首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A collagen was isolated from Drosophila E85, Schneider line 2L and Kc cell cultures. The purified protein was characterized and antibodies were raised against it. Immunofluorescence microscopy locates this material to the regions of basement membranes of Drosophila embryos, larvae, and adults. The molecules are mostly, or entirely, homotrimers of one polypeptide chain linked by interchain disulfide bonds. The partial amino acid sequences of a cyanogen bromide cleavage product of this chain are identical with a part of the virtual translation product of the Drosophila pro alpha 1(IV) nucleotide sequence that is reported in the accompanying paper. This gene is at Drosophila chromosome location 25C and was identified by the high homology of one part of it with the noncollagenous carboxyl terminus (NC1) of vertebrate type IV basement membrane collagens (Blumberg, B., MacKrell, A. J., Olson, P. F., Kurkinen, M., Monson, J. M., Natzle, J. E., and Fessler, J. H. (1987) J. Biol. Chem. 262, 5947-5950). In the electron microscope each molecule appears as a thread with a knob at one end, which contains the carboxyl peptide domains. The variation of flexibility of the thread was mapped along its length. Pulse-chase labeling of cell cultures showed that these molecules associate into disulfide-linked dimers and higher oligomers that can be partly separated by velocity sedimentation and are resolved by sodium dodecyl sulfate-agarose gel electrophoresis. Dimers and higher oligomers formed by overlap of the amino ends of molecules were found. Mild pepsin digestion of Drosophila embryos and larvae solubilized the corresponding disulfide-linked collagen molecules, and Staphylococcus aureus V8 protease peptide maps showed the identity of the collagen derived from animals and from cell cultures. Individual, native molecules have a sedimentation coefficient s20,w = 4.1 S, the dichroic spectrum and amino acid composition of a collagen, and a Tm = 31 degrees C. Positive in situ hybridization with a specific probe for this collagen began 6-8 h after egg laying and showed message in the locations of embryos and larvae which reacted with the antibodies. This included some prominent individual cells in the hemolymph.  相似文献   

2.
We have determined the primary structure of the alpha 1(IV)-chain of human type IV collagen by nucleotide sequencing of overlapping cDNA clones that were isolated from a human placental cDNA library. The present data provide the sequence of 295 amino acids not previously determined. Altogether, the alpha 1(IV)-chain contains 1642 amino acids and has a molecular mass of 157625 Da. There are 1413 residues in the collagenous domain and 229 amino acids in the carboxy-terminal globular domain. The human alpha 1(IV)-chain contains a total of 21 interruptions in the collagenous Gly-X-Y repeat sequence. These interruptions vary in length between two and eleven residues. The alpha 1(IV)-chain contains four cysteine residues in the triple-helical domain, four cysteines in the 15-residue long noncollagenous sequence at the amino-terminus and 12 cysteines in the carboxy-terminal NC-domain.  相似文献   

3.
A cDNA clone coding for the entire bovine alpha 1-antitrypsin molecule has been isolated from a lambda gt11 bovine liver cDNA library using a human alpha 1-antitrypsin cDNA as a probe. The bovine cDNA was sequenced by the dideoxynucleotide chain termination method. Comparison of the translated amino acid sequence of the bovine alpha 1-antitrypsin with those of the human, baboon, sheep, rat and mouse demonstrates the preservation of most of the critical structural determinants. The bovine and the sheep molecules have a sequence homology of 94% and both the molecules contain four cysteine residues; there is only one cysteine in the others.  相似文献   

4.
J A Eble  R Golbik  K Mann    K Kühn 《The EMBO journal》1993,12(12):4795-4802
Cells interact with type IV collagen mainly via the integrins alpha 1 beta 1 and alpha 2 beta 1. A triple helical CNBr derived fragment CB3[IV], which contains the recognition sites for both integrins, was isolated from type IV collagen. Trypsin treatment of CB3[IV] gave rise to four smaller fragments, F1-F4, of which the smallest one, F4, contained the recognition site for alpha 1 beta 1. Further fragmentation of F4 by thermolysin treatment at 50 degrees C led to fragment TL1, which represents the C-terminal half of F4, and which was no longer able to interact with alpha 1 beta 1. Therefore the recognition site of alpha 1 beta 1 had to be located within the N-terminal half of F4, a position which was verified by electron micrographs of a crosslinked F2-alpha 1 beta 1 complex. Modification of the Arg and Asp residues, which abolished the binding activity of F4, led to the identification of Arg (461) within the alpha 2(IV) and Asp (461) within the alpha 1 (IV) chain as essential residues for the alpha 1 beta 1. The array of these two residues on the surface of the triple helix is discussed.  相似文献   

5.
6.
The cDNA and protein sequences of the N-terminal 60% of the alpha 2(IV) chain of human basement membrane collagen have been determined. By repeated primer extension with synthetic oligodeoxynucleotides and mRNA from either HT1080 cells or human placenta overlapping clones were obtained which cover 3414 bp. The derived protein sequence allows for the first time a comparison and alignment of both alpha chains of type IV collagen from the N terminus. This alignment reveals an additional 43 amino acid residues in the alpha 2(IV) chain as compared to the alpha 1(IV) chain. 21 of these additional residues form a disulfide-bridged loop within the triple helix which is unique among all known collagens.  相似文献   

7.
A new procedure for the synthesis of double stranded cDNA, based upon release of mRNA by "in vitro" translation, was used to clone type IV collagen. Collagen synthesizing polysomes selectively isolated from a mouse parietal yolk sac carcinoma (PYS-2) were used for translation in an heterologous cell-free system. Translation products were collagenase-sensitive and displayed an electrophoretic mobility correspondent to type IV collagen. Translation released mRNA was employed to construct a 100 base pairs long cDNA clone which hybridized to a 7,800 nucleotides long mRNA. Peptides synthesized by "in vitro" translation of hybrid selected mRNA displayed an electrophoretic mobility compatible with that of alpha 1 (IV) collagen, were sensitive to collagenase and were immunoprecipitated by anti-type IV collagen antibody.  相似文献   

8.
Six cDNA clones add 3549 nucleotides to the DNA sequence of the alpha 1 chain of basement membrane (type IV) collagen. Thus the complete nucleotide and derived amino acid sequence of the alpha 1 type IV collagen with 5007 nucleotides coding for 1669 amino acids with a calculated Mr of 160,827 is known. The six cDNA clones cover the putative N-terminal signal peptide, the 7 S region and two thirds of the helical region extending into the previously published murine nucleotide sequence [(1986) Gene 43, 301]. The protein sequence for 289 amino acids of the helical region adjacent to the 7 S region has not previously been published for any species.  相似文献   

9.
10.
A cDNA encoding the complete open reading frame of murine alpha 1-antitrypsin has been cloned and sequenced. The nucleic acid and predicted amino acid sequences show homology to human alpha 1-antitrypsin and demonstrate the preservation of critical structural determinants for intracellular targeting, carbohydrate attachment, and catalytic function. The alpha 1-antitrypsin gene locus (Aat) has been localized on murine chromosome 12E----F by in situ hybridization.  相似文献   

11.
12.
A cDNA coding for the non-histone chromosomal protein HMG-I, or its isoform HMG-Y, was isolated from a murine Friend cell library using synthetic oligonucleotide hybridization probes. Sequence analysis showed that the 1670-base pair full length cDNA insert consists of a 201-base pair, G/C-rich (74%), 5'-untranslated region, a 288-base pair amino acid coding sequence, and an unusually long 1182-base pair 3'-untranslated region. The deduced 96-residue amino acid coding sequence of the murine HMG-I(Y) cDNA is very similar to the reported amino acid sequence of human HMG-I, except that it lacks 11 internal amino acids reported in the human protein. Based on Southern blot hybridization analysis of genomic DNA, there appear to be fewer than five copies of HMG-I(Y) genes in the haploid murine genome. These murine HMG-I(Y) genes contain a large (at least 890 base pairs) exon that includes most, or all, of the 3'-untranslated region; whereas the much shorter 5'-untranslated region and amino acid coding sequences are interrupted by at least one intron. A single size class (approximately 1700 nucleotides in murine cells and 2000 nucleotides in human cells) of HMG-I(Y) mRNAs was detected at high levels in total RNA extracts from rapidly dividing, transformed cells, but to a lesser extent, or not at all, in extracts from slowly or non-dividing cells.  相似文献   

13.
14.
15.
16.
Overlapping cDNA clones were isolated for human type II procollagen. Nucleotide sequencing of the clones provided over 2.5 kb of new coding sequences for the human pro alpha 1(II) gene and the first complete amino acid sequence of type II procollagen from any species. Comparison with published data for cDNA clones covering the entire lengths of the human type I and type III procollagens made it possible to compare in detail the coding sequences and primary structures of the three most abundant human fibrillar collagens. The results indicated that the marked preference in the third base codons for glycine, proline and alanine previously seen in other fibrillar collagens was maintained in type II procollagen. The domains of the pro alpha 1(II) chain are about the same size as the same domains of the pro alpha chains of type I and type III procollagens. However, the major triple-helical domain is 15 amino acid residues less than the triple-helical domain of type III procollagen. Comparison of hydropathy profiles indicated that the alpha chain domain of type II procollagen is more similar to the alpha chain domain of the pro alpha 1(I) chain than to the pro alpha 2(I) chain or the pro alpha 1(III) chain. The results therefore suggest that selective pressure in the evolution of the pro alpha 1(II) and pro alpha 1(I) genes is more similar than the selective pressure in the evolution of the pro alpha 2(I) and pro alpha 1(III) genes.  相似文献   

17.
Renal basement membranes are believed to contain five distinct type IV collagens. An understanding of the specific roles of these collagens and the specificities of their interactions will be aided by knowledge of their comparative structures. Genes for alpha 1(IV), alpha 2(IV), alpha 3(IV), and alpha 5(IV) have been cloned and the deduced peptide sequences compared. A fifth chain, alpha 4(IV), has been identified in glomerular and other basement membranes. Using a polymerase chain reaction-based strategy and short known peptide sequences from the noncollagenous domain (NC1), we have cloned and characterized partial bovine cDNAs of alpha 4(IV). Sequence analysis shows that this molecule has characteristic features of type IV collagens including an NH2-terminal Gly-X-Y domain which is interrupted at several points and a COOH-terminal NC1 domain with 12 cysteine residues in positions identical to those of other type IV collagens. Within the NC1 domain bovine alpha 4(IV) has 70, 59, 58, and 53% amino acid identity with human alpha 2(IV), alpha 1(IV), alpha 5(IV), and alpha 3(IV), respectively. Alignment of the peptides also shows that alpha 4(IV) is most closely related to alpha 2(IV). Nevertheless, in the extreme COOH-terminal region of the NC1 domain there are structural features that are unique to alpha 4(IV). Cloning of the region of alpha 4(IV) that encodes the NC1 domain allows comparison of all five type IV collagens and highlights certain regions that are likely to be important in the specificities of NC1-NC1 interactions and in other discriminant functions of these molecules.  相似文献   

18.
The noncollagenous domain hexamer of collagen IV from bovine glomerular basement membrane was further investigated to determine the types of collagen chain from which subunits M2*b and M3 are derived. M2*b was shown to be a shorter form, containing 9 fewer residues, of M2*a which was previously established as the noncollagenous domain of a third chain, alpha 3, of collagen IV (Saus, J., Wieslander, J., Langeveld, J.P.M., Quinones, S., and Hudson, B.G. (1988) J. Biol. Chem. 263, 13374-13380). M3 was identified as the noncollagenous domain of a fourth chain, alpha 4, of type IV collagen, on the basis of additional sequence data together with previous findings. A comparison of the collagenous-noncollagenous junction regions of alpha 3(IV) and alpha 4(IV) chains with those of classical alpha 1(IV) and alpha 2(IV) chains reveals structural information which provides a potential strategy for molecular cloning of these novel chains. The results further reveal the complexity of electrophoresis patterns of the hexamer and potential ambiguities in using one-dimensional patterns to determine whether molecular defects of collagen IV occur in pathological processes affecting basement membranes.  相似文献   

19.
20.
Interaction with the extracellular matrix is important for the proliferation and differentiation of cells during development. A specialized extracellular matrix, basement membrane, is built around a scaffold of procollagen IV molecules. We report the sequence of a 2.5-kilobase cDNA which contains the carboxyl end of a Drosophila melanogaster procollagen IV. The amino acid sequence of the carboxyl-terminal domain, which forms an essential intermolecular linkage between procollagen IV molecules, is 59% identical in Drosophila and vertebrate procollagens IV, and an additional 17% of residues are conservatively substituted. This implies that the nature of the linkage is also conserved. We suggest that intermolecular junctions through procollagen IV carboxyl domains are fundamental elements of the molecular architecture of Metazoan basement membranes and have been conserved during evolution. The isolation and identification of this basement membrane collagen gene of Drosophila will help in deducing the function of procollagen IV in basement membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号