首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoproduction of hydrogen gas by the green alga Chlorella pyrenoidosa was studied in a large scale culture of 2.1. Hydrogen was produced by adding sodium hydrosulfite directly to an algal suspension after anaerobiosis in darkness for activation of hydrogenase. The hydrogen production rate showed a characteristic course of an initial burst of gas then steady production, and this course appeared most clearly at cell concentrations around 0.6–0.7 kg/m3. In the final third phase, the hydrogen production rate gradually decreased until evolution ceased. The steady hydrogen evolution was inhibited 75% by a herbicide, DCMU, which blocks electron flow through photosystem II, indicating that the electron donor for hydrogen production was mainly water. The average light intensity within the culture vessel was measured with a diffusing sphere photoprobe. The rate of hydrogen evolution increased hyperbolically with the average light intensity. The duration of hydrogen photoproduction was shorter at higher light intensity due to the inhibition of hydrogenase by concomitantly released oxygen. The duration was shorter also at higher concentrations of algal suspension. It was foudd that the optimum concentration of algae, about 0.7 kg/m3 in this system, must be selected to maximize the yield of hydrogen.  相似文献   

2.
Ten seaweed species were surveyed for simultaneous photoevolution of hydrogen and oxygen. In an attempt to induce hydrogenase activity (as measured by hydrogen photoproduction) the seaweeds were maintained under anaerobiosis in CO2-free seawater for varying lengths of time. Although oxygen evolution was observed in every alga studied, hydrogen evolution was not observed. One conclusion of this research is that, in contrast to the microscopic algae, there is not a single example of a macroscopic alga for which the photoevolution of hydrogen has been observed, in spite of the fact that there are now at least nine macroscopic algal species known for which hydrogenase activity has been reported (either by dark hydrogen evolution or light-activated hydrogen uptake). These results are in conflict with the conventional view that algal hydrogenase can catalyze a multiplicity of reactions, one of which is the photoproduction of molecular hydrogen. Two possible explanations for the lack of hydrogen photoproduction in macroscopic algae are presented. It is postulated that electron acceptors other than carbon dioxide can take up reducing equivalents from Photosystem I to the measurable exclusion of hydrogen photoproduction. Alternatively, the hydrogenase system in macroscopic algae may be primarily a hydrogen-uptake system with respect to light-activated reactions. A simple kinetic argument based on recent measurements of the photosynthetic turnover times of simultaneous light-activated hydrogen and oxygen production is presented that supports the second explanation.  相似文献   

3.
Low production rates and sensitivity to O2 are two major obstacles which prevent the technical exploitation of the ability of green algae to produce H2 from water. Both problems were addressed in the present work. The inhibitory effect of O2 on the hydrogen photoproduction of the green alga Chlorella fusca could be minimized by using algal cells which had not yet fully restored their oxygen evolving capacities after an artificially induced chloroplast de/regeneration cycle (de-/regreening). The H2 photoproductivity peaked after 30 h of greening light while the O2 evolution at this time reached only 59% of its normal capacity. The H2PP yields could be further increased if NH4Cl was added to the reaction medium at the beginning of the anaerobic preincubation period. No stimulatory effect was observed when NH4Cl was added just before illumination, i.e. at the end of the 5-h-preincubation period. It is assumed that NH4Cl inhibited the photosynthetic reduction of nitrite, which competed with hydrogen photoproduction indirectly by feedback repression of the NO 2 - /NO 3 - -reductive system. The impacts of the given results on an optimized H2-production in green algae based on photosynthesis are discussed.Abbreviations H2PP H2 photoproduction - H2ase hydrogenase - DA dark adaptation - LRG light regreening - DCMU 3-(3,4-dichlorophenyl)-l, 1-dimethylurea - Dit sodium dithionite - HEPES N-2-hydroxyethylpiperazin-N-2-ethan-sulfonic acid - PS I/II photosystem I/II  相似文献   

4.
Hydrogen photoproduction by eukaryotic microalgae results from a connection between the photosynthetic electron transport chain and a plastidial hydrogenase. Algal H2 production is a transitory phenomenon under most natural conditions, often viewed as a safety valve protecting the photosynthetic electron transport chain from overreduction. From the colony screening of an insertion mutant library of the unicellular green alga Chlamydomonas reinhardtii based on the analysis of dark-light chlorophyll fluorescence transients, we isolated a mutant impaired in cyclic electron flow around photosystem I (CEF) due to a defect in the Proton Gradient Regulation Like1 (PGRL1) protein. Under aerobiosis, nonphotochemical quenching of fluorescence (NPQ) is strongly decreased in pgrl1. Under anaerobiosis, H2 photoproduction is strongly enhanced in the pgrl1 mutant, both during short-term and long-term measurements (in conditions of sulfur deprivation). Based on the light dependence of NPQ and hydrogen production, as well as on the enhanced hydrogen production observed in the wild-type strain in the presence of the uncoupling agent carbonyl cyanide p-trifluoromethoxyphenylhydrazone, we conclude that the proton gradient generated by CEF provokes a strong inhibition of electron supply to the hydrogenase in the wild-type strain, which is released in the pgrl1 mutant. Regulation of the trans-thylakoidal proton gradient by monitoring pgrl1 expression opens new perspectives toward reprogramming the cellular metabolism of microalgae for enhanced H2 production.  相似文献   

5.
Summary The effect of anaerobic (N2+CO2) pre-incubation in the dark on photosynthetic reactions (O2 evolution, measured manometrically and with the oxygraph; fluorescence; and photoproduction of H2, measured with the mass spectrometer) was studied in algae with hydrogenase (strains of Chlorella fusca, C. kessleri, C. vulgaris f. tertia, and Ankistrodesmus braunii) and in algae without hydrogenase (strains of Chlorella vulgaris, C. saccharophila, and C. minutissima).The inhibition by anaerobic incubation of photosynthetic O2 evolution is much stronger in algae without hydrogenase than it is in algae with hydrogenase. The effect of anaerobiosis is most pronounced at rather low light intensity (about 1000 lux), in acid medium (pH 4), and after prolonged anaerobic incubation in the dark (about 20 h). These results indicate that the presence of hydrogenase might be ecologically advantageous for algae under certain conditions.Chlorophyll fluorescence showed the fastest response to anaerobic incubation, and the most pronounced difference between algae with and without hydrogenase. After only 30 min under N2+CO2, fluorescence in algae with hydrogenase starts with a peak and decreases within 10 to 20 sec to a rather low steady-state level which is only slightly higher than that found under aerobic conditions. In algae without hydrogenase, fluorescence is rather low during the first 1 to 2 sec and then rises to a higher steady-state level which is much higher than that of the aerobic controls. This indicates an inhibition due to anaerobiosis of photosystem II in algae without hydrogenase.Algae with hydrogenase can react in different ways during the first minutes of illumination. In some cases there is an immediate photoproduction of H2, which is followed after a few minutes by photosynthetic O2 evolution; in other algae there is a simultaneous production of H2 and O2 from the very beginning; in a few experiments there was no photoproduction of H2 at all, and in this case there was no photosynthetic O2 evolution either. Thus, photoproduction of H2 seems to be the process which normally enables algae with hydrogenase to oxidise and thereby activate their photosynthetic electron transport system after anaerobic incubation.A mass spectrometric search for nitrogen fixation (using N2 and acetylene) in eucaryotic green algae gave negative results, even with species containing hydrogenase and under anaerobic conditions.  相似文献   

6.
Hydrogen production by C. reinhardtii seems a promising alternative as a source of non-polluting biofuel. Hydrogen is generated as a result of combining free protons and electrons (supplied by ferredoxin) through the activity of an oxygen-sensitive hydrogenase. Thus, substantial hydrogen production is only observed in the light under anaerobic conditions. These require a reduced rate of photosynthetic oxygen evolution which is usually achieved by impairing photosystem II through sulphur starvation. Several approaches have been conducted to enhance and extend hydrogen production by addressing problems such as the mechanism of hydrogenase inhibition by oxygen, the stressing impact on the cells of the culture conditions, the use of starch as an alternate source of electrons under reduced photosynthetic activity, and the need of maintaining a balance between oxygen evolution and consumption. The photosynthetic enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) appears as suitable objective for biotechnological optimization of hydrogen production because of its relevance controlling the hydrogenase main competitor electron sink (the Calvin-Benson cycle), as well as starch accumulation and photorespiratory oxygen consumption. Possible strategies for increasing hydrogen generation based on alteration of Rubisco properties and/or catabolism through site-directed mutagenesis are discussed.  相似文献   

7.
Franziska Gutthann 《BBA》2007,1767(2):161-169
In cyanobacterial membranes photosynthetic light reaction and respiration are intertwined. It was shown that the single hydrogenase of Synechocystis sp. PCC 6803 is connected to the light reaction. We conducted measurements of hydrogenase activity, fermentative hydrogen evolution and photohydrogen production of deletion mutants of respiratory electron transport complexes. All single, double and triple mutants of the three terminal respiratory oxidases and the ndhB-mutant without a functional complex I were studied. After activating the hydrogenase by applying anaerobic conditions in the dark hydrogen production was measured at the onset of light. Under these conditions respiratory capacity and amount of photohydrogen produced were found to be inversely correlated. Especially the absence of the quinol oxidase induced an increased hydrogenase activity and an increased production of hydrogen in the light compared to wild type cells. Our results support that the hydrogenase as well as the quinol oxidase function as electron valves under low oxygen concentrations. When the activities of photosystem II and I (PSII and PSI) are not in equilibrium or in case that the light reaction is working at a higher pace than the dark reaction, the hydrogenase is necessary to prevent an acceptor side limitation of PSI, and the quinol oxidase to prevent an overreduction of the plastoquinone pool (acceptor side of PSII). Besides oxygen, nitrate assimilation was found to be an important electron sink. Inhibition of nitrate reductase resulted in an increased fermentative hydrogen production as well as higher amounts of photohydrogen.  相似文献   

8.
Hydrogen peroxide production by blue-green algae (cyanobacteria) under photoautotrophic conditions is of great interest as a model system for the bioconversion of solar energy. Our experimental system was based on the photosynthetic reduction of molecular oxygen with electrons from water by Anacystis nidulans 1402-1 as the biophotocatalyst and methyl viologen as a redox intermediate. It has been demonstrated that the metabolic conditions of the algae in their different growth stages strongly influence the capacity for hydrogen peroxide photoproduction, and so the initial formation rate and net peroxide yield became maximum in the mid-log phase of growth. The overall process can be optimized in the presence of certain metabolic inhibitors such as iodoacetamide and p-hydroxymercuribenzoate, as well as by permeabilization of the cellular membrane after drastic temperature changes and by immobilization of the cells in inert supports such as agar and alginate.  相似文献   

9.
Hydrogen is definitely one of the most acceptable fuels in the future. Some photosynthetic microorganisms, such as green algae and cyanobacteria, can produce hydrogen gas from water by using solar energy. In green algae, hydrogen evolution is coupled to the photosynthetic electron transport in thylakoid membranes via reaction catalyzed by the specific enzyme, (FeFe)-hydrogenase. However, this enzyme is highly sensitive to oxygen and can be quickly inhibited when water splitting is active. A problem of incompatibility between the water splitting and hydrogenase reaction can be overcome by depletion of algal cells of sulfur which is essential element for life. In this review the mechanisms underlying sustained hydrogen photoproduction in sulfur deprived C. reinhardtii and the recent achievements in studying of this process are discussed. The attention is focused on the biophysical and physiological aspects of photosynthetic response to sulfur deficiency in green algae.  相似文献   

10.
关于生物制氢   总被引:3,自引:0,他引:3  
简述了生物制氢发展过程及现今取得的成果。经济发展和人类对能源需求造成了诸如环境污染、常规能源短缺等一系列问题。因此 ,作为一种新型、可再生能源 ,氢能研究已经受到了人们高度重视。与其它制氢方法相比 ,生物制氢有着突出的优点 ,尤其是藻类利用太阳能光解水制氢 ,使人们看到了解决能源问题的希望。  相似文献   

11.
The role of photosystem II in hydrogen photoproduction by Chlamydomonas reinhardtii cells was studied in mutants with modified D1-protein. In D1-R323D and D1-R323L mutants, the replacement of arginine by aspartate or leucine, respectively, resulted in the disruption of electron transport at the donor side of photosystem II. The rate of oxygen evolution in D1-R323D decreased twice as compared to the pseudo-wild type (pWT), and in D1-R323L no oxygen evolution was detected. The latter mutant was not capable of photoautotrophical growth. The dynamics of changes in oxygen content, the reduction of photosystem II active reaction centers (deltaF/F(1)m), and hydrogen production rate in pWT were found to be similar to the wild type if cultivated under sulfur deprivation in a closed bioreactor. The observed gradual decrease in the deltaF/F(1)m value turned to a sharp drop almost to zero followed by a partial recovery during which the production of hydrogen set in. The transition to the anaerobic phase in D1-R323D cultured in a sulfur-deprived medium occurred earlier than it happened in pWt under the same conditions. However, the partial recovery of photosystem II activity and hydrogen production started at a later time, and the rate of hydrogen production was low. The D1-R323L mutant incapable of oxygen evolution entered the rapidly anaerobiosis but produced no hydrogen. The kinetics of photoinduced redox transitions in P700 was similar in all investigated strains and was not affected by diuron addition. This implies that the mutants had a pool of reducers, which could donate electrons through the quinone pool or cytochrome to photosystem I. However, in D1-R323L mutant lacking the active photosystem II, this condition was not sufficient to support hydrogenase activity.  相似文献   

12.
Several blue-green algae were surveyed for the occurrence of the hydrogenase which was assayed by the oxyhydrogen or Knallgas reaction in the intact organisms. In aerobically grown cultures, the reaction was detectable in Anabaena cylindrica, Nostoc muscorum and in two Anabaena variabilis species, whereas virtually no activity was observed in Anacystis nidulans and Cyanophora paradoxa. In these latter two algae, the reaction was, however, found after growth under molecular hydrogen for several days, which drastically increased the activity levels with all the algae tested. In the nitrogen fixing species, the activity of the Knallgas reaction was enhanced when all combined nitrogen was omitted from the media. H2 and hydrogenase could not significantly support the CO2-fixation in photoreduction experiments with all blue-green algae investigated here. Hydrogenase was assayed by the dithionite and methyl viologen dependent evolution of hydrogen and was found to be present with essentially the same specific activity levels in preparations of both heterocysts and vegetative cells from Anabaena cylindrica. Na2S2O4 as well as H2 supported the C2H2-reduction of the isolated heterocysts. The H2-dependent C2H2-reduction did not require the presence of oxygen but was strictly light-dependent where H2 served as an electron donor to photosystem I of these cells. It is concluded that hydrogen can be utilized by two different pathways in blue-green algae.Abbreviations Chl chlrophyll - CP creatine phosphate - CP kinase creatine phosphokinase - DCMU N-(3,4-dichlorophenyl)N,N-dimethylurea  相似文献   

13.
A mass spectrometer inlet and an oxygen electrode in the same vessel allowed the continuous recording of the gases exchanged (H2, CO2, O2) by hydrogenase-containing anaerobically adapted Scenedesmus obliquus strain D3 (Gaffron) and Chlorella fusca Shihira et Krauss (= pyrenoidosa) 211-15. A light intensity which produces more photosynthetic oxygen than the cells can re-reduce to water leads to de-adaptation and the substitution of normal photosynthesis for photoreduction. The sequence of these metabolic events was recorded in a matter of a few minutes. Upon exposure of these adapted algae to light, an evolution of hydrogen lasting up to 60 seconds preceded any other light-dependent gas exchange. In the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea, this initial hydrogen production was inhibited approximately 50%, pointing to a contribution of electrons by photosystem II. At very low hydrogen tensions (0.1 microliter per milliliter), a balance between light-induced production and absorption of hydrogen was observed in normal, unpoisoned algae. Addition of either glucose or inhibitors of phosphorylation increased the release of hydrogen in the light very considerably. When the light was turned off the algae consumed the remaining amount of hydrogen, only to release it again upon illumination. This reversible hydrogen exchange persisted even when any concomitant carbon dioxide exchange had been abolished.  相似文献   

14.
Hydrogen photoproduction from water in Scenedesmus cells requires removal of oxygen by a reagent in contact with the algae. Both deoxyhemoglobin and deoxymyoglobin stimulated hydrogen production by reversible absorption of oxygen. Their effectiveness was greatly increased when other oxygen-combining reagents were present in a separate chamber with deoxyhemoglobin and deoxymyoglobin serving as reversible oxygen transfer agents.  相似文献   

15.
Continuous photoproduction of H(2) by the green alga, Chlamydomonas reinhardtii, is observed after incubating the cultures for about a day in the absence of sulfate and in the presence of acetate. Sulfur deprivation causes the partial and reversible inactivation of photosynthetic O(2) evolution in algae, resulting in the light-induced establishment of anaerobic conditions in sealed photobioreactors, expression of two [FeFe]-hydrogenases in the cells, and H(2) photoproduction for several days. We have previously demonstrated that sulfur-deprived algal cultures can produce H(2) gas in the absence of acetate, when appropriate experimental protocols were used (Tsygankov, A.A., Kosourov, S.N., Tolstygina, I.V., Ghirardi, M.L., Seibert, M., 2006. Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautotrophic conditions. Int. J. Hydrogen Energy 31, 1574-1584). We now report the use of an automated photobioreactor system to compare the effects of photoautotrophic, photoheterotrophic and photomixotrophic growth conditions on the kinetic parameters associated with the adaptation of the algal cells to sulfur deprivation and H(2) photoproduction. This was done under the experimental conditions outlined in the above reference, including controlled pH. From this comparison we show that both acetate and CO(2) are required for the most rapid inactivation of photosystem II and the highest yield of H(2) gas production. Although, the presence of acetate in the system is not critical for the process, H(2) photoproduction under photoautotrophic conditions can be increased by optimizing the conditions for high starch accumulation. These results suggest ways of engineering algae to improve H(2) production, which in turn may have a positive impact on the economics of applied systems for H(2) production.  相似文献   

16.
Photobiological hydrogen production has recently attracted interest in terms of being a potential source for an alternative energy carrier. Especially the natural light driven hydrogen metabolism of unicellular green algae appears as an attractive blueprint for a clean and potentially unlimited dihydrogen source. However, the efficiency of in vivo systems is limited by physiological and evolutionary constraints and scientists only begin to understand the regulatory networks influencing cellular hydrogen production. A growing number of projects aim at circumventing these limitations by focusing on semi-artificial systems. They reconstitute parts of the native electron transfer chains in vitro, combining photosystem I as a photoactive element with a proton reducing catalytic element such as hydrogenase enzymes or noble metal nanoparticles. This review summarizes various approaches and discusses limitations that have to be overcome in order to establish economically applicable systems.  相似文献   

17.
An investigation was made of certain factors involved in the formation of hydrogen gas, both in an anaerobic environment (argon) and in air, by the blue-green alga Anabaena cylindrica. The alga had not been previously adapted under hydrogen gas and hence the hydrogen evolution occurred entirely within the nitrogen-fixing heterocyst cells; organisms grown in a fixed nitrogen source, and which were therefore devoid of heterocysts, did not produce hydrogen under these conditions. Use of the inhibitor dichlorophenyl-dimethyl urea showed that hydrogen formation was directly dependent on photosystem I and only indirectly dependent on photosystem II, consistent with heterocysts being the site of hydrogen formation. The uncouplers carbonyl cyanide chlorophenyl hydrazone and dinitrophenol almost completely inhibited hydrogen formation, indicating that the process occurs almost entirely via the adenosine 5′-triphosphate-dependent nitrogenase. Salicylaldoxime also inhibited hydrogen formation, again illustrating the necessity of photophosphorylation. Whereas hydrogen formation could usually only be observed in anaerobic, dinitrogen-free environments, incubation in the presence of the dinitrogen-fixing inhibitor carbon monoxide plus the hydrogenase inhibitor acetylene resulted in significant formation of hydrogen even in air. Hydrogen formation was studied in batch cultures as a function of age of the cultures and also as a function of culture concentration, in both cases the cultures being harvested in logarithmic growth. Hydrogen evolution (and acetylene-reducing activity) exhibited a distinct maximum with respect to the age of the cultures. Finally, the levels of the protective enzyme, superoxide dismutase, were measured in heterocyst and vegetative cell fractions of the organism; the level was twice as high in heterocyst cells (2.3 units/mg of protein) as in vegetative cells (1.1 units/mg of protein). A simple procedure for isolating heterocyst cells is described.  相似文献   

18.
Hydrogen production was studied in the following rumen anaerobes: Bacteroides clostridiiformis, Butyrivibrio fibrisolvens, Enbacterium limosum, Fusobacterium necrophorum, Megasphaera elsdenii, Ruminococcus albus, and Ruminococcus flavefaciens. Clostridium pasteurianum and Escherichia coli were included for comparative purposes. Hydrogen production from dithionite, dithionite-reduced methyl viologen, pyruvate, and formate was determined. All species tested produced hydrogen from dithionite-reduce methyl viologen, but only C. pasteurianum, B. clostridiiformis, E. limosum, and M. elsdenii produced hydrogen from dithionite. All species except E. coli produced hydrogen from pyruvate, but activity was low or absent in extracts of E. limosum, F. necrophorum, R. albus, and R. flavefaciens unless methyl viologen was added. Hydrogen was produced from formate only by E. coli, B. clostridiiformis, E. limosum, F. necrophorum, and R. flavefaciens. Extracts were subjected to ultracentrifugation in an effort to determine the solubility of hydrogenase. The hydrogenase of all species except E. coli appeared to be soluble, although variable amounts of hydrogenase activity were detected in the pellet. Treatment of extracts of the rumen microbial species with DEAE-cellulose resulted in loss ofhydrogen production from pyruvate. Activity was restored by the addition of methyl viologen. It is concluded that hydrogen production in these rumen microorganisms is similar to that in the saccharolytic clostridia.  相似文献   

19.
Muallem A  Hall DO 《Plant physiology》1982,69(5):1116-1120
The photoproduction of hydrogen by 2-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-inhibited chloroplasts from ascorbate under anaerobic conditions was studied in the pH range 5.0 to 7.5 using methyl viologen (MV), N,N,N′,N′-tetramethyl-P-phenylenediamine (TMPD), and excess hydrogenase from Desulfovibrio desulfuricans. (a) At neutral and basic pHs, the photoreduction of MV, which reacted back with photoxidized ascorbate (dehydroascorbate [DHASC]), and the rates of H2 photoproduction were very low. The slow H2 photoproduction was explained by the reversible reduction of MV by the photoproduced H2 (catalyzed by hydrogenase) and its reoxidation by DHASC resulting in H2 uptake. (b) At pH 5.2, relatively high initial rates of H2 photoproduction were obtained, which were comparable to the rates of O2 consumption at pH 5.2 by photosystem I (catalyzed by photoreduced MV). However, accumulation of photoreduced MV under anaerobic conditions was not detected. In the presence of high concentrations of protons, the H2 uptake by DHASC was very slow because the equilibrium concentration of H2-reduced MV was very small, thus allowing H2 evolution mediated by photoreduced MV to compete with the back reaction with DHASC. (c) The continuous accumulation of DHASC, which was generated together with H2, gradually slowed the H2 evolution until it stopped after about 3 hours. At high concentrations, DHASC was able to compete with the coupling of photoreduced MV to hydrogenase and H2 evolution. (d) Dithiothreitol (DTT) reduced the DHASC and consequently competed with the back reaction of the photoreduced and H2-reduced MV with DHASC. DTT thus prolonged the time period of H2 photoproduction from ascorbate and abolished the dependence of its rate on pH in the range of 5.2 to 7.5 (e) A study of H2 uptake by chemically oxidized ascorbate (in the dark) showed that MV and hydrogenase were both required to catalyze electron transfer from H2 to DHASC. TMPD prevented this H2 consumption by DHASC (in a chloroplast reaction mixture containing MV and hydrogenase). Illumination restored the H2 uptake presumably by generating reduced MV which activated the hydrogenase.  相似文献   

20.
绿藻光合生物制氢技术进展   总被引:2,自引:0,他引:2  
氢能作为可再生、环境友好的能源,已成为营造可持续发展的经济节约型社会的理想能源。绿藻因能利用光能分解水产氢,被称为最有应用前景的方法之一。本文将综述绿藻光合产氢的原理,介绍该生物制氢技术的研究现状和最新进展,并对其发展趋势做以展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号