首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Leucine and beta-(+/-)-2-aminobicyclo[2.2.1]heptane-2-carboxylic acid (BCH) stimulated, in a dose-dependent manner, reductive amination of 2-oxoglutarate in rat brain synaptosomes treated with Triton X-100. The concentration dependence curves were sigmoid, with 10-15-fold stimulations at 15 mM leucine (or BCH); oxidative deamination of glutamate also was enhanced, albeit less. In intact synaptosomes, leucine and BCH elevated oxygen uptake and increased ammonia formation, consistent with stimulation of glutamate dehydrogenase (GDH). Enhancement of oxidative deamination was seen with endogenous as well as exogenous glutamate and with glutamate generated inside synaptosomes from added glutamine. With endogenous glutamate, the stimulation of oxidative deamination was accompanied by a decrease in aspartate formation, which suggests a concomitant reduction in flux through aspartate aminotransferase. Activation of reductive amination of 2-oxoglutarate by BCH or leucine could not be demonstrated even in synaptosomes depleted of internal glutamate. It is suggested that GDH in synaptosomes functions in the direction of glutamate oxidation, and that leucine may act as an endogenous activator of GDH in brain in vivo.  相似文献   

2.
Abstract: During K+ -induced depolarization of isolated rat brain nerve terminals (synaptosomes), 1 m M Ba2+ could substitute for 1 m M Ca2+ in evoking the release of endogenous glutamate. In addition, Ba2+ was found to evoke glutamate release in the absence of K+-induced depolarization. Ba2+ (1–10 m M ) depolarized synaptosomes, as measured by voltage-sensitive dye fluorescence and [3H]-tetraphenylphosphonium cation distribution. Ba2+ partially inhibited the increase in synaptosomal K+ efflux produced by depolarization, as reflected by the redistribution of radiolabeled 86Rb+. The release evoked by Ba2+ was inhibited by tetrodotoxin (TTX). Using the divalent cation indicator fura-2, cytosolic [Ca2+] increased during stimulation by approximately 200 n M , but cytosolic [Ba2+] increased by more than 1 μ M . Taken together, our results indicate that Ba2+ initially depolarizes synaptosomes most likely by blocking a K+ channel, which then activates TTX-sensitive Na+ channels, causing further depolarization, and finally enters synaptosomes through voltage-sensitive Ca2+channels to evoke neurotransmitter release directly. Though Ba2+-evoked glutamate release was comparable in level to that obtained with K+-induced depolarization in the presence of Ca2+, the apparent intrasynaptosomal level of Ba2+ required for a given amount of glutamate release was found to be several-fold higher than that required of Ca2+.  相似文献   

3.
Many biochemical effects of local anesthetics are expressed in Ca2+-dependent processes [Volpi M., Sha'afi R.I., Epstein P.M., Andrenyak P.M., and Feinstein M.B. (1981) Proc. Natl. Acad. Sci. USA 78, 795-799]. In this communication we report that local anesthetics (dibucaine, tetracaine, lidocaine, and procaine and the analogue quinacrine) inhibit the Ca2+-dependent and the Mg2+-dependent ATPase activity of rat brain synaptosomes and of membrane vesicles derived from them by osmotic shock. This inhibition is induced by concentrations of these drugs close to their pharmacological doses, and a good correlation between K0.5 of inhibition and their relative anesthetic potency is found. The Ca2+-dependent ATPase is more selectively inhibited at lower drug concentrations. The physiological relevance of these findings is discussed briefly.  相似文献   

4.
Abstract: The association of Mg2+ ions with mitochondria isolated from guinea pig cerebral cortex is investigated and resolved into two components, that bound to the surface of both the outer and the inner membranes and that transported into the mitochondrial matrix. When rotenone-treated mitochondria are preincubated in a Mg2+ -containing medium, Mg2+ binding can be measured and actual Mg2+ transport determined after the addition of succinate. Mg2+ uptake as well as retention within mitochondria is an energy-dependent process linked to substrate oxidation. EGTA completely prevents Mg2+ uptake, while the Ca2+ uniporter inhibitor Ruthenium Red, along with prevention of Mg2+ uptake, induces a slow efflux of accumulated Mg2+ ions. These findings suggest that both inward and outward Mg2+ movements follow Ca2+ fluxes across the mitochondrial membrane. Modulation of Mg2+ movements by mitochondria is therefore suggested to occur within nerve terminals.  相似文献   

5.
Arachidonic acid, a major polyunsaturated fatty acid of membrane phospholipids in the CNS, reduced the high-affinity uptake of glutamate and gamma-aminobutyric acid (GABA) in both rat brain cortical slices and synaptosomes. alpha-Aminoisobutyric acid uptake was not affected. Intrasynaptosomal sodium was increased concomitant with decreased (Na+ + K+)-ATPase activity in synaptosomal membranes. The reduction of GABA uptake in synaptosomes could be partially reversed by alpha-tocopherol. The inhibition of membrane-bound (Na+ + K+)-ATPase by arachidonic acid was not due to a simple detergent-like action on membranes, since sodium dodecyl sulfate stimulated the sodium pump activity in synaptosomes. These data indicate that arachidonic acid selectively modifies membrane stability and integrity associated with reductions of GABA and glutamate uptake and of (Na+ + K+)-ATPase activity.  相似文献   

6.
Superfusion of striatal slices with a medium deficient in Ca2+ and Mg2+ caused a large and sustained increase in release of lactate dehydrogenase, a finding indicative of the disruption of plasma membranes. This was associated with an efflux of dopamine (DA) and the depletion of DA from the tissue. In addition, whereas DA efflux was stimulated by either D-amphetamine (10 microM) or L-glutamate (10 mM) in the absence of Ca2+, these effects were greatly reduced when Mg2+ also was withdrawn from the buffer. These results suggest that (a) incubation in a Ca2+/Mg2(+)-free buffer disrupts plasma membranes, (b) this disruption affects dopaminergic neurons as well as those of other striatal elements, and (c) the failure of a treatment to stimulate DA release in a Ca2+/Mg2(+)-free buffer cannot be used as a test of Ca2+ dependence.  相似文献   

7.
Abstract: It is well established that ischemia is associated with prolonged increases in neuronal intracellular free calcium levels. Recent data suggest that regulation of calcium uptake and release from the endoplasmic reticulum is important in maintaining calcium homeostasis. The endoplasmic reticulum Mg2+/Ca2+ ATPase is the major mechanism for sequestering calcium in this organelle. Inhibition of this enzyme may play a causal role in the loss of calcium homeostasis. In order to investigate the effect of ischemia on calcium sequestration into the endoplasmic reticulum, microsomes were isolated from control and ischemic whole brain homogenates by differential centrifugation. Calcium uptake was measured by radioactive calcium (45Ca2+) accumulation in the microsomes mediated by Mg2+/Ca2+ ATPase. Ischemia caused a statistically significant inhibition of presteady-state and steady-state calcium uptake. Duration of ischemia was directly proportional to the degree of inhibition. Decreased calcium uptake was shown not to be the result of increased calcium release from ischemic compared with control microsomes nor the result of selective isolation of ischemic microsomes from the homogenate with a decreased capacity for calcium uptake. The data demonstrate that ischemia inhibits the ability of brain microsomes to sequester calcium and suggest that loss of calcium homeostasis is due, in part, to ischemia-induced inhibition of endoplasmic reticulum Mg2+/Ca2+ ATPase.  相似文献   

8.
Abstract: Cultured cerebellar granule cells were subjected to toxic activation of the NMDA receptor that was terminated by MK-801. Subsequent resuscitation experiments were mostly conducted in the presence of a physiological concentration of Ca2+. Addition of pyruvate and inorganic phosphate, in addition to glucose, which was always present, rescued ∼40% of the dying neurons. La3+ and ruthenium red were also effective resuscitating agents. The combination of pyruvate, inorganic phosphate, and ruthenium red rescued 65% of the dying neurons. Parallel studies with 45Ca indicated that La3+ and ruthenium red facilitated the decrease of 45Ca in the neurons, whereas inorganic phosphate, supported by energy-yielding pyruvate, formed perhaps, a less harmful Ca complex inside the neurons.  相似文献   

9.
Na+-dependent uptake of dicarboxylic amino acids in membrane saccules, due to exchange diffusion and independent of ion gradients, was highly sensitive to inhibition by K+. The IC50 was 1-2 mM under a variety of conditions (i.e., whole tissue or synaptic membranes, frozen/thawed or fresh, D-[3H]aspartate (10-1000 nM) or L-[3H]glutamate (100 nM), phosphate or Tris buffer, NaCl or Na acetate, presence or absence of Ca2+ and Mg2+). The degree of inhibition by K+ was also not affected on removal of ion gradients by ionophores, or by extensive washing with H2O and reloading of membrane saccules with glutamate and incubation medium in the presence or absence of K+ (3 mM, i.e., IC70). Rb+, NH4+, and, to a lesser degree Cs+, but not Li+, could substitute for K+. [K+] showed a competitive relationship to [Na+]2. Incubation with K+ before or after uptake suggested that the ion acts in part by allowing net efflux, thus reducing the internal pool of amino acid against which D-[3H]aspartate exchanges, and in part by inhibiting the interaction of Na+ and D-[3H]aspartate with the transporter. The current model of the Na+-dependent high-affinity acidic amino acid transport carrier allows the observations to be explained and reconciled with previous seemingly conflicting reports on stimulation of acidic amino acid uptake by low concentrations of K+. The findings correct the interpretation of recent reports on a K+-induced inhibition of Na+-dependent "binding" of glutamate and aspartate, and partly elucidate the mechanism of action.  相似文献   

10.
Abstract: With a partially purified, membrane-bound (Ca + Mg)-activated ATPase preparation from rat brain, the K0.5 for activation by Ca2+ was 0.8 p μm in the presence of 3 mm -ATP, 6 mm -MgCl2, 100 mM-KCI, and a calcium EGTA buffer system. Optimal ATPase activity under these circumstances was with 6-100 μm -Ca2+, but marked inhibition occurred at higher concentrations. Free Mg2+ increased ATPase activity, with an estimated K0.5, in the presence of 100 μm -CaCl2, of 2.5 mm ; raising the MgCl2 concentration diminished the inhibition due to millimolar concentrations of CaCl2, but antagonized activation by submicromolar concentrations of Ca2+. Dimethylsulfoxide (10%, v/v) had no effect on the K0.5 for activation by Ca2+, but decreased activation by free Mg2+ and increased the inhibition by millimolar CaCl2. The monovalent cations K+, Na+, and TI+ stimulated ATPase activity; for K+ the K0.5 was 8 mm , which was increased to 15 mm in the presence of dimethylsulfoxide. KCI did not affect the apparent affinity for Ca2+ as either activator or inhibitor. The preparation can be phosphorylated at 0°C by [γ-32P]-ATP; on subsequent addition of a large excess of unlabeled ATP the calcium dependent level of phosphorylation declined, with a first-order rate constant of 0.12 s?1. Adding 10 mm -KCI with the unlabeled ATP increased the rate constant to 0.20 s?1, whereas adding 10 mm -NaCl did not affect it measurably. On the other hand, adding dimethyl-sulfoxide slowed the rate of loss, the constant decreasing to 0.06 s?1. Orthovanadate was a potent inhibitor of this enzyme, and inhibition with 1 μm -vanadate was increased by both KCI and dimethylsulfoxide. Properties of the enzyme are thus reminiscent of the plasma membrane (Na + K)-ATPase and the sarcoplasmic reticulum (Ca + Mg)-ATPase, most notably in the K+ stimulation of both dephosphorylation and inhibition by vanadate.  相似文献   

11.
12.
Aeromonas hydrophila AH-3 strains carrying mutations in mgtE, which encodes a Mg2+ and Co2+ transport system, showed a 50% reduction of in vitro adherence to HEp-2 cells, a reduction in swarming in semisolid swarming agar, and decrease in biofilm formation of over 60% in comparison to the wild-type strain. The cloned A. hydrophila mgtE expressed from a plasmid complements a Salmonella typhimurium strain deleted for all Mg2+ transporters both phenotypically and by measurement of 57Co2+ uptake. Likewise, plasmid-borne mgtE was able to complement the changes observed in A. hydrophila mgtE mutants. We suggest that MgtE and thus Mg2+ and possibly Co2+ have a role in A. hydrophila related to their swarming ability and related consequences such as adherence and biofilm formation.  相似文献   

13.
Abstract: The effects of K+ depolarization and of stimulation by veratridine on apparent cytosolic free Ca2+ ([Ca2+]cyt) and net Ca2+ accumulation were measured in isolated rat brain presynaptic nerve terminals (synaptosomes). [Ca2+]cyt was determined with fura-2, and Ca2+ accumulation was measured with tracer 45Ca. [Ca2+]cyt was ~ 325 nM in synaptosomes incubated in the normal physiological salt solution under resting conditions. When [K+]0, was increased from the normal 5 mM to 30 or 50 mM, 45Ca uptake and [Ca2+]cyt both increased within 1 s. Both increases were directly related to [Ca2+]0 for [Ca2+]0= 0.02–1.2 mM; however, the increase in 45Ca uptake greatly exceeded the increase in [Ca2+]cyt. With small Ca2+ loads ≤100 μmol/L of cell water, equivalent to the Ca2+ entry during a train of ≤60 impulses), the 45Ca uptake exceeded the increase in [Ca2+]cyt by a factor of nearly 1,000. This indicates that ~99.9% of the entering Ca2+ was buffered and/or sequestered within ~ 1 s. With larger Ca2+ loads, a larger fraction of the entering Ca2+ was buffered; ~99.97% of the load was buffered with loads of 250–425 μmol/L of cell water. The ratio between the total Ca2+ entry and the increase in [Ca2+]cyt, the “calcium buffer ratio”β, was therefore ~ 3,500:1. This ratio was somewhat lower than the ratio of total intraterminal calcium: [Ca2+]cyt, which ranged between ~7,300:1 and 12,800:1. When the synaptosomes were activated with 10 μM veratridine ([Ca2+]0= 0.2–0.6 mM), 45Ca influx and [Ca2+]cyt increased progressively for ~10 s (β= 2,700:13,050:1) and then leveled off. Application of 10 μM tetrodotoxin before the introduction of veratridine prevented the increases in 45Ca influx and [Ca2+]cyt. Application of 10 μM tetrodotoxin after 5–10 s of exposure to veratridine caused both the [Ca2+]cyt and the veratridine-stimulated 45Ca within the terminals to decline, thereby demonstrating that the Ca2+ loading is reversible in the presence of extracellular Ca2+. These data show that synaptosomes are capable of buffering and metabolizing Ca2+ in a manner expected for intact neurons.  相似文献   

14.
Abstract: The rate of glutamate synthesis from leucine by the branched-chain aminotransferase was measured in rat brain in vivo at steady state. The rats were fed exclusively by intravenous infusion of a nutrient solution containing [15N]leucine. The rate of glutamate synthesis from leucine, determined from the rate of increase of brain [15N]glutamate measured by 15N NMR and the 15N enrichments of brain and blood leucine analyzed by gas chromatography-mass spectrometry, was 0.7–1.8 µmol/g/h at a steady-state brain leucine concentration of 0.25 µmol/g. A comparison of the observed fractional 15N enrichments of brain leucine (0.42 ± 0.03) and glutamate (0.21 ± 0.015) showed that leucine provides ∼50% of glutamate nitrogen under our experimental condition. From the observed rate (0.7–1.8 µmol/g) and the known K m of the branched-chain aminotransferase for leucine (1.2 m M ), the rate of glutamate synthesis from leucine at physiological brain leucine concentration (0.11 µmol/g) was estimated to be 0.35–0.9 µmol/g/h, with leucine providing ∼25% of glutamate nitrogen. The results strongly suggest that plasma leucine from dietary source, transported into the brain, is an important external source of nitrogen for replenishment of brain glutamate in vivo. Implications of the results for treatment of maple-syrup urine disease patients with leucine-restricted diet are discussed.  相似文献   

15.
Mg2+- and Ca2+-uptake was measured in dark-grown oat seedlings ( Avena sativa L. cv. Brighton) cultivated at two levels of mineral nutrition. In addition the stimulation of the ATPase activity of the microsomal fraction of the roots by Mg2+ was measured. Ca2+-uptake by the roots was mainly passive. Mg2+-uptake mainly active; the passive component of Mg2+-uptake was accompanied by Ca2+-efflux up to 60% of the Ca2+ present in the roots.
In general Mg2+ -uptake of oat roots was biphasic. The affinity of the second phase correspond well with that of the Mg2+-stimulation of the ATPase activity, in low-salt roots as well as in high-salt roots and in roots of plants switched to the other nutritional condition. Linear relationships were observed when [phase 2] Mg2+-uptake was plotted against Mg2+-stimulation of the ATPase activity of the microsomal fraction of the roots. In 5 days old high-salt plants 1 ATP (hydrolysed in the presence of Mg2+ J corresponded with active uptake of a single Mg2+ ion, but in older high-salt roots and in low-salt roots more ATP was hydrolysed per net uptake of a Mg2+ ion. The results are discussed against the background of regulation of the Mg2+-level of the cytoplasm of root cells by transport of Mg2+ by a Mg2+-ATPase to the vacuole, to the xylem vessels, and possibly outwards.  相似文献   

16.
The effect of lead ions on the release of acetylcholine (ACh) was investigated in intact and digitonin-permeabilized rat cerebrocortical synaptosomes that had been prelabeled with [3H]choline. Release of ACh was inferred from the release of total 3H label or by determination of [3H]ACh. Application of 1 microM Pb2+ to intact synaptosomes in Ca2(+)-deficient medium induced 3H release, which was enhanced by K+ depolarization. This suggests that entry of Pb2+ into synaptosomes and Pb2(+)-induced ACh release can be augmented by activation of the voltage-gated Ca2+ channels in nerve terminals. The lead-induced release of [3H]ACh was blocked by treatment of synaptosomes with vesamicol, which prevents uptake of ACh into synaptic vesicles without affecting its synthesis in the synaptoplasm. This indicates that Pb2+ selectively activates the release of a vesicular fraction of the transmitter with little or no effect on the leakage of cytoplasmic ACh. Application of 1-50 nM (EC50 congruent to 4 nM) free Pb2+ to digitonin-permeabilized synaptosomes elicited release of 3H label that was comparable with the release induced by 0.2-5 microM (EC50 congruent to 0.5 microM) free Ca2+. This suggests that Pb2+ triggers transmitter exocytosis directly and that it is a some 100 times more effective activator of exocytosis than is the natural agonist Ca2+.  相似文献   

17.
Cerebral contusion, cortical laceration, intracerebral hematoma formation, and hemorrhagic cortical infarction cause extravasation of red blood cells, followed by hemolysis, decompartmentalization of iron, formation and deposition of hemosiderin, and an increased incidence of epilepsy. In this experiment, 10 microliter of an aqueous solution containing 100 mmol/L FeCl2, 100 mmol/L CoCl2, or 0.9% (wt/vol) NaCl were injected at a depth of 1.8 mm into rat isocortex. The rate of formation of fluorescent compounds was measured in chloroform-methanol extracts of isocortical homogenates. Significant increases in the quantity of fluorescent products of lipid peroxidation were found 120 min after the injection of 100 mmol/L FeCl2. Cobaltous chloride and saline injection had no effect on the levels of fluorescent products found in the cortical homogenates. Although the intracortical deposition of aqueous solutions containing CoCl2 or FeCl2 in rodent cortex causes acute epileptiform discharges, the epileptogenic effect of CoCl2 is transient, while the injection of iron salts causes persistent seizures. Since CoCl2 injection failed to cause formation of lipid peroxidation products while the isocortical injection of iron caused significant increase in fluorescence within the injected hemisphere, we suggest that the occurrence of iron-induced lipid peroxidation may be of importance in initiation of recurrent seizures in the rat.  相似文献   

18.
Addition of D-aspartate, a substrate for the high-affinity transport of acidic amino acid transmitters, to suspensions of rat brain synaptosomes increased the rate of O2 consumption, uptake of 86Rb, and transport of 2-[3H]deoxyglucose. Stimulation of all three processes was abolished in the presence of ouabain. D-Aspartate had no effect on respiration in the medium in which NaCl was replaced by choline chloride. The ratio of the ouabain-sensitive increase in 86Rb uptake to that in O2 consumption was 12 to 1, which gives a calculated 86Rb(K+)/ATP of 2. It is concluded that electrogenic, high-affinity transport of sodium-D-aspartate into synaptosomes stimulates the activity of the Na+/K+ pump through an increase in [Na+]i.  相似文献   

19.
Abstract: The evidence is compelling that free radicals, plus increases in free cytosolic Ca2+ and Na+, figure prominently in neuronal death after exposure to glutamate and dicarboxylic excitotoxins such as NMDA and kainate. However, neither the source of these radicals nor the direct connection between Ca2+ mobilization and radical production has been well defined. Electron paramagnetic resonance studies reported here indicate that intact mitochondria isolated from adult rat cerebral cortex and cerebellum generate extremely reactive hydroxyl (•OH) radicals, plus ascorbyl and other carbon-centered radicals when exposed to 2.5 µ M Ca2+, 14 m M Na+, plus elevated ADP under normoxic conditions, circumstances that prevail in the cytoplasm of neurons during excitotoxin-induced neurodegeneration. In a feed-forward cycle, exposure of isolated mitochondria to •OH significantly increases subsequent radical production five- to 16-fold (average = 8.8 ± 1.6 SE, n = 6, p > 0.01) with succinate as substrate, and also selectively impairs function of NADH-CoQ dehydrogenase activity (electron transport complex 1). These effects are also reflected by respiration rates that are reduced 48% with complex 1 substrates, but increased 27% with complex 2 substrate, after •OH exposure. Comparable complex 1 dysfunction is observed in mitochondria isolated from the substantia nigra of Parkinson's disease patients, from platelets of Huntington's disease patients, and from neocortex of Alzheimer's disease patients. Mitochondrial radical production provides a testable model, based on oxyradical toxicity, oxidative enzyme inactivation, and mitochondrial dysfunction, for the final common pathway of neuronal necrosis during excitotoxicity, and in a host of neurodegenerative disorders.  相似文献   

20.
Abstract: The excitatory amino acid glutamate was previously shown to stimulate aerobic glycolysis in astrocytes by a mechanism involving its uptake through an Na+-dependent transporter. Evidence had been provided that Na+,K+-ATPase might be involved in this process. We have now measured the activity of Na+,K+-ATPase in cultured astrocytes, using ouabain-sensitive 86Rb uptake as an index. l -Glutamate increases glial Na+,K+-ATPase activity in a concentration-dependent manner with an EC50 = 67 µ M . Both l - and d -aspartate, but not d -glutamate, produce a similar response, an observation that is consistent with an uptake-related effect rather than a receptor-mediated one. Under basal conditions, concentration-dependent inhibition of Na+,K+-ATPase activity in astrocytes by ouabain indicates the presence of a single catalytic site with a low affinity for ouabain ( K 0.5 = 113 µ M ), compatible with the presence of an α1 isozyme. On stimulation with glutamate, however, most of the increased activity is inhibited by low concentrations of ouabain ( K 0.5 = 20 n M ), thus revealing a high-affinity site akin to the α2 isozyme. These results suggest that astrocytes possess a glutamate-sensitive isoform of Na+,K+-ATPase that can be mobilized in response to increased neuronal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号