首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The specific action of a pig skin fraction enriched in epidermal G1-chalone, a tissue-specific inhibitor of epidermal DNA synthesis, was investigated by means of flow cytofluorometry. The results indicate that G1-chalone inhibits progression of partially synchronized rat tongue epithelial cells (line RTE-2) through the cell cycle at a point 2 h prior to the beginning of the S-phase. Approximately 8 h after chalone addition, the cells can overcome the inhibition and begin to enter the S-phase. The duration of this delay is concentration-independent, but the fraction of cells affected is proportional to the chalone concentration. The progression of cells which already have entered S-phase is not affected. In contrast to the G1-chalone preparation, aphidicolin, a potent inhibitor of DNA polymerase alpha, clearly shows S-phase-specific inhibition. These results indicate that the epidermal G1-chalone inhibits epidermal cell proliferation in a fully reversible manner by a highly specific effect on cell cycle traverse.  相似文献   

2.
The specific action of a pig skin fraction enriched in epidermal G1-chalone, a tissuespecific inhibitor of epidermal DNA synthesis, was investigated by means of flow cytofluorometry. The results indicate that G1-chalone inhibits progression of partially synchronized rat tongue epithelial cells (line RTE-2) through the cell cycle at a point 2 h prior to the beginning of the S-phase. Approximately 8 h after chalone addition, the cells can overcome the inhibition and begin to enter the S-phase. The duration of this delay is concentrationindependent, but the fraction of cells affected is proportional to the chalone concentration. The progression of cells which already have entered S-phase is not affected. In contrast to the G1-chalone preparation, aphidicolin, a potent inhibitor of DNA polymerase α, clearly shows S-phase-specific inhibition. These results indicate that the epidermal G1-chalone inhibits epidermal cell proliferation in a fully reversible manner by a highly specific effect on cell cycle traverse.  相似文献   

3.
A cut was made on the ear conch of mouse and an extract containing epidermal chalone was injected subcutaneously 2 days later. The time changes after the chalone administration in the number of cells labeled with 3H-thymidine, in the number of grains on labeled cells and in the number of mitoses within the regenerating epidermis surrounding the wound were investigated by means of autoradiography (ARG). Grain counts decreased temporarily in early phase (0–2 h) after chalone injection. This decrease in grain count resulted in a decrease in the number of labeled cells on the ARG of a short exposure but not in that on the ARG of a long exposure. A decrease in the number of labeled cells on the ARG of a long exposure was evident at 6 h when the grain counts reverted to a level similar to the control without chalone. The number of mitoses reached a minimum at 2 h and then recovered quickly, indicating a rapid disappearance of the inhibition of cells in G 2 from entering M phase. Mitoses decreased again thereafter, presumably as a result caused by inhibition of cells in the preceding S phase from completing DNA synthesis. The extract made similarly from liver or kidney affected neither the mitotic nor the DNA synthetic activities.These results indicate that the epidermal chalone or chalones inhibit the epidermal cell proliferation in, at least, 3 different processes of the cell cycle; the DNA synthesis in S phase, the transition from G 1 to S phase and the transition from G 2 to M phase.  相似文献   

4.
The effect of various fractions of chalone--containing preparation from ascyte Ehrlich's tumour obtained by high performance liquid chromatography (HPLC) on mitotic activity and DNA synthesis in the tumour has been studied. After filtration the division of active chalone component which inhibits entering cells into M-phase and S-phase took place. The component inhibiting DNA synthesis eluated with G1-chalone.  相似文献   

5.
The effect of various fractions of chalone-containing preparation from ascite Ehrlich's tumour obtained by gel filtration on ultragel Ac-A-44 on mitotic activity and DNA synthesis in the tumour has been studied. The chalone-containing preparation (alcohol precipitate) was shown to suppress entering of tumour cells into M- and S-phase and DNA synthesis. After gel filtration, the partial division of active chalone component which inhibits entering of cells into M- and S-phase took place. The component inhibiting DNA synthesis eluted with G1-chalone.  相似文献   

6.
The cell kinetic effect of two intraperitoneal (IP) injections of 5 mg of crude lyophilized skin extracts given 12 h apart was assessed during the recovery period (5 to 52 h after last injection) by measuring epidermal labelling indices and the specific activity after tritiated thymidine (3HTdR) injection, and by determining the cell cycle phase distribution by flow cytometry. The skin extracts produced an epidermal chalone effect and inhibited both DNA synthesis and mitosis. A slow recovery took place from 5 to between 22 and 36 h after the last chalone injection. During this period the cell flux into DNA-synthesis and mitosis slowly recovered, but the exits were blocked and cells accumulated in the respective phases. The fluxes out opened up at the S phase about 22 h, and at the M phase about 30 h after the second chalone injection. A secondary inhibitory effect was observed at about 40 h, followed by a subsequent recovery to normal at 52 h. The similarity between the recovery kinetics after chalone and that observed after hydroxyurea (HU) is emphasised.  相似文献   

7.
Ehrlich Ascites Tumor (EAT) chalone has been shown to inhibit nascent DNA synthesis by inhibiting DNA polymerase alpha and beta (Nakai, 1976), but one of the problems in studying eurkaryotic DNA replication has been the relative impermeability of the cell membrane to precursors and macromolecules; hence, to circumvent this restriction without sacrificing the integrity of the replication process, a broken cell system utilizing nuclei in aqueous media was investigated. Isolated nuclei appear to continue the process of DNA replication that was proceeding in vivo before their isolation and under optimal concitions are able to initiate new synthesis (Fraser & Huberman, 1977). The effects of partially purified EAT chalone on nascent DNA could be studied directly in this nuclear system, which excluded effects of the cell membrane, nucleotide pools and other cytosol elements. A concentration-related inhibition of [3H]thymidine triphosphate ([3H]dTTP) incorporation was noted over a chalone range of 50-200 micrograms/ml. It appears that chalone can inhibit DNA polymerase alpha directly within the nucleus without an intermediate step such as a cell membrane receptor.  相似文献   

8.
A relatively rapid chalone assay using inhibition of purified calf thymus DNA polymerase alpha by Ehrlich Ascites Cell (EAC) chalone has been performed. The DNA polymerase alpha was inhibited in a concentration-related fashion by partially purified EAC chalone ranging from 10 to 200 micrograms/ml. Spermidine was also tested since there has been some suggestion that chalone may be spermidine; we found no effect of spermidine at 170 and 230 microM, but marked inhibition at 33 mM. This assay should facilitate chalone purification, since chalone appears to non-specifically inhibit DNA polymerase alpha.  相似文献   

9.
It has been shown that the DNA synthesis inhibitory effect of chalone on the vaginal epithelium of ovariectomized mice administered epidermal chalone three times (8, 4 and 1 h before 17-beta-estradiol injection) is dependent on chalone injection made 1 h before hormone injection. The decrease in the number of DNA synthesizing cells induced by 3-fold injection of chalone during 2 days is linked with the reduction in the level of exogenous estrogen in ovariectomized mice rather than with the duration of epidermal chalone action.  相似文献   

10.
Pseudomonas pseudomallei exotoxin was found to be a potent inhibitor of protein and DNA synthesis in cultured macrophages. Inhibition of DNA synthesis occurred at toxin concentrations as low as 1-2 micrograms/ml and inhibition of 3H-thymidine uptake was almost complete at concentrations of 8 micrograms/ml or more. A close correlation between cell damage and inhibition by DNA synthesis was observed. For protein synthesis, inhibition was obtained at much lower doses (0.06-2.0 micrograms/ml) of the toxin. At similar toxin concentrations, DNA synthesis was marginally affected. Further, it was shown that protein synthesis inhibition occurred almost immediately after incubation, reaching its maximal inhibitory effect of 70% after 6 hr. DNA synthesis, however, was minimally affected by a similar toxin concentration even after 10 hr of incubation. The inhibition of macromolecular synthesis in macrophages by P. pseudomallei exotoxin may be relevant to its modulatory effect on the host defense mechanism.  相似文献   

11.
The effects of nalidixic acid and hydroxyurea on nuclear and chloroplast DNA formation in cultured cells of Nicotiana tabacum were investigated. At low concentrations (5 and 20 micrograms/ml) nalidixic acid, an inhibitor of DNA gyrase, exhibited a greater inhibitory effect on plastid DNA synthesis than on nuclear DNA formation. Since the plastid genome is a circular double-stranded DNA, this is consistent with the proven involvement of a DNA gyrase in the replication of closed circular duplex DNA genomes in procaryotic cells. At a high concentration of nalidixic acid (50 micrograms/ml), DNA synthesis in both the plastid and nuclear compartment was rapidly inhibited. Removal of the drug from the culture medium led to the resumption of DNA synthesis in 8 h. Hydroxyurea, an inhibitor of ribonucleoside diphosphate reductase, also depresses nuclear as well as plastid DNA formation. Removal of hydroxyurea from the blocked cells leads to a burst of nuclear DNA synthesis, suggesting that the cells had been synchronized at the G1/S boundary. The recovery of plastid DNA synthesis occurs within the same time frame as that of nuclear DNA. However, whereas plastid DNA formation is then maintained at a constant rate, nuclear DNA synthesis reaches a peak and subsequently declines. These results indicate that the synthesis of plastid DNA is independent of the cell cycle events governing nuclear DNA formation in cultured plant cells.  相似文献   

12.
A I Antokhin  Iu A Romanov 《Tsitologiia》1982,24(11):1312-1318
The mitosis inhibitory action of chalone-containing preparation of the Ehrlich ascite tumour was shown to depend on the time of its administration on round the clock, and on the circadian rhythm phase of the mitotic activity in this tumour. This allowed a conclusion that the chalone system of the tumour may be involved in the formation of the circadian rhythm of cell division. It was found that Ehrlich's ascite tumour chalone system regulated DNA synthesis influencing the cell passage from G1-phase of the mitotic cycle to S-phase, and the processes occurring during S-phase.  相似文献   

13.
A medium consisting of a rich basal nutrient mixture supplemented with bovine insulin (10 micrograms/ml), human transferrin (10 micrograms/ml), human cold-insoluble globulin (5 micrograms/ml), and ethanolamine (0.5 mM) supported the growth of the A431 human epidermoid cell line in the absence of serum with a generation time equal to that of cells in serum-containing medium. Addition of epidermal growth factor (EGF) to this culture medium at concentration mitogenic for other cell types resulted in a marked inhibition of A431 cell growth. Inhibitory effects of EGF were observed at 1 ng/ml and near-maximal effects were observed at 10 ng/ml. The inhibitory effect of EGF could be reversed by the omission of EGF in subsequent medium changes and could be prevented by the addition of anti-EGF antibody to the culture medium. Inhibition of A431 cell growth by EGF also could be demonstrated in serum-containing medium.  相似文献   

14.
The content of tissue-specific inhibitor of mitosis in epidermal epithelium (G2-chalone) was estimated by a single radial immunodiffusion test in the rat vagina during various stages of the estrous cycle. The level of chalone was found to correlate with the mitotic index (MI) of vaginal epithelium. The lowest level of G2-chalone is detected in proestrus and the highest one in estrus. The level of G2-chalone in vaginal epithelium was shown to be significantly decreased in aging rats (14--16 month-old) with regular cycles as compared to that in young normal cycle rats (3--4 month-old). The single injection of estradiol benzoate (1 microgram/100 g) into ovariectomized rats led to an increase in the MI following 18 hours. The increased MI is preceeded by a substantial drop of the G2-chalone level 12 hours after estrogen injection.  相似文献   

15.
The time course of induction of epidermal ornithine decarboxylase (E.C. 4.1.117) (ODC) activity following a single topical application of 17 nmoles of 12-O-tetradecanoylphorbol-13-acetate (TPA) on hairless mouse skin was established. Prior intraperitoneal (i.p.) administration of a crude epidermal extract prepared from hairless mouse epidermis led to a time-dependent, 50% inhibition of the peak level of TAP-induced ODC activity. Maximum inhibition was observed when the extract was injected 1.5 h before TPA treatment. The crude epidermal extract did not affect ODC activity in vitro. Following the administration of epidermal extracts, the inhibition of the TPA-induced ODC-response correlated positively with the presence of epidermal G2-chalone activity (determined by a stathmokinetic method) whereas myocardial, skeletal muscle, or heat-inactivated epidermal extracts with no epidermal G2-chalone activity, had no effect on TPA-induced ODC activity. These results indicate a possible relationship between ODC-activity and the control of mitotic rate by G2-chalone.  相似文献   

16.
Novobiocin and nalidixic acid, inhibitors of the bacterial enzyme DNA gyrase, inhibit DNA, RNA and protein synthesis in several human and rodent cell lines. The sensitivity of DNA synthesis (both replicative and repair) to inhibition by novobiocin and nalidixic acid is greater than that of protein synthesis. Novobiocin inhibits RNA synthesis about half as effectively as it does DNA synthesis, whereas nalidixic acid inhibits both equally well. Replicative DNA synthesis, as measured by incorporation of [3H]thymidine, is blocked by novobiocin in a number of cell strains; the inhibition is reversible with respect to both DNA synthesis and cell killing, and continues for as long as 20--30 h if the cells are kept in novobiocin-containing growth medium. Both novobiocin and nalidixic acid inhibit repair DNA synthesis (measured by BND-cellulose chromatography) induced by ultraviolet light or N-methyl-N'-nitro-N-nitrosoguanidine (but not that induced by methyl methanesulfonate) at lower concentration (as low as 5 micrograms/ml) than those required to inhibit replicative DNA synthesis (50 micrograms/ml or greater). Neither novobiocin nor nalidixic acid alone induces DNA repair synthesis. Incubation of ultraviolet-irradiated cells with 10--100 micrograms/ml novobiocin results in little, if any, further reduction of colony-forming ability (beyond that caused by the ultraviolet irradiation). Novobiocin at sufficiently low concentrations (200 micrograms/ml) apparently generates a quiescent state (in terms of cellular DNA metabolism) from which recovery is possible. Under more drastic conditions of time in contact with cells and concentration, however, novobiocin itself induces mammalian cell killing.  相似文献   

17.
Staurosporine, a microbial-derived protein kinase inhibitor, reversibly blocked non-synchronized, replicating cultures of the human lung epithelial cell line EKVX in the G1 phase of cell cycle and inhibited DNA synthesis and cell replication. The mechanism of this cell-cycle arrest in EKVX cells by staurosporine was likely due to inhibition of protein kinase C (PKC) because: 1) dose-dependent inhibition of DNA synthesis occurred at levels of staurosporine that inhibit phosphorylation of PKC substrate, 2) inhibition of DNA synthesis was also seen after treatment with another PKC inhibitor H7, but not by the chemically similar HA1004, which has a relative inhibitory specificity for cAMP-dependent protein kinase, and 3) the DNA synthesis was not inhibited by specific tyrosine kinase inhibitors Genistein and Lavendustin A at concentrations that inhibit tyrosine kinase activity. Removal of staurosporine from cell culture media resulted in a rebound in PKC activity and synchronized DNA synthesis in EKVX cultures. The reversibility of the inhibition was noted even after 5 days of treatment with staurosporine, and DNA synthesis remained synchronized for at least two rounds of cell replication after removal of staurosporine. Flow cytometric analysis confirmed that more than 90% of the cell population was blocked in the G1 phase after cells were treated with staurosporine for 24 h. Agents such as staurosporine may be useful for synchronizing cell populations to study cell-cycle specific biochemical events important for the regulation of cell replication in the EKVX cell line.  相似文献   

18.
A concentrated extract of saffron was prepared from the flowers of Crocus sativis. The effect of this extract on the ability of HeLa cells to form colonies, and on cellular DNA, RNA and protein synthesis was examined. Incubation of cells with extract for 3 h resulted in significant inhibition of colony formation and cellular nucleic acid synthesis with 50% inhibition at concentrations of approximately 100-150 micrograms/ml. In contrast there was no inhibition of cellular protein synthesis at concentrations of extract as high as 400 micrograms/ml.  相似文献   

19.
Dexamethasone (1 microM) decreased the distribution of cells in S phase (about 75%) and increased that of G1 cells (1.1-fold) in the DNA histogram of human submandibular salivary gland adenocarcinoma cells (HSG) reversibly. In synchronized cells at G1 phase, glucocorticoid delayed the initiation of DNA synthesis by about 3-4 h. The conditioned medium (50%) or exogenous human epidermal growth factor (EGF, 10 ng/ml) significantly nullified these effects by glucocorticoids. These results suggested that glucocorticoids arrested the cells at G1 phase, which implied the inhibition of production of some progressive factor, probably EGF, in the cell cycle of HSG.  相似文献   

20.
EAT chalone effects on nascent DNA synthesis and DNA polymerase were examined. Concentration related inhibition of 3H-thymidine (3H-TdR) incorporation into EAT cell DNA was noted over a chalone range of 50-200 mug/ml. RNA synthesis was not affected, but protein synthesis decreased an average of 82% during 3 hr. Nascent DNA pulse-labeled for 2 min was normally incorporated into bulk DNA in the presence of chalone, but crude alpha- and beta-polymerase activities were inhibited. Crude DNA polymerase for C3H mouse kidney and spleen was also partially inhibited by EAT chalone, suggesting non-specific inhibition of DNA polymerase. Preincubation studies of chalone with crude EAT DNA polymerase or 'gapped' DNA primer had no effect on chalone activity. Chalone may control mitotic activity by inhibiting alpha- and beta-polymerase activity, thereby decreasing nascent DNA synthesis. Nascent DNA is incorporated normally into bulk DNA in the presence of chalone, indicating the DNA ligase is not inhibited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号