共查询到20条相似文献,搜索用时 0 毫秒
1.
Human umbilical cord blood cells improve cardiac function after myocardial infarction 总被引:10,自引:0,他引:10
Hirata Y Sata M Motomura N Takanashi M Suematsu Y Ono M Takamoto S 《Biochemical and biophysical research communications》2005,327(2):609-614
Human umbilical cord blood (UCB) contains an abundance of immature stem/progenitor cells and has been clinically used as an alternative to bone marrow transplantation. In addition, cord blood can be obtained non-invasively, in contrast to invasive bone marrow aspiration. We investigated the potential of human UCB CD34(+) cells to improve cardiac function following myocardial infarction. Myocardial infarction was induced in Wistar rats by ligation of the left coronary artery. Either 2x10(5) human UCB CD34(+) cells or equivalent cell-free medium was injected into the injured myocardium of the rats following induction of myocardial infarction. CD34(+) cell transplantation significantly improved ventricular function as compared to the control group. Immunofluorescence staining for human CD34, CD45, and PECAM-1 revealed surviving cells in the myocardium. Our findings suggest that transplanted human cells survived and improved cardiac function following myocardial infarction. These results may show the usefulness of UCB CD34(+) cells for myocardial infarction. 相似文献
2.
Nadri S Soleimani M Kiani J Atashi A Izadpanah R 《Differentiation; research in biological diversity》2008,76(3):223-231
Abstract Identification of mesenchymal stem cells (MSCs) derived from alternative sources has provided an exciting prospect for intensive investigation. This work focused on characterizing a new source of MSCs from stromal cells from human eye conjunctiva. In this study, after conjunctiva biopsies and culture of stromal segment of this tissue, fibroblast-like (SH2+ , SH3+ , CD29+ , CD44+ , CD166+ , CD13+ ) human stromal cells, which can be differentiated toward the osteogenic, adipogenic, chondrogenic, and neurogenic lineages, were obtained. These cells expressed Oct-4, Nanog, Rex-1 genes, and some lineage-specific markers like cardiac actin and Keratin. Taken together, the results indicate that conjunctiva stromal-derived cells are a new source of multipotent MSCs and despite originating from an adult source, they express undifferentiated stem cell markers. 相似文献
3.
Progress in stem cell transplantation for the treatment of myocardial infarction is hampered by the poor retention and survival of the implanted cells. To enhance cell survival and differentiation and thereby improve the efficiency of stem cell therapy, we constructed a novel self-assembling peptide by attaching an RGDSP cell-adhesion motif to the self-assembling peptide RADA16. c-kitpos/Nkx2.5low/GATA4low marrow-derived cardiac stem cells (MCSCs), which have a specific potential to differentiate into cardiomyocytes, were isolated from rat bone marrow. The cytoprotective effects of RGDSP scaffolds were assessed by exposure of MCSCs to anoxia in vitro. The efficacy of transplanting MCSCs in RGDSP scaffolds was evaluated in a female rat MI model. The designer self-assembling peptide self-assembled into RGDSP nanofiber scaffolds under physiological conditions. RGDSP scaffolds were beneficial for the growth of MCSCs and protected them from apoptosis and necrosis caused by anoxia. In a rat MI model, cardiac function was improved and collagen deposition was markedly reduced in the group receiving MCSCs in RGDSP scaffolds compared with groups receiving MCSCs alone, RGDSP scaffolds alone or MCSCs in RADA16 scaffolds. There were more surviving MCSCs in the group receiving MCSCs in RGDSP scaffolds than in the groups receiving MCSCs alone or MCSCs in RADA16 scaffolds. Most of the Y chromosome-positive cells expressed cardiac troponin T and connexin43 (Cx-43). These results suggest that RGDSP scaffolds provide a suitable microenvironment for the survival and differentiation of MCSCs. RGDSP scaffolds enhanced the efficacy of MCSC transplantation to repair myocardium and improve cardiac function. 相似文献
4.
Kim SJ Cho HH Kim YJ Seo SY Kim HN Lee JB Kim JH Chung JS Jung JS 《Biochemical and biophysical research communications》2005,329(1):25-31
Human mesenchymal stem cells (hMSC), that have been reported to be present in bone marrow, adipose tissues, dermis, muscles, and peripheral blood, have the potential to differentiate along different lineages including those forming bone, cartilage, fat, muscle, and neuron. Therefore, hMSC are attractive candidates for cell and gene therapy. The optimal conditions for hMSC expansion require medium supplemented with fetal bovine serum (FBS). Some forms of cell therapy will involve multiple doses, raising a concern over immunological reactions caused by medium-derived FBS proteins. In this study, we cultured human adipose stromal cells (hADSC) and bone marrow stroma cells (HBMSC) in human serum (HS) during their isolation and expansion, and demonstrated that they maintain their proliferative capacity and ability for multilineage differentiation and promote engraftment of peripheral blood-derived CD34(+) cells mobilized from bone marrow in NOD/SCID mice. Our results indicate that hADSC and hBMSC cultured in HS can be used for clinical trials of cell and gene therapies, including promotion of engraftment after allogeneic HSC transplantation. 相似文献
5.
Pons J Huang Y Arakawa-Hoyt J Washko D Takagawa J Ye J Grossman W Su H 《Biochemical and biophysical research communications》2008,376(2):419-422
Bone marrow-derived mesenchymal stem cells (MSC) are a promising source for cell-based treatment of myocardial infarction (MI), but existing strategies are restricted by low cell survival and engraftment. We examined whether vascular endothelial growth factor (VEGF) improve MSC viability in infracted hearts. We found long-term culture increased MSC-cellular stress: expressing more cell cycle inhibitors, p16INK, p21 and p19ARF. VEGF treatment reduced cellular stress, increased pro-survival factors, phosphorylated-Akt and Bcl-xL expression and cell proliferation. Co-injection of MSCs with VEGF to MI hearts increased cell engraftment and resulted in better improvement of cardiac function than that injected with MSCs or VEGF alone. In conclusion, VEGF protects MSCs from culture-induce cellular stress and improves their viability in ischemic myocardium, which results in improvements of their therapeutic effect for the treatment of MI. 相似文献
6.
骨髓基质细胞移植促进心肌梗塞后血管新生机制的研究 总被引:1,自引:0,他引:1
目的:通过研究不同时期心肌梗塞区血管生长因子的表达,探讨骨髓基质细胞移植促进心肌梗塞后血管新生的机制.方法:将急性心肌梗塞大鼠随机分为2组.实验组在梗塞后28 d,将同种异体骨髓基质细胞注射到心肌梗塞区.对照组仅注射无血清的培养液.在梗塞后的不同时期取标本动态观察梗塞区VEGF、bFGF的表达和血管新生状况.结果:骨髓基质细胞移植入梗塞区后主要分化为成纤维细胞和血管内皮细胞.实验组心肌梗塞区新生毛细血管数目较对照组明显增加(14±4.7/HPF vs 6±2.4/HPF P<0.05).对照组梗塞区VEGF和bFGF的表达在梗塞后7 d达高峰,28 d开始下降,第42 d和56 d时表达明显下降.而实验组二者的表达在心肌梗塞后第42 d和56 d明显高于对照组.结论:骨髓基质细胞通过分化为内皮细胞以及促进梗塞区VEGF和bFGF的持续高表达,对血管新生起积极作用. 相似文献
7.
胚胎干细胞治疗心肌梗死的研究进展 总被引:6,自引:0,他引:6
胚胎干细胞 (ES细胞 )是一种多能细胞 ,来源于囊胚期胚胎 ,具有很强的自我更新能力 ,并能分化成很多细胞类型。体外 ,ES细胞能自发聚集形成胚胎体 (EB) ,分化成许多种细胞类型 ;ES细胞注射到免疫缺陷的小鼠体内 ,产生畸胎瘤 ,其中包含有三个胚层的细胞。添加生长因子或与其它细胞共培养等方法可以促进ES细胞体外分化为心肌细胞 ,筛选后移植到梗死的心肌 ,可以提高心脏功能 ,是治疗心肌梗死的一种很有潜力的方法 相似文献
8.
After onset of myocardial infarction (MI), the left ventricle (LV) undergoes a continuum of molecular, cellular, and extracellular responses that result in LV wall thinning, dilatation, and dysfunction. These dynamic changes in LV shape, size, and function are termed cardiac remodeling. If the cardiac healing after MI does not proceed properly, it could lead to cardiac rupture or maladaptive cardiac remodeling, such as further LV dilatation and dysfunction, and ultimately death. Although the precise molecular mechanisms in this cardiac healing process have not been fully elucidated, this process is strictly coordinated by the interaction of cells with their surrounding extracellular matrix (ECM) proteins. The components of ECM include basic structural proteins such as collagen, elastin and specialized proteins such as fibronectin, proteoglycans and matricellular proteins. Matricellular proteins are a class of non-structural and secreted proteins that probably exert regulatory functions through direct binding to cell surface receptors, other matrix proteins, and soluble extracellular factors such as growth factors and cytokines. This small group of proteins, which includes osteopontin, thrombospondin-1/2, tenascin, periostin, and secreted protein, acidic and rich in cysteine, shows a low level of expression in normal adult tissue, but is markedly upregulated during wound healing and tissue remodeling, including MI. In this review, we focus on the regulatory functions of matricellular proteins during cardiac tissue healing and remodeling after MI. 相似文献
9.
LINDE WOUDSTRA ELISA MEINSTER LAURA VAN HAREN AMBER M. KAY MARIT KOOPMAN JEROEN A.M. BELIEN MARTINE C. MORRISON ALBERT C. VAN ROSSUM MARCO N. HELDER LYNDA J.M. JUFFERMANS HANS W.M. NIESSEN PAUL A.J. KRIJNEN 《Cytotherapy》2018,20(9):1143-1154
Background aims. After a myocardial infarction (MI) atherosclerosis is accelerated leading to destabilization of the atherosclerotic plaque. mesenchymal stromal cells are a promising therapeutic option for atherosclerosis. Previously, we demonstrated a novel stem cell delivery technique, with adipose stem cells coupled to microbubbles (i.e., StemBells) as therapy after MI. In this study, we aim to investigate the effect of StemBell therapy on atherosclerotic plaques in an atherosclerotic mouse model after MI. Methods. MI was induced in atherosclerotic Apolipoprotein E–deficient mice that were fed a high-fat Western diet. Six days post-MI, the mice received either 5?×?105/100 µL StemBells or vehicle intravenously. The effects of StemBell treatment on the size and stability of aortic root atherosclerotic plaques and the infarcted heart were determined 28 days post-MI via (immuno)histological analyses. Moreover, monocyte subtypes and lipids in the blood were studied. Results. StemBell treatment resulted in significantly increased cap thickness, decreased intra-plaque macrophage density and increased percentage of intra-plaque anti-inflammatory macrophages and chemokines, without affecting plaque size and serum cholesterol/triglycerides. Furthermore, StemBell treatment significantly increased the percentage of anti-inflammatory macrophages within the infarcted myocardium but did not affect cardiac function nor infarct size. Finally, also the average percentage of anti-inflammatory monocytes in the circulation was increased after StemBell therapy. Discussion. StemBell therapy increased cap thickness and decreased intra-plaque inflammation after MI, indicative of stabilized atherosclerotic plaque. It also induced a shift of circulating monocytes and intra-plaque and intra-cardiac macrophages towards anti-inflammatory phenotypes. Hence, StemBell therapy may be a therapeutic option to prevent atherosclerosis acceleration after MI. 相似文献
10.
Temporal changes in matrix metalloproteinase expression and inflammatory response associated with cardiac rupture after myocardial infarction in mice 总被引:18,自引:0,他引:18
We previously found that male mice with myocardial infarction (MI) had a high rate of cardiac rupture, which generally occurred at 3 to 5 days after MI. Since matrix metalloproteinases (MMPs) play an important role in infarct healing, tissue repair and extracellular matrix (ECM) remodeling post-MI, we studied the temporal relationship of MMP expression and inflammatory response to cardiac rupture after acute MI. Male C57BL/6J mice were subjected to MI (induced by ligating the left anterior descending coronary artery) and killed 1, 2, 4, 7 or 14 days after MI. MMP-2 and MMP-9 activity in the heart were measured by zymography. Collagen content was measured by hydroxyproline assay. We found that after MI, MMP-9 activity increased as early as 1 day and reached a maximum by 2-4 days, associated with a similar increase in neutrophil and macrophage infiltration in the infarct area. MMP-2 started to increase rapidly within 4 days, reaching a maximum by 7 days and remaining high even at 14 days. Intense macrophage infiltration appeared by 4 days after MI and then gradually decreased within 7 to 14 days. Collagen content was unchanged until 4 days after MI, at which point it increased and remained high thereafter. Our data suggest that in mice, overexpression of MMP-2 and MMP-9 (possibly expressed mainly by neutrophils and macrophages) may lead to excessive ECM degradation in the early phase of MI, impairing infarct healing and aggravating early remodeling which in turn causes cardiac rupture. 相似文献
11.
《Cytotherapy》2014,16(4):460-470
Background aimsTraditionally, stem cell therapy for myocardial infarction (MI) has been administered as a single treatment in the acute or subacute period after MI. These time intervals coincide with marked differences in the post-infarct myocardial environment, raising the prospect that repeat cell dosing could provide incremental benefit beyond a solitary intervention. This prospect was evaluated with the use of mesenchymal stromal cells (MSCs).MethodsThree groups of rats were studied. Single-therapy and dual-therapy groups received allogeneic, prospectively isolated MSCs (1 × 106 cells) by trans-epicardial injection immediately after MI, with additional dosing 1 week later in the dual-therapy cohort. Control animals received cryopreservant solution only. Left ventricular (LV) dimensions and ejection fraction (EF) were assessed by cardiac magnetic resonance immediately before MI and at 1, 2 and 4 weeks after MI.ResultsImmediate MSC treatment attenuated early myocardial damage with EF of 35.3 ± 3.1% (dual group, n = 12) and 35.2 ± 2.2% (single group, n = 15) at 1 week after MI compared with 22.1 ± 1.9% in controls (n = 17, P < 0.01). In animals receiving a second dose of MSCs, EF increased to 40.7 ± 3.1% by week 4, which was significantly higher than in the single-therapy group (EF 35.9 ± 1.8%, P < 0.05). Dual MSC treatment was also associated with greater myocardial mass and arteriolar density, with trends toward reduced myocardial fibrosis. These incremental benefits were especially observed in remote (non-infarct) segments of LV myocardium.ConclusionsRepeated stem cell intervention in both the acute and the sub-acute period after MI provides additional improvement in ventricular function beyond solitary cell dosing, largely owing to beneficial changes remote to the area of infarction. 相似文献
12.
Hochhauser E Cheporko Y Yasovich N Pinchas L Offen D Barhum Y Pannet H Tobar A Vidne BA Birk E 《Cell biochemistry and biophysics》2007,47(1):11-19
We have previously found that, following myocardial ischemia/reperfusion injury, isolated hearts from bax gene knockout mice
[Bax(−/;−)] exhibited higher cardioprotection than the wild-type. We here explore the effect of Bax(−/−), following myocardial
infarction (MI) in vivo. Homozygotic Bax(−/−) and matched wild-type were studied. Mice underwent surgical ligation of the
left anterior descending coronary artery (LAD). The progressive increase in left-ventricular end diastolic diameter, end systolic
diameter, in Bax(−/−) was significantly smaller than in Bax(+/+) at 28 d following MI (p<0.03) as seen by echocardiography. Concomitantly, fractional shortening was higher (35±4.1% and 27±2.5%, p<0.001) and infarct size was smaller in Bax(−/−) compared to the wild-type at 28days following MI (24±3.7% and 37±3.3%, p<0.001). Creatine kinase and lactate dehydrogenase release in serum were lower in Bax(−/−) than in Bax(+/+) 24h following
MI. Caspase 3 activity was elevated at 2 h after MI only in the wild-type, but reduced to baseline values at 1 and 28 d post-MI.
Bax knockout mice hearts demonstrated reduced infarct size and improved myocardial function following permanent coronary artery
occlusion. The Bax gene appears to play a significant role in the post-MI response that should be further investigated. 相似文献
13.
Iwanaga K Takano H Ohtsuka M Hasegawa H Zou Y Qin Y Odaka K Hiroshima K Tadokoro H Komuro I 《Biochemical and biophysical research communications》2004,325(4):1353-1359
We examined whether granulocyte colony-stimulating factor (G-CSF) prevents cardiac dysfunction and remodeling after myocardial infarction (MI) in large animals. MI was produced by ligation of left anterior descending coronary artery in swine. G-CSF (10 microg/kg/day, once a day) was injected subcutaneously from 24h after ligation for 7 days. Echocardiographic examination revealed that the G-CSF treatment induced improvement of cardiac function and attenuation of cardiac remodeling at 4 weeks after MI. In the ischemic region, the number of apoptotic endothelial cells was smaller and the number of vessels was larger in the G-CSF treatment group than in control group. Moreover, vascular endothelial growth factor was more abundantly expressed and Akt was more strongly activated in the ischemic region of the G-CSF treatment group than of control group. These findings suggest that G-CSF prevents cardiac dysfunction and remodeling after MI in large animals. 相似文献
14.
《Redox report : communications in free radical research》2013,18(1):14-21
AbstractAltered mitochondrial function and free radical-mediated tissue damage have been suggested as an important pathological event in isoproterenol (ISO)-induced cardiotoxicity. This study was undertaken to know the preventive effect of morin on mitochondrial damage in ISO-induced cardiotoxicity in male Wistar rats. Myocardial infarction (MI) in rats was induced by ISO (85 mg/kg) at an interval of 24 hours for 2 days. Morin was given to rats as pre-treatment for 30 days orally using an intragastric tube. ISO-treated rats showed a significant elevation of mitochondrial thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (HP) level and pre-treatment with morin significantly prevented the increase of TBARS and HP level to near normality. The level of enzymic and non-enzymic antioxidants was decreased significantly in ISO-treated rats and pre-treatment with morin significantly increased the levels of superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, glutathione reductase, and reduced glutathione to normality. The activities of mitochondrial enzymes such as isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, and malate dehydrogenase were decreased significantly in ISO-treated myocardial ischemic rats and upon pre-treatment with morin restored these enzymes activity to normality. In addition, the decreased activities of cytochrome-C oxidase and NADH-dehydrogenases were observed in ISO-treated rats and pre-treatment with morin prevented the activities of cytochrome-C oxidase and NADH-dehydrogenase to normality. Pre-treatment with morin favorably restored the biochemical and functional parameters to near normal indicating morin to be a significant protective effect on cardiac mitochondrial function against ISO-induced MI in rats. 相似文献
15.
介绍脂肪干细胞(ADSCs)治疗心肌梗死机制及用于提高心肌梗死治疗效果的新策略。广泛查阅近年关于ADSCs用于治疗心肌梗死的基础与临床实验研究文献,并进行整理、综合与分析。ADSCs移植治疗心肌梗死的机制研究取得了一定的进展,其机制主要包括分化为心肌细胞、参与梗死区血管形成、通过旁分泌功能改善梗死区微环境等。对ADSCs进行缺氧耐受预处理、使用新型生物材料、联合细胞因子以及药物等,可以大大提高移植细胞的存活率,促进细胞的增殖与分化,改善心肌梗死治疗效果,加快心脏功能的恢复。ADSCs可能通过多种机制发挥治疗心肌梗死的作用,进一步提高移植细胞成活率和性能稳定性是增加ADSCs治疗心肌梗死效果的关键。随着研究的不断深入,ADSCs可能为未来心肌梗死的临床治疗带来新的希望。 相似文献
16.
17.
Ghrelin is broadly expressed in myocardial tissues, where it exerts different functions. It also has been found to have a wide variety of biological functions on cell differentiation and tissue development. The aim of this study was to investigate the effect of ghrelin on human embryonic stem cell (hESC) differentiation in infarcted cardiac microenvironment. The hESCs grown on feeder layers expressed several pluripotential markers including alkaline phosphatase (AKP). Four weeks after transplantation into rat infarcted hearts, the hESCs and their progeny cells survived and formed intracardiac grafts were 54.7% and 19.6% respectively in ghrelin- and phosphate-buffered saline (PBS)-treated groups. Double immunostaining with anti-human Sox9 and anti-HNA or anti-human fetal liver kinase-1 (Flk1) and anti β-tubulin showed that the human grafts were in development. However, double positive stains were only found in the ghrelin-treated group. In addition, the hESC injection protocol was insufficient to restore heart function of the acute myocardial infarction model. Our study, therefore, provides a new insight of ghrelin on promoting hESC survival and differentiation in rat infarcted cardiac microenvironment. This may give a clue for therapy for myocardial infarction by hESCs or progeny cells. 相似文献
18.
Chang Yin 《FEBS letters》2008,582(30):4137-4142
We investigated the role of microRNAs (miRNA) in protection against ischemia/reperfusion (I/R) injury in heart. Mice subjected to cytoprotective heat-shock (HS) showed a significant increase of miRNA-1, miRNA-21 and miRNA-24 in the heart. miRNAs isolated from HS mice and injected into non-HS mice significantly reduced infarct size after I/R injury, which was associated with the inhibition of pro-apoptotic genes and increase in anti-apoptotic genes. Chemically synthesized miRNA-21 also reduced infarct size, whereas a miRNA-21 inhibitor abolished this effect. Overall, these studies for the first time provide evidence for the potential role of endogenously synthesized miRNA’s in cardioprotection following I/R injury. 相似文献
19.
M. Martínez-Sellés T. Datino L. M. Figueiras-Graillet H. Bueno F. Fernández-Aviles 《Netherlands heart journal》2013,21(11):499-503
Background
The influence of new-onset atrial fibrillation (AF) on the long-term prognosis of nonagenarians who survive acute myocardial infarction (AMI) has not been demonstrated.Objective
Our aim was to study the association between new-onset AF and long-term prognosis of nonagenarians who survive AMI.Methods
From a total of 96 patients aged ≥89 years admitted during a 5-year period, 64 (67 %) were discharged alive and are the focus of this study.Results
Mean age was 91.0 ± 2.0 years, and 39 patients (61 %) were women. During admission, 9 patients (14 %) presented new-onset AF, 51 (80 %) did not present AF, and 4 (6 %) had chronic AF. During follow-up (mean 2.3 ± 2.6 years; 6.6 ± 3.6 years in survivors), 58 patients (91 %) died, including the 9 patients with new-onset AF. Cumulative survival at 6, 12, 18, 24, and 30 months was 68.3 %, 57.2 %, 49.2 %, 47.6 %, and 31.8 %, respectively. The only two independent predictors of mortality in the multivariate analysis were age (hazard ratio [HR] 1.14; 95 % confidence interval [CI] 1.01–1.28; p = 0.04) and new-onset AF (HR 2.3; 95 % CI 1.1–4.8; p = 0.02).Conclusion
New-onset AF is a marker of poor prognosis in nonagenarians who survive AMI. 相似文献20.
Qing Mao Chengxi Lin Jianshu Gao Xiulin Liang Wei Gao Li Shen Lina Kang Biao Xu 《Molecular and cellular biochemistry》2014,397(1-2):203-214
In the present study, we investigated whether mesenchymal stem cells (MSCs) overexpressing integrin-linked kinase (ILK) might regulate ventricular remodeling and cardiac function in a porcine myocardial infarction model. ILK-modified MSCs (ILK-MSCs) (n = 8), MSCs (n = 8) or placebo (n = 8) were injected into peri-infarct myocardium 7 days after ligation of the left anterior descending coronary artery. ILK expression was confirmed by immunofluorescence, real-time PCR, Western blot analysis, and flow cytometry. In vitro assays indicated increased proliferation and reduced apoptosis of MSCs due to overexpression of ILK. Echocardiographic, single-photon emission computed tomography and positron emission tomography analyses demonstrated preserved cardiac function and myocardial perfusion. Reduced fibrosis, increased cardiomyocyte proliferation, and enhanced angiogenesis were observed in the ILK-MSC group. Reduced apoptosis, as demonstrated by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling analysis, was also noted. In conclusion, ILK promotes MSC proliferation and suppresses apoptosis. ILK-MSC transplantation improves ventricular remodeling and cardiac function in pigs after MI. It is associated with increased angiogenesis, reduced apoptosis, and increased cardiomyocyte proliferation. This may represent a new approach to the treatment of post-infarct remodeling and subsequent heart failure. 相似文献