首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Flora》2007,202(5):371-382
The fruiting phenology of 22 woody plant species belonging to 19 families was studied with respect to life-forms, physiognomic groups and dispersal modes, for 1 year at monthly intervals, in a tropical dry evergreen forest at Oorani (12°11′N, 79°57′E) on the Coromandel coast of India. At the community level, bimodal fruiting pattern prevailed, with a major peak in the dry season and a minor one in the early rainy season. An annual fruiting pattern was observed in many species and among the studied species fruiting lasted for 2–9 months. There was no significant difference in the frequency of species at three fruiting stages across the life-form categories and many species of upper and lower canopy trees and lianas were in the ripe fruiting phase during the late dry season. Plant physiognomic groups displayed distinct seasonality in fruiting pattern. The fruit maturation period was much longer for the wet season fruiting brevi-deciduous species than evergreen and deciduous species that fruited during the dry season. The variation in timing of fruiting behaviour among zoochorous species demonstrated less seasonality and zoochorous fruits were available throughout the year. Fruiting in anemochorous species peaked during the driest months and dryness favoured the dissemination of seeds. The fruiting patterns observed in the studied tropical dry evergreen forest across various plant traits were comparable with patterns recorded in other tropical seasonal forests.  相似文献   

2.
The reproductive phenology of 60 understorey species was monitored at monthly intervals for 20 months in a medium elevation wet evergreen forest in the Southern Western Ghats. The life forms monitored were herbs (including terrestrial orchids), shrubs and small trees. Flowering and fruiting were non‐uniform with a dry season flowering peak and wet season fruiting peak. Flowering in the understorey correlated negatively with rainfall. No significant correlation was detected for fruiting. Life forms had flowering and fruiting peaks at different times of the year.  相似文献   

3.
Dry forests are common, although highly threatened in the Neotropics. Their ecological processes are mostly influenced by rainfall pattern, hence their cycles exhibit contrasting phases. We studied the phenology of canopy trees in a primary dry forest in Western Brazil in the foothills of the Urucum mountain chain, in order to improve our knowledge on the functioning of these poorly-known forests. Leaf shedding started in the early dry season and was massive in the latter part of this period. Most leaf loss occurred in dry hills, while wet valleys remained evergreen. Anemochorich and autochorich species predominated in dry hills, presumably due to their tolerance to dry conditions and enhanced exposition to winds, which favour diaspores removal and dispersal. Conversely, zoochorich species dominated the wet valleys. Flowering was intense in the late dry season, the driest period of the year, while fruiting was massive just after the onset of rains, as well as flushing. Therefore, most flowering was unrelated to wet conditions, although such an abiotic factor, potentially, triggered the major fruiting episode, widely comprised by zoochorich species. Anemochorich and autochorich species flowered and fruited in the course of the long dry season. The contrasting environmental conditions present in the hills and valleys determine the arrangement of a mosaic in which patches of zoochorich and evergreen trees alternate with patches of non zoochorich and highly deciduous species. Consequently, species with such syndromes exhibited marked flowering and fruiting patterns, accordingly to the pronounced seasonality.  相似文献   

4.
Tropical dry forests occupy more area and are more endangered than rainforests, yet their regeneration ecology has received less study and is consequently poorly understood. We recorded the flowering and fruiting phenology of a tropical dry forest in Jamaica over a period of 26 mo within ten 15 × 15‐m plots. Community‐wide recruitment reached a maximum in the wet season, whereas no recruitment occurred during the dry season. We observed a unimodal peak in rainfall and fruit production, and the periodicity and intensity of seed production were significantly correlated with rainfall seasonality (the optimal time for germination). Flowering at the community and system levels lagged behind a significant increase and subsequent decrease in rainfall by 7 and 3 mo, respectively, indicating that the dominant factor controlling flowering periodicity is the passage of the major (4‐mo long) rainy season and changes in soil moisture conditions. Fruiting lagged behind flowering by 2 mo and a significant increase in fruiting occurred 2 mo prior to a significant increase in rainfall. At the population level, a correspondence analysis identified a major dichotomy in the patterns of flowering and fruiting between species and indicated two broad species groups based on their time of peak fruiting and the number of times they were in fruit. These were either individuals which were usually in peak fruit 1–2 mo prior to the start of the major rainy season or those that were in fruit more or less continuously throughout the year with no peak fruiting time. This study supports the view that seasonal variation in rainfall and hence soil water availability constitutes both the proximate and the ultimate cause of flowering periodicity in tropical dry forests.  相似文献   

5.
Phenology influences many forest functions and can inform forest conservation and management, yet representative phenological data for most common tropical forest tree species remain sparse or absent. Between June 2011 and December 2013, we investigated flowering, fruiting, and leafing patterns in the Bwindi Impenetrable National Park, a montane forest located near the equator in Uganda, drawing on 16,410 observations of 530 trees of 54 species located between 2066 and 2527 m in elevation. The park's climate is equatorial with two wet and dry seasons each year. Flowering and fruiting were strongly seasonal while patterns in leafing were less pronounced. Flower occurrence peaked at the beginning of the short dry season followed by a pronounced trough during the beginning and the middle of the short wet season. Fruit occurrence had a pronounced peak during high rainfall months in March through April with most fruits ripening during drier months in May through July. Fruit scarcity was observed for a 4-month period spanning September to December and most flushing of leaves noted at the end of the wet season in November and December. Our binomial generalized linear mixed models indicated that flowering and fruiting were negatively associated with temperature and that leafing activity was positively associated with rainfall and temperature. These findings are consistent with the insolation- and water-limitation hypotheses suggesting that the seasonally varying availability of resources such as light, water, and nutrients determines these phenological patterns. Ideally, prolonged, multi-year community-level studies would be supported so as to better characterize the influence of climate and of climate variability.  相似文献   

6.
Reproductive phenology of 171 plant species belonging to 57 families of angiosperms was studied according to life-forms in four habitat types in a savanna-forest mosaic on the Venezuelan Central Plain. Flowering, unripe fruit, and mature fruit patterns were affected significantly according to life-forms and habitats respectively. Production of flowers, unripe fruits, and mature fruits showed marked seasonality for all habitats except for the forest. Flowering peaked during the rainy season, and fruiting peaked toward the end of the rainy season. The savanna and the disturbed area had similar proportions of species that flowered over the year. The percentage of species with unripe fruits produced throughout the year was more seasonal for the disturbed area than for the other habitats. Mature fruit patterns showed an increase during the late rainy season for the ecotone and savanna. A large number of herbaceous (annual and perennial) and liana species flowered during the wet season, and a smaller fraction flowered during the dry season; and trees, shrubs, and epiphytes increased flowering activity during the dry season. Unripe fruit patterns were similar to those of flowering for all life-forms, however, tree species were less seasonal. Mature fruit production by shrubs peaked in the period of maximum rainfall, while the peak for perennial herbs was in the late rainy season and the peak for annual herbs was during the transition between the rainy season and the dry season. The largest proportion of tree and liana species with ripe fruits occurred during the dry season. Differences among phenological patterns in habitats were caused mainly by life-forms and promote a wider distribution of reproductive events in habitats and overall community in the Venezuelan Central Plain.  相似文献   

7.
《植物生态学报》2017,41(7):716
Aims Diversity of climbing seed plants and their reproductive habits and characteristics are central for the understanding of community structure and dynamics of forests and hence are important for forest protection. However, little is known about the climbing seed plants in northern tropical karst seasonal rain forests. Here, using the data of the species diversity and reproductive habits of climbing seed plants in Nonggang, Guangxi, China, we aim to 1) explore the species diversity and distribution of climbing seed plants in northern tropical karst seasonal rain forests, 2) study the flowering and fruiting phenology and 3) the associations of reproductive characteristics to the environment. Methods Species composition, preferred habitat, flowering time, fruiting time and fruit types of climbing seed plants were surveyed. The seasonality of flowering and fruiting were analyzed by concentration ratio and circular distribution. Climbing seed plants were divided into three groups according to their growth forms and places in spatial forest structure: bush ropes, herbaceous vines and lianas. Monthly flowering ratios, fruiting ratios, fruit types and their ratios in different groups were determined. These relationships of flowering ratio, fruiting ratio, fruit type and its ratio to meteorological factors were investigated using Pearson correlation analysis. Important findings There were a total of 333 species of climbing seed plants in Nonggang karst seasonal rain forest, belonging to 145 genera and 56 families. Bush ropes, herbaceous vines and lianas contained 119, 88 and 126 species, respectively. At species level, herbaceous vines were more abundance in valleys, while bush ropes and lianas were more abundance on slopes. Flowering and fruiting of climbing seed plants occurred seasonally, with flowering peaking in April to September, while fruiting peaking in July to December. The seasonality of flowering and fruiting in bush ropes was weaker than in herbaceous vines and lianas. Flowering ratio was significantly positively correlated with rainfall and air temperature, which suggest that flowering peaks in monsoon season. Peak time for fruiting was about three months later than the peak time of flowering, around the end of monsoon season. The ratio of samara species to all fruiting species in lianas was significantly positively correlated with wind speed, but negatively correlated with rainfall and air temperature. It showed that samara in lianas tended to occur in dry season with high wind speed. In conclusion, species diversity and the seasonal features of reproduction of climbing seed plants in Nonggang karst seasonal rain forest were closely related to the spatial and temporal variations of habitat resources.  相似文献   

8.
Tree species that produce resources for fauna are recommended for forest restoration plantings to attract pollinators and seed dispersers; however, information regarding the flowering and fruiting of these species during early growth stages is scarce. We evaluated the reproductive phenology of animal‐dispersed tree species widely used in Atlantic Forest restoration. We marked 16 animal‐dispersed tree species in 3‐ to 8‐year‐old forest restoration plantings in Itu‐São Paulo, southeast Brazil. We noted the age of the first reproductive event, flowering and fruiting seasonality, percentage of trees that reached reproductive stages, and intensity of bud, flower, and fruit production for each species. Flowering and fruiting are seasonal for most species; only two, Cecropia pachystachya and Ficus guaranitica, exhibited continuous flowering and fruiting throughout the year; we also identified Schinus terebinthifolia and Dendropanax cuneatus fruiting in the dry season during resource scarcity. Therefore, we recommend all as framework species, that is, species that are animal‐dispersed with early flowering and fruiting potential, for forest restoration. Further, we recommend identifying and planting similar animal‐dispersed tree species that produce fruits constantly or in the dry season to maximize fauna resource availability throughout the year in tropical forest restoration plantings. Abstract in Portuguese is available with online material  相似文献   

9.
Phenological observations were made on 122 tree species in a subtropical humid seasonal forest in north-eastern India. The forest had a high proportion of evergreen compared to deciduous species. Leaf-fall of most of the tree species coincided with the dry season. Flushing started towards the end of the dry season for a majority of the tree species, the degree and period of leaflessness varying with the species. Leaf production in the overstorey species extended over a longer period compared to the understorey species. For most of the species, flowering coincided with leaflessness. Proportionately more overstorey species flowered during the dry season and wet season flowering was more characteristic of understorey species. A majority of the species produced fleshy fruits during the wet season. Fruits, produced during the dry season, were mostly dry.Nomenclature follows. Holdridge, L. R., 1967. Life zone Ecology. Tropical Science Center, San Jose, Costa Rica.This work was supported by a research grant from the Department of Science and Technology, Government of India. The authors are thankful to K. Haridasan, Taxonomy laboratory, Department of Botany, NEHU for the help in species identification.  相似文献   

10.
The phenology of tree species in environments that are subject to strong climatic seasonality is mainly determined by water availability, which may vary as a function of wood density. The relationship among phenology, water potential, wood density and the capacity of water storage in the stem were determined for woody species of caatinga vegetation (dry forest) in the semiarid region of NE Brazil. Leaf flush and fall, flowering and fruiting events were recorded over a 31-month period, and the water potential was measured over a two-year period. These data were related to precipitation, water availability in the soil and photoperiod. Seven deciduous species exhibited low wood density (DLWD,?<0.5?g?cm?3), high capacity of water storage in the stem (until 250?% of the dry weight) and high water potential during the year, as opposed to 15 deciduous species that showed high wood density (DHWD,?≥0.5?g?cm?3). Leaf flush, flowering and the fruiting of DHWD species were related to precipitation, whereas these phenological events occurred at the end of the dry season and/or the beginning of the rainy season for DLWD species and were related to the photoperiod. The two evergreen species showed variations of water potential that were intermediate between those of DHWD and DLWD deciduous species, leaf flush during the dry season and flowering at the end of dry season. These results suggest the existence of three functional groups: evergreen species, DHWD deciduous species and DLWD deciduous species.  相似文献   

11.
Phenology of Tree Species in Bolivian Dry Forests   总被引:2,自引:0,他引:2  
Phenological characteristics of 453 individuals representing 39 tree species were investigated in two dry forests of the Lomerío region, Department of Santa Cruz, Bolivia. The leaf, flower, and fruit production of canopy and sub–canopy forest tree species were recorded monthly over a two–year period. Most canopy species lost their leaves during the dry season, whereas nearly all sub–canopy species retained their leaves. Peak leaf fall for canopy trees coincided with the peak of the dry season in July and August. Flushing of new leaves was complete by November in the early rainy season. Flowering and fruiting were bimodal, with a major peak occurring at the end of the dry season (August–October) and a minor peak during the rainy season (January). Fruit development was sufficiently long in this forest that fruiting peaks actually tended to precede flowering peaks by one month. A scarcity of fruit was observed in May, corresponding to the end of the rainy season. With the exception of figs (Ficus), most species had fairly synchronous fruit production. Most canopy trees had small, wind dispersed seeds or fruits that matured during the latter part of the dry season, whereas many sub–canopy tree species produced larger animal– or gravity–dispersed fruits that matured during the peak of the rainy season. Most species produced fruit annually. Lomerio received less rainfall than other tropical dry forests in which phenological studies have been conducted, but rainfall can be plentiful during the dry season in association with the passage of Antarctic cold fronts. Still, phenological patterns in Bolivian dry forests appear to be similar to those of other Neotropical dry forests.  相似文献   

12.
Interspecific and interannual variation in reproductive phenology was quantified for 50 common species of trees and shrubs from a mesic savanna near Darwin, northern Australia. The presence of buds, flowers, and fruit was noted over a 30-month period, from September 1992 to February 1995. Surveys were undertaken at monthly intervals for the less common species, and at bimonthly intervals for ten of the common trees and tall shrubs. The majority of species flowered each year at about the same time. There was no evidence of sub-annual or continuous regimes of reproductive phenology. There was no supra-annual carryover of seed-bearing fruit in the canopy of any species. The peak flowering periods were the mid to late dry season (July–August) and the transition between the dry season and the wet season (October–November). The two dominant trees–Eucalyptus miniata and E, tetrodonta– flowered during the dry season, thereby providing resources for some elements of the vertebrate fauna. Flowering and fruiting were uncommon at the end of the wet season (February/March), although two species that flower and fruit at this time (E. porrecta and Terminalia ferdinandianas may provide resources to consumers at a time when floral or fruit resources are otherwise scarce. Because the peak of reproductive activity takes place during the late dry season, fruit maturity and seed dispersal have occurred prior to the onset of the rainy season for most species, and germination and seedling establishment potentially may take effect in response to the first rains. Late dry season fires, which tend to be extensive and intense, are a potential threat to the floral and fruit reserves within these savannas.  相似文献   

13.
The reproductive phenology of seven species of Rubiaceae from the Brazilian Atlantic rain forest was compared to evaluate the occurrence of phylogenetic constraints on flowering and fruiting phenologies. Since phenological patterns can be affected by phylogenetic constraints, we expected that reproductive phenology would be similar among plants within a family or genus, occurring during the same time (or season) of the year. Observations on flowering and fruiting phenology were carried out monthly, from December 1996 to January 1998, at Núcleo Picinguaba, Parque Estadual da Serra do Mar, Ubatuba, S?o Paulo State, Brazil. Nine phenological variables were calculated to characterize, quantify and compare the reproductive phenology of the Rubiaceae species. The flowering patterns were different among the seven species studied, and the Kruskal-Wallis test indicated significant differences in flowering duration first flowering, peak flowering and flowering synchrony. The peaks and patterns of fruiting intensity were different among the Rubiaceae species studied and they differed significantly from conspecifics in the phenological variables fruiting duration, fruiting peak date, and fruiting synchrony (Kruskal-Wallis test). Therefore, we found no evidence supporting the phylogenetic hypotheses, and climate does not seem to constrain flowering and fruiting patterns of the Rubiaceae species in the understory of the Atlantic forest.  相似文献   

14.
Flowering patterns are defined by the timing, duration, and frequency of flowering. Plants, particularly in the tropics, vary enormously with respect to these main variables of flowering. We used data from 302 tree species in a wet tropical forest to test a series of predictions regarding timing, duration, and frequency of flowering and examined the effect of each variable on the other two. Because timing, duration, and frequency of flowering can be constrained by phylogeny, we analyzed the data before and after considering phylogenetic effects at the level of family. Flowering activity peaked in the first wet season from May to July, refuting our prediction of peak flowering during the dry season. Our prediction that most species should flower several times a year was supported when species flowering more or less continually throughout the year were included in this category. Our prediction that supra-annually flowering species should be the least frequent was also supported with some qualifications. As we predicted, species flowering several times a year bloomed relatively briefly per flowering episode. Our prediction of shorter flowering duration for species flowering in the dry season and for those with a temporal separation between flowering and vegetative growth was also supported. Furthermore, supra-annually flowering species flowered for a shorter duration than annually flowering species and had a higher probability of flowering in the dry season compared to episodically or annually flowering species. Phylogeny significantly constrained variation in flowering frequency, but not in flowering time or duration, among confamilial species.  相似文献   

15.
F. Gary  Stiles 《Ibis》1980,122(3):322-343
In the Caribbean lowlands of Costa Rica, rainfall is moderately seasonal, although even in the driest month over 100 mm of rain usually fall. Flowering of hummingbird food plants shows a peak in the dry season (February-April) and another in the early wet season (July-September), with a severe flower shortage at the end of the rains (November-December). The dry season peak involves largely canopy epiphytes, the wet season peak large herbs of light gaps and edges and forest understory plants. This study examines the responses of the associated community of 22 species of hummingbirds (of which 13 breed, and 12 are common for at least parts of most years) to these spatial and temporal patterns of resource availability. Nearly all common breeding species show a peak of reproductive activity in the dry season, coinciding with the first flowering peak, followed by a discrete moulting season that coincides with the wet season peak of flowering. Of the three species with extended breeding seasons, the two species of hermit, Phaethornis, show moult-breeding overlap to varying degrees on an individual basis. In a number of species moult and breeding appear antagonistic. The annual peak of body weight and fat deposits in all species occur during the second flowering peak, approximately corresponding to the moult. The annual minima of body weight and fat occur in the lean season and the breeding season respectively. The lack of concordance of these two possibly reflects the use of muscle protein as a nutrient source during the lean season. Several species show pronounced habitat shifts through the year, with the sexes sometimes occupying different microhabitats, especially during the dry season. At least five species show pronounced seasonal migrations, largely or entirely leaving La Selva for part of the year. Overall hummingbird numbers are greatest early in the rainy season, lowest in the lean season, with the non-hermits (Trochilinae) showing a more pronounced annual cycle of numbers than the hermits (Phaethorninae). Comparisons with other tropical lowland hummingbird-flower communities are made with respect to the roles of flowers as proximate and ultimate factors regulating the annual cycles and affecting the population biology of the birds.  相似文献   

16.
As the influence of climate change on tropical forests becomes apparent, more studies are needed to understand how changes in climatic variables such as rainfall are likely to affect tree phenology. Using a twelve‐year dataset (2005–2016), we studied the impact of seasonal rainfall patterns on the fruiting phenology of 69 tree species in the rain forest of southeastern Madagascar. We found that average annual rainfall in this region has increased by >800 mm (23%) during this period relative to that recorded for the previous 40 years and was highly variable both within and between years. Higher monthly measures of fruiting richness and the intensity of fruiting in our sample community were associated with significantly higher levels of rainfall. We also found that less rainfall during the dry season, but not the wet season, was associated with a significant shift toward later timing of peak richness and peak intensity of fruiting in the subsequent 12 months; however, this pattern was driven primarily by an extreme drought event that occurred during the study period. Longer time scales of phenology data are needed to see whether this pattern is consistent. Madagascar is expected to experience more extremes in rainfall and drought with increasing climate change. Thus, the linkages between variable precipitation and the fruiting phenology of forest trees will have important consequences for understanding plant reproduction and the ability of Madagascar's wildlife to cope with a changing climate.  相似文献   

17.
Ralhan  P. K.  Khanna  R. K.  Singh  S. P.  Singh  J. S. 《Plant Ecology》1985,63(3):113-119
The phenology of 49 shrub species in five forest types occurring along an altitudinal gradient (350–2150 m) in Kumaun Himalaya has been studied. The evergreen leaf-exchanging taxa accounted for nearly half of the species, the remaining half was nearly equally divided between an evergreen continual leaf drop type and deciduous taxa. The percentage of species with lengthy leaf drop increased with elevation and finally leveled off. At each site the maximum leaf drop period coincided with the warm dry period. Percentage of species with multiple leaf flushing was low for all forests. The degree of extended leafing decreased with increasing elevation along which summer dryness also decreased. Earliest leaf initiation was observed for evergreen continual leaf drop species, followed by evergreen leaf-exchanging, and deciduous types.For each forest, two peaks of flowering activity occurred, one during the warm dry period and the other in the warm wet period. The percentage of species with multiple flowering increased with increasing elevation. Nearly half of the species bore fleshy fruits. The mature fruit retention period for different forests ranged from about 2–3 months.The proportion of deciduous species was similar in trees and shrubs; leaf drop was common during the summer season for trees, while it was common during the winter season for shrubs; the proportion of species with multiple leafings was greater and leaf initiation earlier in shrubs than trees; and generally shrubs showed two flowering peaks and trees only one.Nomenclature follows Osmaston (1926).Financial support from the Gaula Catchment Eco-development project and the Department of Science and Technology, Government of India, is gratefully acknowledged. We thank Dr. Y. P. S. Pangtey for his help in plant identification.  相似文献   

18.
Dry tropical forest tree species show variations in leafless duration (i.e. deciduousness), stem wood density (SWD), leaf mass area (LMA) and leaf strategy index (LSI, reflecting resource use rate) to overcome water limitations. We investigated the role of these tree traits in the seasonal timing of flowering and subsequent fruiting. Flowering and fruiting time of 24 tree species was recorded over two consecutive annual cycles and their relationships with the abovementioned tree specific traits were examined across the species. In leaf-exchanging species having higher SWD and LMA, low LSI and short deciduousness, flowering coincides with leaf transitional state when vegetative growth is at its minimum, and fruit formation and leaf flushing are both supported at the same time. However, >4-months-deciduous species with lowest SWD and LMA, higher LSI and longer deciduousness showed predominantly dry season flowering, subsequent fruiting on leafless shoots and distinct separation of vegetative and flowering phenophases. In contrast, intermediate species (<2 months-deciduous, 2–4-months-deciduous) showed wider flowering range through summer, rainy, autumn or winter seasons. Fruiting duration varies considerably with variation in the flowering time; ca. 5–14 months in summer flowering species; 7–12 months in rainy flowering species; 6–10 months in autumn flowering species, 4–9 months in dry season flowering and 3–7 months in winter flowering species. In most species, fruit maturation occurred just prior to the onset of rains, ensuring seedling survival. The ability of tree species to withstand (leaf-exchange) or avoid (deciduousness) drought stress and varying seasonal flowering timings appear to be the principal mechanisms for successful survival and reproduction under extremely dry and seasonal climate. Since environmental characteristics affect flowering and fruiting either directly (e.g. through conditions in the habitat) or indirectly (e.g. through deciduousness, LMA, SWD and LSI), the impact of probable global climatic change will have long implications on reproduction of dry tropical trees.  相似文献   

19.
荒漠环境中干热、大风、浮尘、温度骤变等突发性天气状况,对植物的有性生殖具不利影响.耳叶补血草(Limonium otolepis)是新疆盐生荒漠的主要建群种,对其适应荒漠恶劣环境的生殖策略仍缺乏研究.为了探讨荒漠植物适应环境的开花式样和传粉模式,作者通过野外定点观测和室内电镜扫描等方法对耳叶补血草的开花进程、花部特征、传粉媒介、结实特性等进行了研究.耳叶补血草的花期在6月上旬至7月中旬,花期较长且具明显不同步的单株开花状态.在一天中,单花表现出极为集中的开花、散粉过程:一般早上8:00开始开放,9:00达开放高峰期,11:00以后基本不再有单花开放;开放后的单花持续6-8 h后闭合.每单花平均有花粉752粒,花粉表面有网状纹饰,有花蜜.传粉者主要为蜜蜂科和食蚜蝇科昆虫,访花高峰期在9:00-14:00.人工授粉实验表明耳叶补血草以异交为主,自动自花授粉率低.自然状态下结实率为36%,在花序中基部第一位上单花的结实率(45.7%)明显高于第二位上单花(3.3%).耳叶补血草爆发式开花、在短时间内快速完成传粉过程,可能是躲避荒漠环境突发性天气条件的一种策略;而居群分散的开花时间及较长的花期在应对不稳定生境,分摊生殖风险方面具重要意义.  相似文献   

20.
The relationships between foliage permanence and flowering throughout the year were analyzed in 92 woody species of Cerrado vegetation categorized as either deciduous (DE), semideciduous (SD) or evergreen (EV). Flowering of DE, SD and EV species was investigated via three variables, measured over the course of the year: flowering duration (FLD), calculated as the number of months in flower in each species; flowering distribution (FDI), calculated as the number of species in flower per month; and flowering peak (FPE), defined as the four consecutive months yielding the highest number of species in flower. The months with the highest numbers of species in flower were October (52 species), September (50) and August (49). These months correspond to the period of transition from the dry season to the wet season. In the majority of species studied, seasonal climatic factors were strong enough to induce fruit formation in the dry season and seed dispersal in the following wet season, when sufficient water was available to support germination and plantlet growth. However, significant differences in FLD, FDI and FPE were found among the leaf phenological groups. High FLD in EV species is likely favored by the continuous input of resources from the year-round foliage. In contrast, DE species employ reserves of carbon, water and nutrients to form new leaves and flowers on a crown free of foliage at the end of the dry season. In DE species, their low FLD may reduce the impact of flowering on reserve consumption. SD species showed an intermediate level of foliage persistence, resulting in intermediate FLD values. In addition, SD species exhibited a different pattern of flowering distribution from those of DE and EV species. Many SD species have two flowering periods per year. The first period occurs when the crowns are full of leaves, in the middle of the dry season in June, similar to EV species. The second occurs when only half of the original foliage area is present, near the peak of the dry season in September, similar to DE species. Therefore, despite a strong influence of seasonal climatic conditions on the flowering behavior of DE, SD and EV woody species of Cerrado vegetation, these leaf phenological groups differ significantly in FLD, FDI and FPE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号