首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Signal peptides are essential N-terminal extensions in export proteins, and have a positively charged N-terminus, a hydrophobic central core, and a C-terminal cleavage region. They interact in a consecutive manner with different accessory proteins during the secretion process. Potential patterns or periodicity in the amino acid (aa) sequence were searched, using multivariate techniques, for a large number of signal peptides from mollicutes (mycoplasmas), other Gram-positive bacteria, and Escherichia coli. Mollicutes signal peptides were significantly different from the E. coli and Gram-positive ones by their N-terminal charge, peptide length, and especially, unique periodicities of side chain hydrophobicity and volumes. Their lipoprotein signal peptides were longer than for any other bacteria. Significant differences were also recorded between the other bacterial peptide groups. Specific aa patterns were more related within the signal peptides from several groups of secreted bacillus enzymes, than for all signal peptides from one bacillus species. In E. coli, signal peptides from proteins routed for the various destinations revealed significant and compartment-specific sequence patterns not evident by other methods. This was substantiated from a large number of signal peptide secretion mutants for the E. coli periplasmic space. It is proposed that the differences in aa patterns and side-chain properties are related to the secondary structure sidedness and topology of the signal peptides, and important for specific interactions during the secretion process.  相似文献   

2.
Signal peptides that direct protein export in Bacillus subtilis are overall more hydrophobic than signal peptides in Escherichia coli. To study the importance of signal peptide hydrophobicity for protein export in both organisms, the alpha-amylase AmyQ was provided with leucine-rich (high hydrophobicity) or alanine-rich (low hydrophobicity) signal peptides. AmyQ export was most efficiently directed by the authentic signal peptide, both in E. coli and B. subtilis. The leucine-rich signal peptide directed AmyQ export less efficiently in both organisms, as judged from pulse-chase labelling experiments. Remarkably, the alanine-rich signal peptide was functional in protein translocation only in E. coli. Cross-linking of in vitro synthesized ribosome nascent chain complexes (RNCs) to cytoplasmic proteins showed that signal peptide hydrophobicity is a critical determinant for signal peptide binding to the Ffh component of the signal recognition particle (SRP) or to trigger factor, not only in E. coli, but also in B. subtilis. The results show that B. subtilis SRP can discriminate between signal peptides with relatively high hydrophobicities. Interestingly, the B. subtilis protein export machinery seems to be poorly adapted to handle alanine-rich signal peptides with a low hydrophobicity. Thus, signal peptide hydrophobicity appears to be more critical for the efficiency of early stages in protein export in B. subtilis than in E. coli.  相似文献   

3.
Signal peptides of gram-positive exoproteins generally carry a higher net positive charge at their amino termini (N regions) and have longer hydrophobic cores (h regions) and carboxy termini (C regions) than do signal peptides of Escherichia coli envelope proteins. To determine if these differences are functionally significant, the ability of Bacillus subtilis to secrete four different E. coli envelope proteins was tested. A pulse-chase analysis demonstrated that the periplasmic maltose-binding protein (MBP), ribose-binding protein (RBP), alkaline phosphatase (PhoA), and outer membrane protein OmpA were only inefficiently secreted. Inefficient secretion could be ascribed largely to properties of the homologous signal peptides, since replacing them with the B. amyloliquefaciens alkaline protease signal peptide resulted in significant increases in both the rate and extent of export. The relative efficiency with which the native precursors were secreted (OmpA >> RBP > MBP > PhoA) was most closely correlated with the overall hydrophobicity of their h regions. This correlation was strengthened by the observation that the B. amyloliquefaciens levansucrase signal peptide, whose h region has an overall hydrophobicity similar to that of E. coli signal peptides, was able to direct secretion of only modest levels of MBP and OmpA. These results imply that there are differences between the secretion machineries of B. subtilis and E. coli and demonstrate that the outer membrane protein OmpA can be translocated across the cytoplasmic membrane of B. subtilis.  相似文献   

4.
H Chen  J Kim    D A Kendall 《Journal of bacteriology》1996,178(23):6658-6664
We have developed a system for examining the relative affinity of two different signal peptides for the protein secretion pathway in Escherichia coli. This system involves the expression of a modified alkaline phosphatase which possesses two signal peptides arranged in tandem. When both signal peptides have the wild-type sequence, cleavage after the first and cleavage after the second occur with nearly equal frequency. In both cases the remainder of the protein is transported to the periplasm. Thus both signal peptides effectively compete with each other for entrance to the secretion pathway. When the hydrophobicity of the second signal peptide is altered by small increments, we find that the more hydrophobic signal peptide is preferentially utilized. Thus, a more hydrophobic signal peptide can outcompete even an efficient wild-type signal sequence. The crossover point, for utilization of the second to the first signal peptide, is marked and occurs over a very small change in hydrophobicity. Our results suggest that the small differences in the hydrophobicity of wild-type signal peptides may have critical consequences: preproteins with the more hydrophobic signals could dominate one pathway, leaving those with only slightly less hydrophobic signals to require additional factors such as chaperonins, SecB, and other binding proteins.  相似文献   

5.
BACKGROUND: Although hundreds of different signal peptides have now been identified, few studies have examined the factors enabling signal peptides to augment secretion of mature proteins. Signal peptides, located at the N-terminus of nascent secreted proteins, characteristically have three domains: (1) a basic domain at the N-terminus, (2) a central hydrophobic core, and (3) a carboxy-terminal cleavage region. In this study, we investigated whether alterations in the basic and/or the hydrophobic domains of a commonly used signal peptide from interleukin-2 (IL-2) affected secretion of two proteins: placental alkaline phosphatase (AP) and endostatin. METHODS: A series of modifications in the basic and/or hydrophobic domains of the IL-2 signal peptide were made by polymerase chain reaction with endostatin or AP plasmids as templates. Transfection of wild-type or modified IL-2 signal peptides fused in-frame with endostatin or AP were done with Superfect in vitro or by the hydrodynamic method in vivo. RESULTS: Increasing both the basicity and hydrophobicity of the signal peptide augmented the secretion of AP and endostatin by approximately 2.5- and 3.5-fold, respectively, from MDA-MB-435 cells in vitro. Over a range of DNA concentrations and times, the most effective IL-2 signal peptide increased AP levels in the medium compared to the wild-type IL-2 signal peptide. Comparable results from these modified IL-2 signal peptides were found to increase AP levels in the medium from bovine aortic endothelial cells. Moreover, the combined changes in basic and hydrophobic domains of the IL-2 signal peptide augmented serum levels of endostatin and placental AP by 3-fold when the optimal plasmid constructs were injected in vivo. CONCLUSIONS: Modification of the IL-2 signal peptide augments protein secretion both in vitro and in vivo. As a result, optimizing the signal peptide should be considered for increasing the therapeutic levels of secreted proteins.  相似文献   

6.
Previous studies have demonstrated that signal peptides bind to the signal recognition particle (SRP) primarily via hydrophobic interactions with the 54-kDa protein subunit. The crystal structure of the conserved SRP ribonucleoprotein core, however, raised the surprising possibility that electrostatic interactions between basic amino acids in signal peptides and the phosphate backbone of SRP RNA may also play a role in signal sequence recognition. To test this possibility we examined the degree to which basic amino acids in a signal peptide influence the targeting of two Escherichia coli proteins, maltose binding protein and OmpA. Whereas both proteins are normally targeted to the inner membrane by SecB, we found that replacement of their native signal peptides with another moderately hydrophobic but unusually basic signal peptide (DeltaEspP) rerouted them into the SRP pathway. Reduction in either the net positive charge or the hydrophobicity of the DeltaEspP signal peptide decreased the effectiveness of SRP recognition. A high degree of hydrophobicity, however, compensated for the loss of basic residues and restored SRP binding. Taken together, the data suggest that the formation of salt bridges between SRP RNA and basic amino acids facilitates the binding of a distinct subset of signal peptides whose hydrophobicity falls slightly below a threshold level.  相似文献   

7.
In Escherichia coli, exported proteins are synthesized as precursors containing an amino-terminal signal peptide which directs transport through the translocase to the proper destination. We have constructed a series of signal peptide mutants, incorporating linker sequences of varying lengths between the amino-terminal charge and core region hydrophobicity, to examine the requirement for the juxtaposition of these two structural features in promoting protein transport. In vivo and in vitro analyses indicated that high transport efficiency via signal peptides with core regions of marginal hydrophobicity absolutely requires the proximity of sufficient charge.  相似文献   

8.
Lipid involvement in protein translocation in Escherichia coli   总被引:5,自引:2,他引:3  
Signal peptides play an essential role in protein translocation. This review summarizes the current knowledge of the structure of signal peptides and signal peptide-lipid interactions and addresses the possibility that signal peptide-lipid interactions initiate membrane translocation of precursor proteins. A new model for protein translocation in Escherichia coli is proposed, which includes as central features conformational changes of the signal peptide and signal-peptide-induced local changes in membrane organization (non-bilayer lipids).  相似文献   

9.
The hydrophobic region of the signal peptide of the OmpA protein of the Escherichia coli outer membrane was extensively altered in its hydrophobicity and predicted secondary structure by site-specific mutagenesis. The mutated signal peptides were fused to nuclease A from Staphylococcus aureus, and the function of the signal peptide was examined by measuring the rate of processing of the signal peptide. Six of the 12 mutated signal peptides in the nuclease hybrid were processed faster than the wild-type. In particular, the processing of the mutated signal peptide in which the alanine residue at position 9 was substituted with a valine residue was enhanced almost twofold over the processing of the wild-type signal peptide. In addition, the production of nuclease A fused with this mutated signal peptide also increased twofold. However, these effects were not observed when the mutated signal peptide was fused to TEM beta-lactamase. Analysis of the present mutations suggests that both overall hydrophobicity and distinct structural requirements in the hydrophobic region have important roles in signal peptide function.  相似文献   

10.
Signal peptides and transmembrane helices both contain a stretch of hydrophobic amino acids. This common feature makes it difficult for signal peptide and transmembrane helix predictors to correctly assign identity to stretches of hydrophobic residues near the N-terminal methionine of a protein sequence. The inability to reliably distinguish between N-terminal transmembrane helix and signal peptide is an error with serious consequences for the prediction of protein secretory status or transmembrane topology. In this study, we report a new method for differentiating protein N-terminal signal peptides and transmembrane helices. Based on the sequence features extracted from hydrophobic regions (amino acid frequency, hydrophobicity, and the start position), we set up discriminant functions and examined them on non-redundant datasets with jackknife tests. This method can incorporate other signal peptide prediction methods and achieve higher prediction accuracy. For Gram-negative bacterial proteins, 95.7% of N-terminal signal peptides and transmembrane helices can be correctly predicted (coefficient 0.90). Given a sensitivity of 90%, transmembrane helices can be identified from signal peptides with a precision of 99% (coefficient 0.92). For eukaryotic proteins, 94.2% of N-terminal signal peptides and transmembrane helices can be correctly predicted with coefficient 0.83. Given a sensitivity of 90%, transmembrane helices can be identified from signal peptides with a precision of 87% (coefficient 0.85). The method can be used to complement current transmembrane protein prediction and signal peptide prediction methods to improve their prediction accuracies.  相似文献   

11.
Signal peptides of secretory and membrane proteins are generated by proteolytic processing of precursor proteins after insertion into the endoplasmic reticulum membrane. Liberated signal peptides can be further processed, and the resulting N-terminal fragments are released toward the cytosol, where they may interact with target proteins like calmodulin. We show here that the processing of signal peptides requires a protease activity distinct from signal peptidase. This activity is inhibited specifically with a newly developed cysteine protease inhibitor, 1, 3-di-(N-carboxybenzoyl-l-leucyl-l-leucyl)amino acetone ((Z-LL)(2) ketone). Inhibitor studies revealed that the final, (Z-LL)(2) ketone-sensitive cleavage event occurs within the hydrophobic transmembrane region of the signal peptide, thus promoting the release of an N-terminal fragment into the cytosol.  相似文献   

12.
目的:从大肠埃希氏杆菌UTI89基因组中筛选出全部潜在的分泌蛋白并进行初步研究。方法:使用SignalP3.0、TatP1.0、 SecretomeP2.0等蛋白分析软件对5211个ORF进行预测;对筛选出的信号肽及分泌蛋白的基本特征进行统计学分析;使用Blast 2 Sequences进行同源性分析。结果:共筛选出432个sec途径分泌蛋白,19个Tat途径分泌蛋白,386个非经典分泌蛋白;信号肽、分泌蛋白平均长度分别为25.5aa、282.8aa;信号肽中出现频率最高的3种氨基酸依次为L、A、S;仅有两个信号肽的氨基酸序列完全相同,相应的分泌蛋白高度同源。结论:大肠埃希氏杆菌UTI89基因组中有837个ORF可能编码分泌蛋白;分泌蛋白集中在500aa以下;组成信号肽的氨基酸相对保守,多数为疏水氨基酸;信号肽变异性较大,含相同信号肽的蛋白可能由同源基因编码。  相似文献   

13.
Type I and II secretory pathways are used for the translocation of recombinant proteins from the cytoplasm of Escherichia coli. The purpose of this study was to evaluate four signal peptides (HlyA, TorA, GeneIII, and PelB), representing the most common secretion pathways in E. coli, for their ability to target green fluorescent protein (GFP) for membrane translocation. Signal peptide-GFP genetic fusions were designed in accordance with BioFusion standards (BBF RFC 10, BBF RFC 23). The HlyA signal peptide targeted GFP for secretion to the extracellular media via the type I secretory pathway, whereas TAT-dependent signal peptide TorA and Sec-dependent signal peptide GeneIII exported GFP to the periplasm. The PelB signal peptide was inefficient in translocating GFP. The use of biological technical standards simplified the design and construction of functional signal peptide-recombinant protein genetic devices for type I and II secretion in E. coli. The utility of the standardized parts model is further illustrated as constructed biological parts are available for direct application to other studies on recombinant protein translocation.  相似文献   

14.
Recently, a new protein translocation pathway, the twin-arginine translocation (TAT) pathway, has been identified in both bacteria and chloroplasts. To study the possible competition between the TAT- and the well-characterized Sec translocon-dependent pathways in Escherichia coli, we have fused the TorA TAT-targeting signal peptide to the Sec-dependent inner membrane protein leader peptidase (Lep). We find that the soluble, periplasmic P2 domain from Lep is re-routed by the TorA signal peptide into the TAT pathway. In contrast, the full-length TorA-Lep fusion protein is not re-routed into the TAT pathway, suggesting that Sec-targeting signals in Lep can override TAT-targeting information in the TorA signal peptide. We also show that the TorA signal peptide can be converted into a Sec-targeting signal peptide by increasing the hydrophobicity of its h-region. Thus, beyond the twin-arginine motif, the overall hydrophobicity of the signal peptide plays an important role in TAT versus Sec targeting. This is consistent with statistical data showing that TAT-targeting signal peptides in general have less hydrophobic h-regions than Sec-targeting signal peptides.  相似文献   

15.
Signal peptides are selectively recognized and degraded by membrane associated proteases called as signal peptide peptidases. The hydrolysis of the signal peptide occurs only after its cleavage from the precursor. The possible reasons for this selectivity have been investigated. The results indicate that in signal peptides, leucine residues are clustered to a large extent on the same side of the membrane spanning alpha helix as the polar residues, but are distinctly separated along the length of the axis. Such topological differences in the distribution of amino acids on the surface of the membrane spanning alpha helix may play a crucial role in selective degradation of signal peptides.  相似文献   

16.
The signal peptides of pre-aldehyde dehydrogenase (22-mer) and pre-ornithine transcarbamylase (27-mer) were chemically synthesized and their imports into rat liver mitochondria were studied. Both signal peptides were imported rapidly (within 2 min) in the absence of a membrane potential, exogenous ATP, or rabbit reticulocyte lysate. Signal peptides also were imported into mitochondria treated with a low concentration of trypsin which removed the outer membrane proteins. It was concluded that the chemically synthesized signal peptide could be imported differently than the precursor proteins. The imported signal peptide were found to be associated with both outer and inner membranes. Pulse-chase experiments showed that the import was unidirectional and that the signal peptides associated with inner membranes increased during the chase time. The signal peptides inhibited import of precursor proteins to different extents. Association of signal peptides with inner membrane near or at translocator sites might result in inhibition of precursor import.  相似文献   

17.
李彬  吴敬  陈坚 《工业微生物》2011,41(3):54-59
为了筛选得到利于浸麻类芽孢杆菌Paenibacillus macerans α-环糊精葡萄糖基转移酶(α-CGT酶)分泌表达的信号肽,提高α-CGT酶的分泌表达量,本研究考察了大肠杆菌中外源蛋白分泌表达常用的OmpA、PelB、OmpT和Endoxylanase四个信号肽对重组α-CGT酶在大肠杆菌中胞外表达的影响.在...  相似文献   

18.
Signal peptides direct the export of secretory proteins from the cytoplasm. After processing by signal peptidase, they are degraded in the membrane and cytoplasm. The resulting fragments can have signaling functions. These observations suggest important roles for signal peptide peptidases. The present studies show that the Gram-positive eubacterium Bacillus subtilis contains two genes for proteins, denoted SppA and TepA, with similarity to the signal peptide peptidase A of Escherichia coli. Notably, TepA also shows similarity to ClpP proteases. SppA of B. subtilis was only required for efficient processing of pre-proteins under conditions of hyper-secretion. In contrast, TepA depletion had a strong effect on pre-protein translocation across the membrane and subsequent processing, not only under conditions of hyper-secretion. Unlike SppA, which is a typical membrane protein, TepA appears to have a cytosolic localization, which is consistent with the observation that TepA is involved in early stages of the secretion process. Our observations demonstrate that SppA and TepA have a role in protein secretion in B. subtilis. Based on their similarity to known proteases, it seems likely that SppA and TepA are specifically required for the degradation of proteins or (signal) peptides that are inhibitory to protein translocation.  相似文献   

19.
The twin-arginine translocation (Tat) system is a major pathway for transmembrane translocation of fully folded proteins. In this study, a multivalent vaccine to present foreign antigens on live attenuated vaccine Edwardsiella tarda WED using screened Tat signal peptide was constructed. Because the Tat system increases the yields of folded antigens in periplasmic space or extracellular milieu, it is expected to contribute to the production of conformational epitope-derived specific antibodies. E. tarda Tat signal peptides fused with the green fluorescent protein (GFP) was constructed under the control of an in vivo inducible dps promoter. The resulting plasmids were electroporated into WED and the subcellular localizations of GFP were analyzed with Western blotting. Eight signal peptides with optimized GFP translocation efficiency were further fused to a protective antigen glyceraldehyde-3-phosphate dehydrogenase (GapA) from a fish pathogen Aeromonas hydrophila. Signal peptides of DmsA, NapA, and SufI displayed high efficiency for GapA translocation. The relative percent survival (RPS) of turbot was measured with a co-infection of E. tarda and A. hydrophila, and the strain with DmsA signal peptide showed the maximal protection. This study demonstrated a new platform to construct multivalent vaccines using optimized Tat signal peptide in E. tarda.  相似文献   

20.
Group B Neisseria meningitidis is thus far subdivided into 15 protein serotypes based on antigenically different major outer membrane proteins. Most serotypes have three or four major proteins in their outer membranes. Comparative structural analysis by chymotryptic 125I-peptide mapping was performed on these major proteins from the prototype strains as well as from six non-serotypable strains. The major outer membrane proteins from each of the serotypes were first separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis using the Laemmli system. Individual proteins within the gel slices were radioiodinated and digested with chymotrypsin, and then their 125I-peptides were separated by electrophoresis and chromatography on cellulose thin-layer plates. The peptide maps obtained by autoradiography were categorized into five different structural classes which correlated with the apparent molecular weights of proteins, i.e., 46 +/- 1K, 41 +/- 1K, 38 +/- 1K, 33 +/- 1K, and 28 +/- 1K. Each of the major outer membrane proteins within a strain had a distinctly different chymotryptic peptide map, indicating significant differences in the primary structure of these proteins. In contrast, outer membrane proteins of the same or very similar molecular weight from different serotype strains had similar, occasionally identical peptide maps, indicating a high degree of structural homology. The unique peptides from proteins of the same structural classes were often hydrophilic, whereas common peptides were often hydrophobic, suggesting that the serotype determinants reside within the variable hydrophilic regions of major outer membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号