首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of colchicine on embryogenesis induction and chromosomedoubling during microspore culture was evaluated in two F1 hybridsofwinter oilseed rape (Brassica napus L.). Colchicinetreatment (50 and 500 mg/L) of isolated microspores during thefirst 15 h in culture stimulated embryogenesis and produced large amounts ofhealthy-looking embryos. These normal embryos germinated well at 24°C after being transferred to solid regeneration medium and aninitial period of low temperature (2 °C) for 10 days, andcoulddirectly and rapidly regenerate vigorous plants. A high doubling efficiency of84–88% was obtained from 500 mg/L colchicine treatment for15h with low frequency of polyploid and chimeric plants. Acolchicinetreatment duration of 6 h was less effective on embryogenesis anddoubling efficiency. The present experiment also showed that changing of induction medium 15h after microspore isolation produced higher spontaneous doublingefficiency, as compared with medium change 6 h after isolation.  相似文献   

2.
A simple procedure is described for cryopreservation of isolated microspores of rapeseed in liquid nitrogen without loss of embryogenic capacity (i.e. embryogenes is can still be induced following freezing). Microspores frozen in Lichter's (1982) medium with 13% sucrose produced ca. 10% of the embryos yielded by an unfrozen control. Microspores frozen in Lichter's medium with 13% sucrose, and supplemented with 0.5 M glycerol and 0.5 M DMSO produced no embryos. Regeneration of embryos obtained from frozen microspores yielded 88% diploid and 12% haploid plants, while embryos from unfrozen controls produced 7% diploids and 93% haploids. The potential to increase the efficiency of the rapeseed haploidy system using cryopreservation is discussed in light of these results.  相似文献   

3.
There is a requirement of haploid and double haploid material and homozygous lines for cell culture studies and breeding in flax. Anther culture is currently the most successful method producing doubled haploid lines in flax. Recently, ovary culture was also described as a good source of doubled haploids. In this review we focus on tissue and plants regeneration using anther culture, and cultivation of ovaries containing unfertilized ovules. The effect of genotype, physiological status of donor plants, donor material pre-treatment and cultivation conditions for flax anthers and ovaries is discussed here. The process of plant regeneration from anther and ovary derived calli is also in the focus of this review. Attention is paid to the ploidy level of regenerated tissue and to the use of molecular markers for determining of gametic origin of flax plants derived from anther and ovary cultures. Finally, some future prospects on the use of doubled haploids in flax biotechnology are outlined here.  相似文献   

4.
 Self-incompatibility (SI) in Brassica is a sporophytic system, genetically determined by alleles at the S-locus, which prevents self-fertilization and encourages outbreeding. This system occurs naturally in diploid Brassica species but is introduced into amphidiploid Brassica species by interspecific breeding, so that in both cases there is a potential for yield increase due to heterosis and the combination of desirable characteristics from both parental lines. Using a polymerase chain reaction (PCR) based analysis specific for the alleles of the SLG (S-locus glycoprotein gene) located on the S-locus, we genetically mapped the S-locus of B. oleracea for SI using a F2 population from a cross between a rapid-cycling B. oleracea line (CrGC-85) and a cabbage line (86-16-5). The linkage map contained both RFLP (restriction fragment length polymorphism) and RAPD (random amplified polymorphic DNA) markers. Similarly, the S-loci were mapped in B. napus using two different crosses (91-SN-5263×87-DHS-002; 90-DHW-1855-4×87-DHS-002) where the common male parent was self-compatible, while the S-alleles introgressed in the two different SI female parents had not been characterized. The linkage group with the S-locus in B. oleracea showed remarkable homology to the corresponding linkage group in B. napus except that in the latter there was an additional locus present, which might have been introgressed from B. rapa. The S-allele in the rapid-cycling Brassica was identified as the S29 allele, the S-allele of the cabbage was the S 5 allele. These same alleles were present in our two B. napus SI lines, but there was evidence that it might not be the active or major SI allele that caused self-incompatibility in these two B. napus crosses. Received: 7 June 1996/Accepted: 6 September 1996  相似文献   

5.
The method of rapid freeze-fixation and substitution was used with Brassica napus floral bud material in order to improve the preservation of microspore and tapetal organelle structure. When observed using transmission electron microscopy, the appearance of the freeze-substituted material differs in a number of ways from the chemically-fixed material previously studied, in particular for the lipid-rich elaioplasts and tapetosomes in the tapetal cells. The tapetosomes have a very electron-dense, opaque appearance when visualized after rapid fixation. In addition, we were able to observe other cytoplasmic details such as pockets in the endoplasmic reticulum and cytoskeletal structures such as microfilaments. Extracellular material was also well-preserved; for example, the fibrous material in the baculae of the developing microspore exine was also visible. Finally, in the freeze-fixed sections specific structures such as elaioplasts could be labelled by antibodies, which indicates that this method preserved protein epitopes that were destroyed by chemical fixation. Received: 27 October 1999 / Accepted: 2 November 1999  相似文献   

6.
Abstract

A study was made on the changes observed in the protein, starch and soluble sugar content during development of siliquas and seeds of rapeseed grown in central Italy.

Concentration of starch and soluble sugars in the seed increases to 75 per cent dry matter during the first few weeks of pod development and then drops to minimum values. The protein increases steadily until maturity, when a level of 0.85 mg per seed is reached, equivalent to 18 per cent dry matter. The protein and starch in the hull? decrease continuously during development, while in the initial stages the soluble sugars are accumulated until they account for 33 per cent dry matter, after which they decline towards maturity.  相似文献   

7.
Embryogenesis and plant regeneration were induced in isolated microspore culture of linseed (oilflax, Linum usitatissimum). Microspores underwent cell divison which led to either microcallus or embryoid formation, when they were cultured in a modified liquid Nitsch-Lichter-Nitsch medium (Lichter 1985) at two different incubation temperatures (30 and 35 °C); some embryoids and microcalli further developed to larger calli. After transfer of the microspore derived calli to a solid medium containing zeatin (Img 1–1) shoot induction was achieved from 36 to 66% of the calli. The highest frequency of regenerated plants was obtained in microspore cultures of the hybrid Atalante x Szegedi 62 (F1) at 30 °C, whereas for the second genotype Pedigree 2 x Kiszombori 41 (F2) the higher incubation temperature seemed to be more efficient. Shoots could be successfully rooted on an indole acetic acid containing medium and then transplanted to vermiculite and finally to soil. Most of the plants survived the transfer into soil in the greenhouse, where they could be successfully grown to maturity.Abbreviations BAP 6-benzylaminopurine - 2,4D dichlorophenoxyacetic acid - IAA indole acetic acid - N6 Chu (1978) medium - NAA naphthaleneacetic acid - NLN Nitsch-Lichter-Nitsch (1985) - MS Murashige and Skoog (1962) medium - ZEA zeatin  相似文献   

8.
Microspore cryopreservation is a potentially powerful method for long-term storage of germplasm for in vitro embryo production in plant species. In this study, several factors influencing embryo production following the ultra-low temperature (–196 °C in liquid nitrogen) storage of isolated microspores of rapeseed (Brassica napus L.) were investigated. Microspores were prepared in cryogenic vials and subjected to various cooling treatments before immersion in liquid nitrogen for varying periods. Efficiency of microspore cryopreservation was reflected by in vitro embryo production from frozen microspores. Of all the cooling treatments, microspores treated with a cooling rate of 0.25% °C/min and a cooling terminal temperature of –35 °C before immersion in liquid nitrogen produced the highest embryo yields (18% and 40% of unfrozen controls in two genotypes, respectively). Fast thawing in a 35 °C water bath was necessary to recover a high number of embryos from microspore samples being frozen at a higher cooling rate, while thawing speed did not affect samples after freezing at a slower cooling rate. The storage density of cryopreserved microspores affected embryo production. Storage at the normal culture density (8×104 microspores/ml) was less efficient for embryo production than at high densities (4×106 microspores/ml and 1.6×107 microspores/ml), although no significant difference was found between the high densities. Evaluation of plant lines derived from frozen microspores indicated no variation in isozyme pattern and no enhanced cold tolerance of these lines. Isolated microspores of B. napus could be stored for extended period for in vitro embryo production.  相似文献   

9.
A protocol previously developed for B. napus microspore culture was modified to produce embryos from several lines of Brassica campestris. Bud size, genotype, media constituents, and incubation time and temperature were examined. Donor plants were grown in a growth cabinet at a day/night temperature of 10/5°C. Microspores were isolated from buds 2.0 – 2.9 mm in length and cultured in modified Lichter (1982) medium containing 17% sucrose, pH 6.2. After 48 h at 32°C, the incubation medium was replaced with NLN (Lichter 1982) medium containing 10% sucrose. Microspores were cultured at 24°C in darkness and embryos developed after three weeks. More than 1000 plants have thus far been regenerated. Genotypic differences were observed for microspore embryogenesis. The majority of the regenerants were haploid, however colchicine could be effectively used to achieve chromosome doubling.  相似文献   

10.
The objective of this work was to produce doubled haploid plants from durum wheat through the induction of androgenesis. A microspore culture technique was developed and used to produce fertile doubled haploid plants of agronomic interest. Five cultivars, one selected line, plus a collection of 20 F1 crosses between different genotypes of high breeding value were used. Studies on several factors such as pre-treatments and media components were carried out in order to develop a protocol to regenerate green haploid plantlets. Anthers were pre-treated in 0.7 M mannitol. Microspores, from anther maceration, were plated on a C17 induction culture medium with ovary co-culture. The optimum regeneration medium J25–8 was used. From 35 microspore isolations, 407 green plantlets were obtained. With this technique mature embryos were obtained. Green plants were regenerated from all genotypes used and approximately 67% of them were spontaneously doubled haploids. Some haploids and a very few polyploids plants were obtained. From the 407 plants, 275 were completely fertile and gave enough seeds to be assayed in the field. This protocol could be used complementary to or instead of the intergeneric crossing with maize as an economically feasible method to obtain doubled haploids from most durum wheat genotypes.  相似文献   

11.
利用激光微束穿刺法将杀虫蛋白基因导入油菜的研究   总被引:2,自引:2,他引:2  
利用激光微束照射油菜子叶柄,将来自苏云金杆菌的杀虫蛋白(Insecticidalcrystalprotein,ICP)基因导入油菜细胞中,经植株再生和卡那霉素筛选,获得了转基因植株。对转基因植株进行了PCR检测和饲虫实验,发现转基因植株为PCR扩增阳性,某些植株表现出了较强的抗虫性。实验结果表明外源抗虫基因已被整合到油菜基因组并得到了表达。  相似文献   

12.
The dynamics of nuclear DNA synthesis were analysed in isolated microspores and pollen of Brassica napus that were induced to form embryos. DNA synthesis was visualized by the immunocytochemical labelling of incorporated Bromodeoxyuridine (BrdU), applied continuously or as a pulse during the first 24 h of culture under embryogenic (32 °C) and non-embryogenic (18 °C) conditions. Total DNA content of the nuclei was determined by microspectrophotometry. At the moment of isolation, microspore nuclei and nuclei of generative cells were at the G1, S or G2 phase. Vegetative nuclei of pollen were always in G1 at the onset of culture. When microspores were cultured at 18 °C, they followed the normal gametophytic development; when cultured at 32 °C, they divided symmetrically and became embryogenic or continued gametophytic development. Because the two nuclei of the symmetrically divided microspores were either both labelled with BrdU or not labelled at all, we concluded that microspores are inducible to form embryos from the G1 until the G2 phase. When bicellular pollen were cultured at 18 °C, they exhibited labelling exclusively in generative nuclei. This is comparable to the gametophytic development that occurs in vivo. Early bicellular pollen cultured at 32 °C, however, also exhibited replication in vegetative nuclei. The majority of vegetative nuclei re-entered the cell cycle after 12 h of culture. Replication in the vegetative cells preceded division of the vegetative cell, a prerequisite for pollen-derived embryogenesis.  相似文献   

13.
 The availability of doubled haploids could greatly contribute to improving seed quality in condiment mustard (Brassica juncea). We have developed an efficient and reliable protocol of microspore culture, modified from that of Baillie et al. (1992), based on a modification of the sucrose concentration of culture media. A comparison of microspore culture media differing in their sucrose content showed that a decrease from 17% (w/v) sucrose during the first 48 h to 10% (w/v) thereafter favoured an increase in the production of embryos whatever the responding genotype tested. Thus, out of the 13 B. juncea genotypes studied, 12 gave rise to embryos, and seven of these embryos could be converted into plants. Doubled-haploid plants were produced after treatment with colchicine. Received: 16 January 2000 / Revision received: 8 August 2000 / Accepted: 20 September 2000  相似文献   

14.
Summary A chimeric gene containing a cloned human metallothionein-II (MT-II) processed gene was introduced into Brassica napus and Nicotiana tabacum cells on a disarmed Ti-plasmid of Agrobacterium tumefaciens. Transformants expressed MT protein as a Mendelian trait and in a constitutive manner. Seeds from self-fertilized transgenic plants were germinated on media containing toxic levels of cadmium and scored for tolerance/ susceptibility to this heavy metal. The growth of root and shoot of transformed seedlings was unaffected by up to 100 M CdCl2, whereas control seedlings showed severe inhibition of root and shoot growth and chlorosis of leaves. The results of these experiments indicate that agriculturally important plants such as B. napus can be genetically engineered for heavy metal tolerance/sequestration and eventually for partitioning of heavy metals in non-consumed plant tissues.  相似文献   

15.
High percentages of micro-calli and micro-derived embryos were produced from isolated asparagus microspores at late uninucleate stage on MS liquid medium supplemented with 1.0 mg l–1 2,4-D and 0.5 mg l–1 BA. Two types of calli, namely compact callus (CC) and loose callus (LC), were found. Plantlets were regenerated via organogenesis, when these calli were transferred onto MS solid medium supplemented with 1.0 mg l–1 BA and 0.2 mg l–1 IBA 6 weeks. Embryos were produced from liquid cultured microspores, or from solid cultured micro-calli. The frequencies of haploid plant production from organogenesis and embryogenesis were compared. Effects of plant growth regulators on callus production, plantlet regeneration, and haploid plant production were tested. The combination of BA 1.0 mg l–1 and IBA 0.2 mg l–1 resulted the highest precentage of haploid plant production (7.7% from CC, 4.3% from LC).Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - IBA 3-indolybutyric acid - BA 6-binzyladinine - NAA naphtalene acetic acid - MS Murashige and Skoog  相似文献   

16.
 Until now it has been considered that in rape seed (Brassica napus) only late uninucleate microspores and early bicellular pollen are competent for induction of in vitro embryogenesis. Here we describe that pollen isolated at the late bicellular stage can also be induced to undergo embryogenesis. By the application of an additional short and more severe heat stress treatment, DNA synthesis was initiated in both generative and vegetative nuclei, but only vegetative cells were able to complete the cell cycle and to divide further. The ability of late bicellular pollen to respond to embryogenic induction treatment was accompanied by rearrangements of the microtubulular cytoskeleton and by the nuclear localization of 70 kDa heat shock proteins (HSP70). These findings confirm earlier observations that there is a strong correlation between the induction of embryogenesis and the synthesis and nuclear localization of HSP70. Received: 9 January 1997 / Revision accepted: 23 May 1997  相似文献   

17.
The glucosinolate content of oilseed rape {Brassica napus) leaves was monitored over the growth period 30–70 days after planting, and a comparison made between a single-low cultivar (low in erucic acid), Bienvenu, and a double-low cultivar (low in erucic acid and glucosinolate), Cobra. In older, fully-expanded leaves the glucosinolate concentration was very low (< 0.3 μmol/ml tissue water) and did not alter during the course of the experiment. In developing sixth leaves glucosinolate content increased rapidly and reached a maximum concentration (4–5 μmol/ml tissue water) 40 days after planting (6 days after leaf emergence). The concentration then declined, to about 1 μmol/ml after 60 days although the total glucosinolate content in leaves continued to increase until 50 days; much of the reduction in concentration was simply a result of leaf expansion. No major differences were seen between the two varieties in total glucosinolate content or in the individual compounds present. Cv. Cobra developed more quickly than cv. Bienvenu so direct comparison between leaves of the two cultivars was complex. When comparing the glucosinolate content of oilseed rape leaves, between cultivars or between treatments, it is vital to ensure that carefully matched leaves of comparable developmental age are selected.  相似文献   

18.
油菜(Brassica napus L.)是我国的主要油料作物之一,在生长发育过程中经常受到干旱、高温、高盐和营养缺乏等非生物胁迫。这些胁迫通常会阻碍油菜的生长发育,导致品质和产量下降。近年来,快速发展的高通量蛋白质组学技术为揭示油菜胁迫响应分子机制提供了新线索。本文综合分析了油菜不同组织/器官(如:叶片、根、下胚轴和种子)在响应盐、高温、干旱、草酸和缺素(磷、硫和硼)等逆境过程中675种蛋白质的丰度变化特征,揭示了其胁迫应答机制,主要包括:(1)通过G蛋白介导的信号通路感知与传递胁迫信号;(2)通过改变参与糖类与能量代谢相关酶的丰度调节代谢水平;(3)通过叶绿素合成的变化调节光合作用;(4)调节转录因子、蛋白质合成与命运相关蛋白质的丰度,从而在转录、翻译以及翻译后修饰等水平上应答逆境;(5)通过调节膜联蛋白、V型H+-ATP酶等质膜蛋白质,促进细胞内物质吸收与转运;(6)通过细胞骨架动态重塑保持正常细胞结构;(7)利用调节抗氧化酶系统清除活性氧,并通过合成多种防御物质减轻细胞受到的伤害。本综述为解析油菜逆境应答网络体系中的关键调控及代谢通路的变化提供了重要信息。  相似文献   

19.
RFLP segregation analyses were performed on a F2 population and two F1 microspore-derived populations from the same cross between a microspore culture-responsive parent (Topas) and a non-responsive parent (Westar). A total of 145 loci were detected with 87 cDNA clones. Eighty-two markers were common across all three populations. A total of 66 markers was assembled into 18 linkage groups and 16 markers remained unlinked. Segregation distortions were significant for 29% of the markers in the F2 population and 23% and 31% in microspore-derived populations M3 and M5, respectively. An equivalent number of markers showed biased segregation towards each parental allele in the F2 population while more markers showed a significant deviation from the expected Mendelian ratio towards the responsive parent in both microspore-derived populations. Different subsets of markers showed segregation distortions in the three populations indicating that the selective pressures leading to microsporederived plants are different from those acting during selfing of the F1. Linkage groups 1 and 18 were identified as putative chromosomal regions associated with microspore-culture responsiveness.  相似文献   

20.
Little is known about the composition and diversity of the bacterial community associated with plant roots. The purpose of this study was to investigate the diversity of bacteria associated with the roots of canola plants grown at three field locations in Saskatchewan, Canada. Over 300 rhizoplane and 220 endophytic bacteria were randomly selected from agar-solidified trypticase soy broth, and identified using fatty acid methyl ester (FAME) profiles. Based on FAME profiles, 18 bacterial genera were identified with a similarity index >0.3, but 73% of the identified isolates belonged to four genera: Bacillus (29%), Flavobacterium (12%), Micrococcus (20%) and Rathayibacter (12%). The endophytic community had a lower Shannon-Weaver diversity index (1.35) compared to the rhizoplane (2.15), and a higher proportion of Bacillus, Flavobacterium, Micrococcus and Rathayibacter genera compared to rhizoplane populations. Genera identified in the endophytic isolates were also found in the rhizoplane isolates. Furthermore, principal component analysis indicated three clusters of bacteria regardless of their site of origin, i.e., rhizoplane or endophytic. In addition, the rhizoplane communities of canola and wheat grown at the same site differed significantly. These results indicate that diverse groups of bacteria are associated with field-grown plants and that endophytes are a subset of the rhizoplane community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号