five genes for enzymes involved in these catabolic pathways. Four of the genes, tfdB, tfdC, tfdD, and tfdE, encoded 2,4-dichlorophenol hydroxylase, dichlorocatechol 1,2-dioxygenase, chloromuconate cycloisomerase, and chlorodienelactone hydrolase, respectively. No function has been assigned to the fifth gene, tfdF, although it may encode a trans-chlorodiene-lactone isomerase. Inactivation of genes tfdC, tfdD, and tfdE, which encode the transformation of dichlorocatechol to chloromaleylacetic acid, prevented host strain JMP134 from degrading both 3-chlorobenzoate and 2,4-dichlorophenoxyacetic acid, which indicates that the pathways for these two substrates utilize common enzymes for the dissimilation of chlorocatechols. Studies with cloned catabolic genes from pJP4 indicated that whereas all essential steps in the degradation of 2,4-dichlorophenoxyacetic acid are plasmid encoded, the conversion of 3-chlorobenzoate to chlorocatechol is specified by chromosomal genes.  相似文献   

14.
Dichloromuconate cycloisomerase from Alcaligenes eutrophus JMP 134 was purified to homogeneity. The enzyme has an Mr of about 270,000 as determined by gel filtration and consists of six to eight subunits of identical Mr 40,000 as determined by SDS/PAGE. Mn2+ ions as well as thiol groups are required for activity. A high Km value of about 4 mM for cis,cis-muconate explains the reported low activity with this compound. Relatively high Km values were also calculated for monochloro-substituted cis,cis-muconates (300-500 microM), in contrast with the low Km value of 20 microM for 2,4-dichloro-cis,cis-muconate. The catalytic constant of the pure enzyme was 3820 min-1 when measured with 2,4-dichloro-cis,cis-muconate.  相似文献   

15.
The culture fluorescence of Alcaligenes eutrophus JMP 134 was determined on-line by an Ingold Fluorosensor and correlated to the intracellular concentrations of reduced nicotinamide adenine dinucleotide (phosphate). The data were obtained from aerobic cultures of the strain growing chemostatically on phenol, phenol+sodium formate and fructose, as well as from aerobic/anaerobic transitions and substrate pulse experiments. The total culture fluorescence was corrected to take into account the inner filter effect of cells. Upon analysing the intracellular concentration of the dinucleotides using HPLC, it became evident that both NADH and NADPH contribute significantly to the fluorescence signal. A linear relationship between the sum of NAD(P)H and the net culture fluorescence was obtained from these data with a correlation factor of r=0.82. These investigations indicate that the measurement of culture fluorescence is a practicable tool for monitoring the redox state of a cellular culture, provided the total fluorescence signal is adjusted and the investigations are supported by direct measurements of intracellular levels of reduced dinucleotides.The authors are very grateful to the Deutsche Forschungsgemeinschaft for supporting this work (B1 345/I-2) and to Prof. T. Scheper (Institute of Biochemistry, University of Münster) for his generous assistance.  相似文献   

16.
An enzyme specifically induced during 4-methylmuconolactone metabolism by Alcaligenes eutrophus JMP 134 and that exhibited muconolactone isomerizing activity was purified to homogeneity. The enzyme, involved in the isomerization of 3-methylmuconolactone had a high degree of sequence similarity with muconolactone isomerase of Alcaligenes eutrophus JMP 134 and other previously described muconolactone isomerases of the 3-oxoadipate pathway. Kinetic analysis showed that the enzyme has a substrate spectrum and a reaction mechanism similar to those of the muconolactone isomerase, but that it has distinct kinetic properties. Received: 5 November 1996 / Accepted: 13 January 1997  相似文献   

17.
Alcaligenes eutrophus JMP134 metabolizes 3-chlorobenzoate via 3- (3CC) and 4-chlorocatechol (4CC) as central metabolites. Whereas 4CC was efficiently degraded without a build-up of significant quantities of intermediates, substantial amounts of 2-chloro-cis,cis-muconate (2CM) formed from 3CC were excreted as a result of the poor activity of dichloromuconate cycloisomerase for this compound. This pathway bottleneck can, using appropriate fermentation conditions, be exploited in the production of 2CM. Correspondence to: D. H. Pieper  相似文献   

18.
19.
Mineralization of 2,4-dichlorophenoxyacetic acid (2,4-D) by two Alcaligenes eutrophus strains and one Pseudomonas cepacia strain containing the 2,4-D degrading plasmids pJP4 or pRO101 (=pJP4::Tn1721) was tested in 50 g (wet wt) samples of non-sterile soil. Mineralization was measured as 14C-CO2evolved during degradation of uniformly-ring-labelled 14C-2,4-D. When the strains were inoculated to a level of approximately 108 CFU/g soil, between 20 and 45% of the added 2,4-D (0.05 ppm, 10 ppm or 500 ppm) was mineralized within 72 h. Mineralization of 0.05 ppm and 10 ppm, 2,4-D by the two A. eutrophus strains was identical and rapid whereas mineralization by P. cepacia DBO1(pRO101) occurred more slowly. In contrast, mineralization of 500 ppm 2,4-D by the two A. eutrophus strains was very slow whereas mineralization by P. cepacia DBO1 was more rapid. Comparison of 2,4-D mineralization at different levels of inoculation with P. cepacia DBO1(pRO101) (6×104, 6×106 and 1×108 CFU/g soil) revealed that the maximum mineralization rate was reached earlier with the high inoculation levels than with the low level. The kinetics of mineralization were evaluated by nonlinear regression analysis using five different models. The linear or the logarithmic form of a three-half-order model were found to be the most appropriate models for describing 2,4-D mineralization in soil. In the cases in which the logarithmic form of the three-half-order model was the most appropriate model we found, in accordance with the assumptions of the model, a significant growth of the inoculated strains.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - CFU colony forming units - PTYG peptone, tryptone, yeast & glucose - DPM disintegrations per minute  相似文献   

20.
Ralstonia eutropha JMP134(pJP4) and several other species of motile bacteria can degrade the herbicide 2,4-dichlorophenoxyacetate (2,4-D), but it was not known if bacteria could sense and swim towards 2,4-D by the process of chemotaxis. Wild-type R. eutropha cells were chemotactically attracted to 2,4-D in swarm plate assays and qualitative capillary assays. The chemotactic response was induced by growth with 2,4-D and depended on the presence of the catabolic plasmid pJP4, which harbors the tfd genes for 2,4-D degradation. The tfd cluster also encodes a permease for 2,4-D named TfdK. A tfdK mutant was not chemotactic to 2,4-D, even though it grew at wild-type rates on 2,4-D.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号