首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sequential polyacrylamide electrophoresis has revealed 20 allozymes of xanthine dehydrogenase (XDH) in Drosophila pseudoobscura. DNA sequence determination of seven isolates of the Xdh locus that represent six allozyme classes are presented here. Of the 5,456 sites examined, 180 are polymorphic, with 27 polymorphisms occurring at nonsynonymous, or replacement, sites. An average of nine amino acids differ between XDH allozyme classes, with 85% of the polymorphic amino acids singly represented. The level and pattern of variation observed at Xdh argue that the effective population size of the species is quite large--i.e., on the order of 2 x 10(6)--and that the populations sampled are quite ancient. In addition, as judged by two statistical tests, the levels of nucleotide polymorphism observed at Xdh are compatible with predictions from the neutral theory of molecular evolution.  相似文献   

2.
Different electrophoretic alleles of amylase show associations with particular chromosome 3 inversions in D. pseudoobscura and D. persimilis. Relative adult amylase activities were compared in 37, 37 and 10 strains of D. pseudoobscura, D. persimilis and D. miranda, respectively. Strains carrying the same electrophoretic allele were compared by crossing these lines individually to a reference strain carrying a different electrophoretic mobility allele. This procedure allows comparisons among species, inversions, electromorphs and strains for genetic variation in amylase activity. F2 analysis established that the activity variation co-segregates with the structural amylase locus. This type of variation could be due to either structural gene differences or differences in closely linked, cis-acting regulatory regions. Variation has been detected among and within electrophoretic mobility classes. Moreover, this variation is clearly nonrandom and reveals more of the genetic structure associated with the chromosomal inversion phylogeny of D. pseudoobscura and D. persimilis. ----Some of the findings are: (1) Similar electromorphs in D. pseudoobscura and D. persimilis usually show different activities. These species show nearly complete differentiation of amylase alleles, based on activities. (2) D. persimilis has the broadest range of variation in amylase activity, about four-fold between the highest and lowest alleles. D. pseudoobscura and D. miranda are also polymorphic for activity, but have more constrained ranges of variation. D. miranda alleles show on the average about four times the activity of D. pseudoobscura alleles. (3) Some association of electrophoretic mobility and activity has been found. Alleles 1.09 of D. persimilis, as well as 1.43 and 1.55 of D. miranda, have relatively high activity. It may be that these high activity alleles are part of an adaptation to cooler habitats. (4) Within electrophoretic classes, associations of activities with inversions have been found. These are especially strong in D. persimilis. The 1.00 alleles in the ST, KL, MD and WT inversions, the 0.92 allele in the ST and MD inversions and the 1.09 allele in the WT and KL inversions have levels of activities that depend upon the arrangement in which they are located. These results demonstrate that suppression of recombination in inversion heterokaryotypes can result in extensive genic divergence between inversions.  相似文献   

3.
The present report summarizes our recent progress in the genetic dissection of an elementary genetic unit in a higher organism, the rosy locus (ry:3--52.0) in Drosophila melanogaster. Pursuing the hypothesis that the rosy locus includes a noncoding control region, as well as a structural element coding for the xanthine dehydrogenase (XDH) peptide, experiments are described that characterize and map a rosy locus variant associated with much lower than normal levels of XDH activity. Experiments are described that fail to relate this phenotype to alteration in the structure of the XDH peptide, but clearly associate this character with variation in number of molecules of XDH per fly. Large-scale fine-structure recombination experiments locate the genetic basis for this variation in the number of molecules of XDH per fly to a site immediately to the left of the XDH structural element within a region previously designated as the XDH control element. Moreover, experiments clearly separate this "underproducer" variant site from a previously described "overproducer" site within the control region. Examination of enzyme activity in electrophoretic gels of appropriate heterozygous genotypes demonstrates the cis-acting nature of this variation in the number of molecules of XDH. A revision of the map of the rosy locus, structural and control elements is presented in the light of the additional mapping data now available.  相似文献   

4.
The nucleotide sequence of the Xdh region of Drosophila pseudoobscura is presented. The Xdh gene structure and organization are compared with the homologous region in D. melanogaster. This locus is shown to have similar organization in the two species, although an additional intron and three insertion/deletion events are described for the D. pseudoobscura coding region. The encoded proteins are predicted to have very similar charges and hydrophobic/hydrophilic domains even though 11% of the amino acids are different. A gene 5' to Xdh, putative l(3)s12, is suggested from sequence similarity between the species. Synonymous differences at the Xdh locus between the two species are analyzed using a new method described in the preceding paper by Lewontin. This analysis shows that synonymous positions within the Xdh locus are evolving at very different rates, being dependent on level of codon redundancy. A comparison of synonymous divergence between D. melanogaster and D. pseudoobscura in five additional genes reveals variation in the level of synonymous substitution.   相似文献   

5.
The protein expressed by the alcohol dehydrogenase locus (Adh) in D. melanogaster comprises a small group of electromorphs. We are able to study the expression of these electromorphs by electrophoretic separation and subsequent probing of blots of the separated polypeptides with antiserum for alcohol dehydrogenase (ADH). In the present study we have utilized this technique to study and compare the ADH electromorphs in wild type D. melanogaster with D. melanogaster transformants which carry an Adh gene from D. grimshawi, D. hawaiiensis or D. affinidisjuncta and produced functional ADH (10, 19). We have determined that polypeptides are produced by the donor loci in the transformed flies and further show that although the molecular weight of the expressed polypeptides is similar to D. melanogaster electromorphs, the isoelectric points are not similar. Thus this methodology offers the potential to study naturally occurring ADH electromorphs and null alleles independent of enzymatic activity assays.  相似文献   

6.
Experiments are described that provide an opportunity to estimate the genetic limits of the structural (amino acid coding) portion of the rosy locus (3:52.0) in Drosophila melanogaster, which controls the enzyme, xanthine dehydrogenase (XDH). This is accomplished by mapping experiments which localize sites responsible for electrophoretic variation in the enzyme on the known genetic map of null-XDH rosy mutants. Electrophoretic sites are distributed along a large portion of the null mutant map. A cis-trans test involving electrophoretic variants in the left- and right-hand portions of the map leads to the conclusion that the entire region between these variants is also structural. Hence most, if not all, of the null mutant map of the rosy locus contains structural information for the amino acid sequence of the XDH polypeptide. Consideration is given to the significance of the present results for the general problem of gene organization in higher eukaryotes.  相似文献   

7.
Beckenbach AT  Prakash S 《Genetics》1977,87(4):743-761
Recently a number of electrophoretic techniques have been applied to reveal the presence of additional genetic variation among the electrophoretic mobility classes of the highly polymorphic xanthine dehydrogenase (XDH ) and esterase-5 (est-5) loci. We examined the hexokinase loci of Drosophila pseudoobscura and D. persimilis using a variety of techniques to determine whether further allelic variation could be revealed for these much less polymorphic loci and to analyze the nature of the known variation at the hexokinase-1 (hex-1) locus. The following studies were conducted: 135 strains of the two species from six localities were examined with buffer pH ranging from 5.5 to 10.0; 40 strains of D. pseudoobscura and 9 strains of D. persimilis from Mather were studied using starch gel concentrations ranging from 8.5 to 15.5% and were examined for differences in heat stability and reactivity to the thiol reagent pCMSA; strains were also tested for susceptibility to urea denaturation and differences in relative activities. Major findings of the work are: (1) No additional allelic variation could be detected at any of the hexokinase loci by applying these techniques. The finding of abundant hidden genetic variation in XDH and est-5 does not extend to all enzyme loci. (2) Evidence from studies using pCMSA indicates that the hex-1 alleles 0.6, 0.8, 1.0 and 1.2 of the two species form a series of unit charge steps. Since the 0.94 allele of D. persimilis has mobility intermediate between 0.8 and 1.0, it is argued that routine electrophoretic techniques are sensitive to at least some conservative amino acid substitutions. (3) Strong correlations were found at the hex-1 locus between low allelic frequency, reduced relative activity and reduced stability to heat and urea denaturation. Since the three sibling species, D. pseudoobscura, D. persimilis and D. miranda, all appear to share a common high frequency allele (1.0) at that locus, these findings are taken as evidence that the observed allelic frequencies are a result of directional selection and mutation, rather than any form of balancing selection.  相似文献   

8.
9.
An experimental plan for an exhaustive determination of genic variation at structural gene loci is presented. In the initial steps of this program, 146 isochromosomal lines from 12 geographic populations of D. pseudoobscura were examined for allelic variation of xanthine dehydrogenase by the serial use of 4 different electrophoretic conditions and a head stability test. The 5 criteria revealed a total of 37 allelic classes out of the 146 genomes examined where only 6 had been previously revealed by the usual method of gel electrophoresis. This immense increase in genic variation also showed previously unsuspected population differences between the main part of the species distribution and the isolated population of Bogotá population. The average heterozygosity at the Xdh locus is at least 72% in natural populations. This result, together with the very large number of alleles segregating and the pattern of allelic frequencies, has implications for theories of genetic polymorphism which are discussed.  相似文献   

10.
Finnerty V  Johnson G 《Genetics》1979,91(4):695-722
Xanthine dehydrogenase (XDH) and aldehyde oxidase (AO) in Drosophila melanogaster require for their activity the action of another unlinked locus, maroon-like (mal). While the XDH and AO loci are on chromosome 3, mal maps to the X chromosome. Although functional mal gene product is required for XDH and AO activity, it is possible to examine the effects of mutant mal alleles in those cases when pairs of mutants complement to produce a partial restoration of activity. To test whether mal mediates a post-translational modification of the XDH and AO proteins, we constructed several mal heteroallelic complementing stocks of Drosophila in which the third chromosomes were co-isogenic. Since all lines were co-isogenic for the XDH and AO structural genes, any variation in these enzymes seen when comparing these stocks must have been produced by post-translational modification by mal. We examined the XDH and AO proteins in these stocks by gel-sieving electrophoresis, a procedure that permits independent characterization of a protein's charge and shape, and is capable of discriminating many variants not detected in routine electrophoresis. In every mal heteroallelic combination, there is a significant alteration in protein shape, when compared to wild type. The magnitude of differences in shape of XDH and AO is correlated both with differences in their enzyme activities and with differences in their thermal stabilities. As the body of this variation appears heritable, any functional differences resulting from these variants are of real genetic and evolutionary interest. A similar post-translational modification of XDH and AO by yet another locus, lxd, was subsequently documented in an analogous manner. The pattern of electrophoretic differences produced by mal and lxd modification is similar to that reported for electrophoretic "alleles" of XDH in natural populations. The implication is that heritable variation in electrophoretic mobility at these two enzyme loci, and potentially at other loci, is not necessarily allelic to the structural gene loci.  相似文献   

11.
Prakash S 《Genetics》1977,87(1):159-168
Quantitative studies of enzyme activity on gels show about four-fold differences in enzyme activity of different xanthine dehydrogenase (XDH ) alleles. At least three different activity classes could be distinguished among the 23 strains isogenic for the XDH locus. No association of high activity with the high frequency electromorph was observed; instead, the low frequency electromorphs had 0.5 to 2 times the activity of the high frequency electromorph. The frequency of low activity, high activity and intermediate activity XDH alleles among these 23 lines is 0.13, 0.09, and 0.78, respectively.  相似文献   

12.
McCommas SA 《Genetics》1983,103(4):741-752
The charge-state model of electrophoretic variation was tested by comparing the distances between nearest electromorphs of five enzyme loci within polymorphic species and among pooled species of sea anemone. If the charge-state model is generally true, and in particular if it allows linear distance between electromorphs to be used as a measure of genetic distance, then electromorphs of different species should be on the same "mobility ladder". Therefore, distances between adjacent electromorphs should be approximately equal for the two sets of comparisons. It was found that distances between adjacent electromorphs for each locus were significantly smaller for the pooled comparisons than within polymorphic species. Thus, it was concluded that much of the variation detected among different species does not conform to the charge-state model, and therefore that distance between electromorphs per se would not be a good measure of genetic distance. However, the charge-state model does appear to adequately account for most of the variation existing as common polymorphisms within species, or between very closely related species. Possible reasons for this apparent difference in the nature of the variation seen within and among species are discussed.  相似文献   

13.
Estimating total genic diversity in the house mouse   总被引:3,自引:0,他引:3  
In a survey of variation in both electrophoretic charge and thermostability at 14 structural loci in 40 strains of Mus musculus, 27 electromorphs (polypeptides differing in electrophoretic charge) and 20 thermomorphs (polypeptides differing in thermostability) were found. Electrophoresis detected 11 new variants within thermomorphs, and the heat denaturation technique detected four new variants within electromorphs. From these data, and making the assumption that both techniques are independent of each other, it is estimated that the actual total number of alleles at the 14 loci is 53, or an average of 3.79 per locus (1.96 per electromorph), and that electrophoresis apparently detects one-third of the variants, thus describing about 50% of the alleles at structural gene loci in the house mouse.  相似文献   

14.
Measurements of the electrophoretic mobility and thermostability of esterase-6 allozymes have been used to determine the amount of allelic variation at the esterase-6 locus in Drosophila melanogaster. We studied 398 homozygous lines obtained from four natural populations. Use of a spectrophotometric assay for esterase-6 activity has allowed precise quantitation of heat-stability variants. Using these methods, eight putative alleles were detected within the two most common electrophoretic classes. Analyses of F1 and F2 progeny show that the behavior of stability variants is consistent with the hypothesis that this variation is due to allelic variation at the Est-6 locus. Analyses of the gene-frequency distributions within and between populations show (1) that observed allele-frequency distributions do not deviate significantly from those expected for neutral variants, and (2) that there is little evidence for an increase in apparent divergence of the different populations at the genotypic or phenotypic levels when the additional variation detected is considered. These findings suggest that gene-frequency analysis alone is unlikely to resolve the question of the selective significance of allozyme variation.  相似文献   

15.
A D Retzios  D R Thatcher 《Biochimie》1979,61(5-6):701-704
The amino acid substitution responsible for the different electrophoretic mobility of the ADHs alleloenzyme and the ADHf alleloenzyme of the alcohol dehydrogenase from a Nigerian population of Drosophila melanogaster has been established as lysine (ADHs) for threonine (ADHf). This result is discussed with reference to the charge state model of electrophoretic variation, in conjunction with other know substitutions at this locus. It is concluded that electrophoretic methods should be capable of distinguishing many alleloenzymes which have identical isoelectric points without recourse to explanations involving conformational variability.  相似文献   

16.
From a collection of electrophoretic variants of XDH obtained from laboratory strains and natural populations, a stock was isolated that was associated with much greater than normal levels of XDH activity. Preliminary recombination experiments demonstrated that this character maps to the rosy locus. While a series of observations failed to relate this phenotype to alteration in the structure of the XDH polypeptide, kinetic and immunological experiments did succeed in associating this character with variation in number of molecules of XDH/fly. Large scale fine structure recombination experiments locate the genetic basis for this variation in number of molecules of XDH/fly to a site very close to, but definitely outside of, the genetic boundaries of the XDH structural information. Observations are described which eliminate the possibility that we are dealing with a tandem duplication of the XDH structural element. Turning to a regulatory role for this genetic element located adjacent to the XDH structural information, a simple experiment is described which demonstrates that it functions as a "cis-acting" regulator of the XDH structural element.  相似文献   

17.
Seventy chimpanzees, representing Pan paniscus (the pygmy chimp) and all four races of the common chimpanzee (Pan troglodytes), were examined for electrophoretic variation in their serum esterases. Only three variant electromorphs were observed at these six loci. One of these was at the albumin-associated esterase locus, and the other two were at esterase 4. This is the first report of any variation in an esterase or albumin in chimpanzees.  相似文献   

18.
Eighteen alleles of the rosy locus in Drosophila melanogaster were characterized to identify putative nonsense mutants. Seven alleles exhibited no evidence of intragenic complementation, no evidence of immunological complementation, no evidence of immunological cross-reactivity to antibodies elicited by wild type xanthine dehydrogenase (XDH), and of course were completely deficient in measurable XDH activity. It is possible that one or more of these highly negative ry alleles are nonsense mutants. The remaining eleven ry alleles code for XDH molecules that retain some antigenic similarities to the wild type enzyme as assessed by immunoelectrophoresis and six of these eleven were capable of intragenic complementation.  相似文献   

19.
In vitro enzymatic assays have shown that an enzyme with typical xanthine dehydrogenase (XDH) activities and electrophoretic mobility slightly different from that of Drosophila XDH is present in Calliphora tissues. A Calliphora genomic sequence has been isolated by low-stringency hybridization to the Drosophila rosy gene (XDH), and partially sequenced. This sequence has been shown to be unique, polymorphic, and it maps on chromosome I. Sequence comparisons provide compelling evidence that it belongs to the XDH gene of Calliphora. Interspecies transformation experiments, aimed at investigating functional as well as structural divergence of the XDH genes of Calliphora and Drosophila, are now possible.  相似文献   

20.
Cobbs G  Prakash S 《Genetics》1977,87(4):717-742
The relationship between charge changes and electrophoretic mobility changes is investigated experimentally. The charge of several proteins is altered by reaction with small molecules of known structure and the change in electrophoretic mobility is measured. The method of Ferguson plots is used to separate charge and shape components of mobility differences. The average effect of an amino acid charge change on the mobility of the esterase-5( 1.00) allele of Drosophila pseudoobscura is estimated to be 0.046. This estimate is then used to apply the step model of Ohta and Kimura (1973) to electrophoretic mobility data for the esterase-5 locus of D. pseudoobscura and D. miranda. The variation in electrophoretic mobility at this locus was found to be in agreement with the predictions of the step model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号