首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antibodies raised in rabbits to detergent-solubilized pig kidney microvillar proteins have been used to investigate the membrane hydrolases by crossed immunoelectrophoresis. Eight enzymes were detected by specific staining methods: aminopeptidase M, dipeptidylpeptidase IV, neutral endopeptidase, aminopeptidase A, carboxypeptidase P, gamma-glutamyltransferase, trehalase and phosphodiesterase I. The mobility of all these enzymes, with the exception of trehalase and neutral endopeptidase, was increased by treatment of the detergent-solubilized preparation with papain. The difference between the detergent and proteinase forms of these enzymes is attributed to the removal of a small, non-antigenic peptide to which detergent is bound in significant quantities. This interpretation was further supported by experiments in which the microvillus fraction was labelled with an intramembrane photolabelling reagent, 1-azido-4-[125I]iodobenzene. After photolysis, the radioactivity in the membrane could be solubilized by detergent treatment but not by papain treatment. Radioautography after crossed charge-shift immunoelectrophoresis showed a good correlation between charge-shift (signifying the presence of detergent bound to a hydrophobic domain) and the presence of the label.  相似文献   

2.
Scaffolding proteins containing PDZ (postsynaptic density 95/discs large/zonula occludens-1) domains are believed to provide relatively stable linkages between components of macromolecular complexes and in some cases to bridge to the actin cytoskeleton. The microvillar scaffolding protein EBP50 (ERM-binding phosphoprotein of 50 kD), consisting of two PDZ domains and an ezrin-binding site, retains specific proteins in microvilli and is necessary for microvillar biogenesis. Our analysis of the dynamics of microvillar proteins in vivo indicated that ezrin and microvillar membrane proteins had dynamics consistent with actin treadmilling and microvillar lifetimes. However, EBP50 was highly dynamic, turning over within seconds. EBP50 turnover was reduced by mutations that inactivate its PDZ domains and was enhanced by protein kinase C phosphorylation. Using a novel in vitro photoactivation fluorescence assay, the EBP50-ezrin interaction was shown to have a slow off-rate that was dramatically enhanced in a PDZ-regulated manner by addition of cell extract to near in vivo levels. Thus, the linking of relatively stable microvillar components can be mediated by surprisingly dynamic EBP50, a finding that may have important ramifications for other scaffolding proteins.  相似文献   

3.
Summary Alterations of the retinula cells in the retina of the light-adapted crayfish in response to hyper- and hypoosmotic van Harreveld solutions was examined by transmission electron microscopy. Increased osmolarity of the bathing medium to twice that of the physiological value leads to shrinkage of the retinula-cell somata. Microvilli, on the other hand, do not undergo shrinkage. Some other characteristic irreversible changes do, however, take place, including detachment of microvilli from the soma, showing a two- or threefold increase in diameter, and a concomitant decrease in number, probably due to fusion of microvilli.Prolonged incubation or higher osmolarities (5 isosmol) cause alteration of the microvillar membranes to whorls. Structural changes are often restricted to microvillar stacks evaginating from certain individual retinular cells. The number of affected stacks increases depending on the duration of incubation or the osmotic pressure. Hypoosmotic solution (0.5 isosmol) also induces an increase of microvillar diameters and a concomitant reduction in number of microvilli per stack. Exposure to a 20% solution of glycerol causes destruction of the rhabdom structure and the formation of whorls from microvillar membranes. The present findings suggest that the structure of the microvilli is stabilized by an axial cytoskeleton.  相似文献   

4.
Hevers W  Stieve H 《Tissue & cell》1995,27(4):405-419
In the retina of crayfish microvilli of seven of the eight photoreceptor cells build highly organized structures, the rhabdoms. Cytoskeletal elements inside the microvilli were investigated in conventional and slightly extracted electron microscopical preparations. In conventional preparations the ultrastructure of these cytoskeletal elements depended on the adaptational state of the animal. They appeared as central filament-like structures inside each microvillus when dark-adapted retinae were prepared and fixed at night in the absence of calcium. Changes of these conditions (light, daytime, or calcium concentration) impaired the detectability of these central filaments; in light-adapted eyes prepared at midday they were rarely seen. Nevertheless, single microvillar filaments were present in light-adapted retinae after mild cell permeabilization with the saponin beta-escin. They appeared as a regular structure in each microvillus, often attached to the membrane. Their fine structure was consistent with the ultrastructure of single actin filaments as indicated by fast-Fourier-analysis and further supported by the presence of anti-actin immunoreactivity in electron microscopical and immunocytochemical preparations. These results indicate that microvillar filaments are not necessarily destroyed by light as previously described; we suggest that their appearance inside the microvillus might be altered by the properties of associated, maybe sidearm-like proteins.  相似文献   

5.
Summary The photoreceptor microvilli of some nocturnal spiders (Isopeda andOlios in theSparassidae, andClubiona in theClubionidae) are wide (80–140 nm), and microvilli from adjacent receptors are interdigitated. Because microvillar diameters are relatively large in relation to the thicknesses of thin sections, it is possible to examine cytoskeletal structures closely associated with the microvillar plasmalemmae directly.Retinae were treated with a specific inhibitor of cysteine proteases before primary fixation for electron microscopy in a Ca2+-chelating medium. Cytoskeletal components were stabilized with tannic acid. A variety of microvillar profiles was obtained, consistent with an assumption that they represent imperfect preservation of anin vivo plasmalemmal undercoat, inferred to consist of longitudinally-disposed microfilaments, presumptively bonded to the microvillar plasmalemma. The microvillar lumen is inferred to be empty of cytoskeletal components in life.This model is discussed in terms of 1. the cytoskeletal organisation of microvilli of the primitive photoreceptors of a leech (Blest et al. 1983), where the arrangement of microfilaments resembles that in the vertebrate intestinal brush-border; 2. the large complement of membrane-associated oligomeric actin in rhabdoms of crayfish, where identifiable microfilaments cannot be resolved within microvilli by transmission electron microscopy (de Couet et al. 1984), and a single visualizable axial filament of uncertain composition is linked to the plasmalemma by side-arms.  相似文献   

6.
Summary It has previously been demonstrated, using an ultracytochemical technique, that the photoreceptive microvilli of crab retinae contain a magnesium-dependent phosphatase that hydrolyses the artificial substrate 4-nitrophenylphosphate. Whilst many phosphatases hydrolyse 4-nitrophenylphosphate, the properties of the microvillar enzyme indicated that it is not a conventional acid or alkaline phosphatase. Using the same technique, it is now shown that a similar activity resides in the rhabdomeric microvilli of both the lateral compound eye and the ventral photoreceptors of Limulus polyphemus as well as in the compound eyes of the freshwater crayfish Cherax destructor and the fly Lucilia cuprina. Control cytochemical procedures performed on crayfish and fly showed that in these species too the activity is magnesium-dependent and is not due to a Na+/K+ ATPase.  相似文献   

7.
Pig kidney microvillar proteins were extracted with octyl beta-glucoside and reconstituted in liposomes prepared from microvillar lipids of known composition. Four peptidases, namely endopeptidase (EC 3.4.24.11), aminopeptidases N (EC 3.4.11.2) and A (EC 3.4.11.7) and dipeptidyl peptidase IV (EC 3.4.14.5), were shown to be reconstituted. At lipid/protein ratios greater than 4:1, about half the detergent-solubilized protein and nearly all of the activity of the four peptidases were reconstituted. Dissolution of the liposomes with Triton X-100 did not increase the activity of any of these peptidases, a result consistent with an asymmetric, 'right-side-out', orientation of these enzymes. When purified, endopeptidase was subjected to the same procedure; the two amphipathic forms of the enzyme (the detergent form and the trypsin-treated detergent form) were fully reconstituted. The amphiphilic form, purified after toluene/trypsin treatment, failed to reconstitute. Electron microscopy of microvilli showed that the appearance of the surface particles was profoundly altered by treatment with papain. Before treatment, the microvilli were coated with particles of stalk lengths ranging from 2.5 to 9 nm. After papain treatment nearly all the particles had stalks of 2-3 nm. Reconstituted microvillar proteins in liposomes showed the same heterogeneity of stalk length. In contrast, liposomes containing reconstituted endopeptidase revealed a very homogeneous population of particles of stalk length 2 nm. Since the smallest dimension of a papain molecule is 3.7 nm, the ability of papain, and other proteinases of similar molecular size, to release microvillar enzymes is crucially affected by the length of the junctional peptide that constitutes the stalk of this type of membrane protein.  相似文献   

8.
The Na,K-ATPase (sodium pump) plays a central role in the physiology of arthropod photoreceptors as it re-establishes gradients for Na+ and K+ after light stimulation. We have mapped the distribution of the Na,K-ATPase in the photoreceptors of the blowfly (Calliphora erythrocephala) by immunofluorescent and immunogold cytochemistry, and demonstrate that the distribution pattern is more complex than previously presumed. High levels of sodium pumps have been detected consistently in all photoreceptors R1-8 on the nonreceptive surface, but no sodium pumps are found on the microvillar rhabdomere. Within the nonreceptive surface of the cells R1-6, however, the sodium pumps are confined to sites juxtaposed to neighboring photoreceptor or glial cells; no sodium pumps have been detected on the parts of the nonreceptive surface exposed to the intra-ommatidial space. In R7 and R8, the sodium pumps are found over the entire nonreceptive surface. The cytoskeletal protein spectrin colocalizes with the sodium pumps suggesting that linkage of the pump molecules to the spectrin-based submembrane cytoskeleton contributes to the maintenance of the complex pattern of pump distribution.  相似文献   

9.
The shape and stability of intestinal epithelial cell microvilli are maintained by a cytoskeletal core composed of a bundle of actin filaments with several associated proteins. The core filaments are intimately associated with the overlying plasma membrane, in which there occur rapid turnover of proteins and constant incorporation of new membrane. Previous work has shown that starvation or inhibition of protein synthesis results in modulation of microvillar length, which indicates that there may be cytoskeletal protein turnover. We demonstrate herein, by means of in vivo pulse labeling with radioactive amino acids, that turnover of brush border cytoskeletal proteins occurs in mature absorptive cells. Turnover of cytoskeletal proteins appears to be quite slow relative to membrane protein turnover, which suggests that the turnover of these two microvillar compartments is not coupled. We thus conclude that cytoskeletal protein turnover may be a factor used to maintain normal length and stability of microvilli and that the cytoskeleton cannot be considered a static structure.  相似文献   

10.
We have used cytofluorometry to examine the formaldehyde sensitivity of the binding of a monoclonal antibody (MAB) to its epitope on glial fibrillary acidic protein in human malignant glioma cells in culture. When acetone-extracted whole cells or cytoskeletons, made by extracting with Triton in stabilizing buffer (Tsb), are fixed with formaldehyde, binding of the MAB Tp-GFAP1 to GFAP is abolished or greatly reduced. Fixation with the bifunctional protein crosslinking reagent dithiobis (succinimidyl propionate) (DTSP) has the same negative effect as formaldehyde. If cytoskeletons are further extracted with Tsb containing 250 mM ammonium sulfate (Thsb), fixation with formaldehyde or DTSP has reduced or no effect on the binding of Tp-GFAP1. The data are consistent with the hypothesis that aldehyde sensitivity of Tp-GFAP1 is caused by the crosslinking of a second protein to GFAP that blocks the binding of the MAB to its epitope. This putative blocking protein is part of the Triton-insoluble cytoskeleton, but it begins to be solubilized in 50 mM ammonium sulfate and it is largely removed in 250 mM ammonium sulfate (Thsb). SDS-PAGE shows that extraction with Thsb also removes a large number of proteins from the cytoskeleton, one of which could be the blocking protein. A second antibody to GFAP, designated Tp-GFAP3, was raised against cytoskeletons which had been fixed with DTSP and in which the epitope recognized by Tp-GFAP1 was presumably blocked. Tp-GFAP3 is not sensitive to fixation by either formaldehyde or DTSP.  相似文献   

11.
Breakdown of microvilli is a common early event in various types of apoptosis, but its molecular mechanism and implications remain unclear. ERM (ezrin/radixin/moesin) proteins are ubiquitously expressed microvillar proteins that are activated in the cytoplasm, translocate to the plasma membrane, and function as general actin filament/plasma membrane cross-linkers to form microvilli. Immunofluorescence microscopic and biochemical analyses revealed that, at the early phase of Fas ligand (FasL)–induced apoptosis in L cells expressing Fas (LHF), ERM proteins translocate from the plasma membranes of microvilli to the cytoplasm concomitant with dephosphorylation. When the FasL-induced dephosphorylation of ERM proteins was suppressed by calyculin A, a serine/threonine protein phosphatase inhibitor, the cytoplasmic translocation of ERM proteins was blocked. The interleukin-1β–converting enzyme (ICE) protease inhibitors suppressed the dephosphorylation as well as the cytoplasmic translocation of ERM proteins. These findings indicate that during FasL-induced apoptosis, the ICE protease cascade was first activated, and then ERM proteins were dephosphorylated followed by their cytoplasmic translocation, i.e., microvillar breakdown. Next, to examine the subsequent events in microvillar breakdown, we prepared DiO-labeled single-layered plasma membranes with the cytoplasmic surface freely exposed from FasL-treated or nontreated LHF cells. On single-layered plasma membranes from nontreated cells, ERM proteins and actin filaments were densely detected, whereas those from FasL-treated cells were free from ERM proteins or actin filaments. We thus concluded that the cytoplasmic translocation of ERM proteins is responsible for the microvillar breakdown at an early phase of apoptosis and that the depletion of ERM proteins from plasma membranes results in the gross dissociation of actin-based cytoskeleton from plasma membranes. The physiological relevance of this ERM protein–based microvillar breakdown in apoptosis will be discussed.  相似文献   

12.
A one-step biuret assay for protein in the presence of detergent   总被引:4,自引:0,他引:4  
An alkaline-copper reagent is described which forms a soluble, stable complex with protein in the presence of detergent. The modified reagent produces a relatively uniform absorbance for six different proteins, and it may be used to determine the protein content of such heterogeneous samples as plasma membranes and mitochondria.  相似文献   

13.
B cell surface immunoglobulin (SIg) plays an important role in antigen recognition and cellular activation. Cross-linking of SIg by bivalent antibody converts it into a detergent insoluble state. The resultant SIg may be partially solubilized by incubating the detergent insoluble cytoskeleton in buffers that convert F actin to G actin. Immunoprecipitation of SIg from the detergent soluble fraction of [35S]methionine-labeled B cells results in the co-isolation of 112 kDa, 42 kDa, (actin), and three additional proteins in the 70- to 73-kDa molecular mass range, isoelectric point 4.8 to 5.6. Analysis of anti-Ig immunoprecipitates made after preclearing with anti-alpha-actinin showed complete depletion of the 112-kDa protein, suggesting that the 112-kDa protein is immunologically related to alpha-actinin. These immunoprecipitates also showed partial depletion of 70- to 73-kDa proteins and mu and delta heavy chains. After treatment of a rat B cells with anti-Ig, much of the Ig-associated 112-kDa protein and 70- to 73-kDa proteins became detergent insoluble, concomitant with most of the SIg. The migration of the SIg-associated 112-kDa and 70- to 73-kDa proteins from the detergent soluble fraction to the detergent insoluble fraction after ligand treatment, suggests that these proteins might be involved in linking SIg to the underlying cytoskeleton and could be involved in the transmission of mitogenic signals.  相似文献   

14.
Polarization sensitivity in arthropod photoreceptors is crucially dependent on the arrangement of the microvilli within the rhabdom. Here, we present an electron-microscopical study in which the degree of microvillar alignment and changes in the cross-sectional areas of the rhabdoms along their length were studied in the compound eye of the desert ant, Cataglyphis bicolor. Serial cross-sections through the retina were taken and the orientation of the microvilli was determined in the photoreceptors of individually identified ommatidia. The reconstructions of microvillar alignment were made in the three anatomically and functionally distinct regions of the Cataglyphis compound eye: the dorsal rim area (DRA), the dorsal area (DA), and the ventral area (VA). The following morphological findings are consistent with polarization sensitivities measured previously by intracellular recordings. (1) The microvilli of the DRA photoreceptors are aligned in parallel along the entire length of the cell from the distal tip of the rhabdom down to its proximal end, near the basement membrane. The microvilli of the retinular cells R1 and R5 are always parallel to each other and perfectly perpendicular, with only minor deviation, to the microvillar orientation of the remaining receptor cells. (2) In the DA and VA regions of the eye, the microvillar tufts of the small receptors R1, R3, R5, R7, and R9 change their direction repetitively every 1-4 7m for up to 90°. In contrast, the large receptor cells R2, R4, R6, and R8 maintain their microvillar orientation rigidly. (3) In the DRA ommatidia, the cross-sectional areas of the rhabdomeres do not change along the length of the rhabdom, but substantial changes occur in the DA and VA ommatidia.  相似文献   

15.
The assembly of the intestinal microvillus cytoskeleton was examined during the differentiation of enterocytes along the crypt-villus axis in adult chicken duodenum using light and electron microscopic immunolocalization techniques. Using antibodies reactive with villin, fimbrin, and the heavy chain (hc) of brush border (BB) myosin I (110K-calmodulin complex) and rhodamine-conjugated phalloidin as a probe for F-actin, we determined that while actin, villin, and fimbrin were all localized apically along the entire axis, BB myosin I (hc) did not assume this localization until the crypt-villus transition zone. In addition to their localization at the BB surface, all four proteins were present at significant levels along the lateral margins of enterocytes along the entire crypt-villus axis, suggesting that these proteins may be involved in the organization and function of the basolateral membrane cytoskeleton as well. The pattern of expression of the microvillar core proteins along the crypt-villus axis in the adult was comparable to that seen in the intestine of the late stage chicken embryo and suggests that a common program for brush border assembly may be used in both modes of enterocyte differentiation.  相似文献   

16.
The human placental syncytiotrophoblast microvilli are supported by an underlying cytoskeleton consisting mainly of actin microfilaments. The major proteins associated with the actin have Mr values of 105 000, 80 000 and 68 000. The 105 000-Mr protein is recognized by an antibody preparation raised to purified chicken gizzard alpha-actinin. Electron microscopy has shown that the human placental protein has dimensions similar to those reported for muscle alpha-actinin. About half of the placental microvillar alpha-actinin is released from the cytoskeleton in the presence of Ca2+. This effect occurs at concentrations of Ca2+ greater than 0.3 muM and has been used as the basis of a method for the purification of the placental alpha-actinin. This sensitivity to Ca2+ is not affected by trifluoperazine and is therefore likely to be a property of the alpha-actinin as such rather than being mediated via calmodulin.  相似文献   

17.
  • 1.1. A method for the asymmetric labelling of pig kidney microvillar membrane proteins is described.
  • 2.2. The photo-activated reagent, 3,5-di[125I]iodo-4-azido-benzene sulphonate, enabled four of the membrane peptidases to be characterized as transmembrane proteins.
  相似文献   

18.
Subcellular fractionation of pig kidney cortex revealed that aminoacylase I (EC 3.5.1.14, N-acyl-L-amino-acid aminohydrolase) is predominantly a soluble enzyme with only 0.5% of the total activity being recovered in the membrane fraction. The aminoacylase I activity associated with the membrane preparations displayed neither rapid release following incubation with phosphatidylinositol-specific phospholipase C from Bacillus thuringiensis nor the distinctive differential pattern of detergent solubilization which was seen with glycosyl-phosphatidylinositol-anchored proteins (renal dipeptidase, alkaline phosphatase). When fractionated by phase separation in Triton X-114, integral membrane proteins of kidney microvillar membranes partitioned predominantly (greater than 90%) into the detergent-rich phase. In contrast, only 3.7% of aminoacylase I activity associated with microvillar membranes partitioned into the detergent-rich phase. Aminoacylase I activity of pig kidney would therefore appear to be a hydrophilic protein in nature and is not, as suggested previously, a G-PI-anchored integral membrane protein.  相似文献   

19.
A new hetero-bifunctional photo crosslinking reagent, 2-(4-azidoanilyl)-4-(4-azabicyclo-[2,2, 2]hexylammonio)-6-morpholino-1,3,5-triazine chloride, was designed to detect and isolate heparin-binding protein(s) that may act as heparin-receptor(s) on the platelet surface. In a preliminary study using ethanol as a model substrate, the reagent was shown to react with the alcoholic hydroxy group under mild conditions and its crosslinking photoreactivity was high. The reagent effectively formed similar covalent bonds with heparin, while preserving its anticoagulant anti-Xa activity. [3H]Heparin labeled with this reagent crosslinked to antithrombin III very specifically but not to ovalbumin, as analyzed by the Bio-imaging Analyzer System (BAS, Fuji Photo Film, Tokyo). Affinity crosslinking of [3H]heparin was then used to detect heparin-binding proteins on the surface of intact platelets. Several discrete protein bands were detected by the BAS-imaging of SDS-PAGE.  相似文献   

20.
The distal regions of the photoreceptor microvilli of tipulid flies are shed to extracellular space during membrane turnover. Before abscission, the microvillar tips undergo a transformation: they become deformed, and after conventional fixation for electron microscopy are relatively electron-lucent compared to the stable, basal microvillar segments. We now show that the electron-lucent segment is an empty bag of membrane whose P-face after freeze-etch preparation appears as densely particulate as the remainder of the microvillus. Transformation is achieved by the local deletion of a microvillar cytoskeleton which consists of a single, axial filament linked to the plasma membrane by side-arms. The filament may be partially preserved by the chelation of Ca2+; the provision of a divalent cation (Mg2+ or Ba2+) stabilizes the side-arms during subsequent fixation, as has been shown previously for the rhabdomeral cytoskeleton of blowflies. Incubation of the isolated retina in the presence of 0.25 mM Ca2+ at room temperature for 10-20 min causes proteolysis of the cytoskeleton which is blocked by as little as 0.5 mM of the thiol protease inhibitors Ep-475 and Ep-459. Loss of the cytoskeleton is accompanied by deformation of all regions of the microvilli. Local deletion of the cytoskeleton from the transformed zone of the normal rhabdom is sufficient to explain deformation of the microvillar tips, but not their subsequent abscission. The intimate association between a Ca2+-activated thiol protease and the cytoskeleton implied by the great rapidity of proteolysis calls for a reassessment of published studies of membrane turnover by radioautography, and of the nature of light-induced damage to arthropod photoreceptor membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号