首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ventriglia F 《Bio Systems》2006,86(1-3):38-45
Global oscillations of the neural field represent some of the most interesting expressions of the hippocampal activity, being related also to learning and memory. To study oscillatory activities of the CA3 field in theta range, a model of this sub-field of Hippocampus has been formulated. The model describes the firing activity of CA3 neuronal populations within the frame of a kinetic theory of neural systems and it has been used for computer simulations. The results show that the propagation of activities induced in the neural field by hippocampal afferents occurs only in narrow time windows confined by inhibitory barrages, whose time-course follows the theta rhythm. Moreover, during each period of a theta wave, the entire CA3 field bears a firing activity with peculiar space-time patterns, a sort of specific imprint, which can induce effects with similar patterns on brain regions driven by the hippocampal formation. The simulation has also demonstrated the ability of medial septum to influence the global activity of the CA3 pyramidal population through the control of the population of inhibitory interneurons. At last, the possible involvement of global population oscillations in neural coding has been discussed.  相似文献   

2.
Recent advances in sleep neurobiology have allowed development of physiologically based mathematical models of sleep regulation that account for the neuronal dynamics responsible for the regulation of sleep-wake cycles and allow detailed examination of the underlying mechanisms. Neuronal systems in general, and those involved in sleep regulation in particular, are noisy and heterogeneous by their nature. It has been shown in various systems that certain levels of noise and diversity can significantly improve signal encoding. However, these phenomena, especially the effects of diversity, are rarely considered in the models of sleep regulation. The present paper is focused on a neuron-based physiologically motivated model of sleep-wake cycles that proposes a novel mechanism of the homeostatic regulation of sleep based on the dynamics of a wake-promoting neuropeptide orexin. Here this model is generalized by the introduction of intrinsic diversity and noise in the orexin-producing neurons, in order to study the effect of their presence on the sleep-wake cycle. A simple quantitative measure of the quality of a sleep-wake cycle is introduced and used to systematically study the generalized model for different levels of noise and diversity. The model is shown to exhibit a clear diversity-induced resonance: that is, the best wake-sleep cycle turns out to correspond to an intermediate level of diversity at the synapses of the orexin-producing neurons. On the other hand, only a mild evidence of stochastic resonance is found, when the level of noise is varied. These results show that disorder, especially in the form of quenched diversity, can be a key-element for an efficient or optimal functioning of the homeostatic regulation of the sleep-wake cycle. Furthermore, this study provides an example of a constructive role of diversity in a neuronal system that can be extended beyond the system studied here.  相似文献   

3.
A firing rate (FR) model for a population of adaptive leaky integrate-and-fire neurons has been proposed. Unlike known FR models, it describes more precisely the unsteady firing regimes and takes into account the effect of slow potassium currents of spike adaptation. Approximations of the adaptive channel conductances are rewritten from voltage-dependent to spike-dependent and then to rate-dependent ones. The proposed FR model is compared with a very detailed population model, namely, the conductance-based Refractory Density model. This comparison shows the coincidence of the first peak of activity after the start of stimulation as well as of the stationary state. As an example of simulation of coupled adaptive neuronal populations, a ring model has been constructed, which reproduces a visual illusion known as tilt after-effect. The FR model is recommended for mathematical analysis of neuronal population activity as well as for computationally expensive large-scale network simulations.  相似文献   

4.
The discovery of theta-rhythm-dependent firing of rodent hippocampal neurons highlighted the functional significance of temporal encoding in hippocampal memory. However, earlier theoretical studies on this topic seem divergent and experimental implications are invariably complicated. To obtain a unified understanding of neural dynamics in the hippocampal memory, we here review recent developments in computational models and experimental discoveries on the 'theta-phase precession' of hippocampal place cells and entorhinal grid cells. We identify a theoretical hypothesis that is well supported by experimental facts; this model reveals a significant contribution of theta-phase coding to the on-line real-time operation of episodic events, through highly parallel representation of spatiotemporal information.  相似文献   

5.
Memory lets the past inform the present so that we can attain future goals. In many species, these abilities require the hippocampus. Recent experiments, in which memory demand was varied while overt behavior and the environment were kept constant, have revealed firing patterns of hippocampal neurons that corresponded with memory demands and predicted performance. Although the active population appeared to be 'place cells' that signalled location, it actually included cells the activity patterns of which distinguished the recent or pending history of behavior during identical actions that occurred in the same place. Different populations of hippocampal cells fired as a rat walked along the same spatial path on the way to different goals, and coded past, present and pending events. Other experiments provide converging data that neuronal activity is modulated by goal-directed behavioral episodes. Together, these firing patterns suggest a testable mechanism of episodic memory coding: that hippocampal dynamics encode a temporally extended, hierarchically organized representation of goal-directed behavior.  相似文献   

6.
Recent experimental studies investigating the neuronal regulation of rapid eye movement (REM) sleep have identified mutually inhibitory synaptic projections among REM sleep-promoting (REM-on) and REM sleep-inhibiting (REM-off) neuronal populations that act to maintain the REM sleep state and control its onset and offset. The control mechanism of mutually inhibitory synaptic interactions mirrors the proposed flip-flop switch for sleep-wake regulation consisting of mutually inhibitory synaptic projections between wake- and sleep-promoting neuronal populations. While a number of synaptic projections have been identified between these REM-on/REM-off populations and wake/sleep-promoting populations, the specific interactions that govern behavioral state transitions have not been completely determined. Using a minimal mathematical model, we investigated behavioral state transition dynamics dictated by a system of coupled flip-flops, one to control transitions between wake and sleep states, and another to control transitions into and out of REM sleep. The model describes the neurotransmitter-mediated inhibitory interactions between a wake- and sleep-promoting population, and between a REM-on and REM-off population. We proposed interactions between the wake/sleep and REM-on/REM-off flip-flops to replicate the behavioral state statistics and probabilities of behavioral state transitions measured from experimental recordings of rat sleep under ad libitum conditions and after 24 h of REM sleep deprivation. Reliable transitions from REM sleep to wake, as dictated by the data, indicated the necessity of an excitatory projection from the REM-on population to the wake-promoting population. To replicate the increase in REM-wake-REM transitions observed after 24 h REM sleep deprivation required that this excitatory projection promote transient activation of the wake-promoting population. Obtaining the reliable wake-nonREM sleep transitions observed in the data required that activity of the wake-promoting population modulated the interaction between the REM-on and REM-off populations. This analysis suggests neuronal processes to be targeted in further experimental studies of the regulatory mechanisms of REM sleep.  相似文献   

7.
Neural mass models are successful in modeling brain rhythms as observed in macroscopic measurements such as the electroencephalogram (EEG). While the synaptic current is explicitly modeled in current models, the single cell electrophysiology is not taken into account. To allow for investigations of the effects of channel pathologies, channel blockers and ion concentrations on macroscopic activity, we formulate neural mass equations explicitly incorporating the single cell dynamics by using a bottom-up approach. The mean and variance of the firing rate and synaptic input distributions are modeled. The firing rate curve (F(I)-curve) is used as link between the single cell and macroscopic dynamics. We show that this model accurately reproduces the behavior of two populations of synaptically connected Hodgkin-Huxley neurons, also in non-steady state.  相似文献   

8.
Several firing patterns experimentally observed in neural populations have been successfully correlated to animal behavior. Population bursting, hereby regarded as a period of high firing rate followed by a period of quiescence, is typically observed in groups of neurons during behavior. Biophysical membrane-potential models of single cell bursting involve at least three equations. Extending such models to study the collective behavior of neural populations involves thousands of equations and can be very expensive computationally. For this reason, low dimensional population models that capture biophysical aspects of networks are needed. The present paper uses a firing-rate model to study mechanisms that trigger and stop transitions between tonic and phasic population firing. These mechanisms are captured through a two-dimensional system, which can potentially be extended to include interactions between different areas of the nervous system with a small number of equations. The typical behavior of midbrain dopaminergic neurons in the rodent is used as an example to illustrate and interpret our results. The model presented here can be used as a building block to study interactions between networks of neurons. This theoretical approach may help contextualize and understand the factors involved in regulating burst firing in populations and how it may modulate distinct aspects of behavior.  相似文献   

9.
10.
We present a computational, biophysical model of neuron-astrocyte-vessel interaction. Unlike other cells, neurons convey “hunger” signals to the vascular network via an intervening layer of glial cells (astrocytes); vessels dilate and release glucose which fuels neuronal firing. Existing computational models focus on only parts of this loop (neuron→astrocyte→vessel→neuron), whereas the proposed model describes the entire loop. Neuronal firing causes release of a neurotransmitter like glutamate which triggers release of vasodilator by astrocytes via a cascade of biochemical events. Vasodilators released from astrocytic endfeet cause blood vessels to dilate and release glucose into the interstitium, part of which is taken up by the astrocyticendfeet. Glucose is converted into lactate in the astrocyte and transported into the neuron. Glucose from the interstitium and lactate (produced from glucose) influx from astrocyte are converted into ATP in the neuron. Neuronal ATP is used to drive the Na+/K+ATPase pumps, which maintain ionic gradients necessary for neuronal firing. When placed in the metabolic loop, the neuron exhibits sustained firing only when the stimulation current is more than a minimum threshold. For various combinations of initial neuronal [ATP] and external current, the neuron exhibits a variety of firing patterns including sustained firing, firing after an initial pause, burst firing etc. Neurovascular interactions under conditions of constricted vessels are also studied. Most models of cerebral circulation describe neurovascular interactions exclusively in the “forward” neuron→vessel direction. The proposed model indicates possibility of “reverse” influence also, with vasomotion rhythms influencing neural firing patterns. Another idea that emerges out of the proposed work is that brain''s computations may be more comprehensively understood in terms of neuro-glial-vascular dynamics and not in terms of neural firing alone.  相似文献   

11.
R Kumar  A Bose  BN Mallick 《PloS one》2012,7(8):e42059
In this study we have constructed a mathematical model of a recently proposed functional model known to be responsible for inducing waking, NREMS and REMS. Simulation studies using this model reproduced sleep-wake patterns as reported in normal animals. The model helps to explain neural mechanism(s) that underlie the transitions between wake, NREMS and REMS as well as how both the homeostatic sleep-drive and the circadian rhythm shape the duration of each of these episodes. In particular, this mathematical model demonstrates and confirms that an underlying mechanism for REMS generation is pre-synaptic inhibition from substantia nigra onto the REM-off terminals that project on REM-on neurons, as has been recently proposed. The importance of orexinergic neurons in stabilizing the wake-sleep cycle is demonstrated by showing how even small changes in inputs to or from those neurons can have a large impact on the ensuing dynamics. The results from this model allow us to make predictions of the neural mechanisms of regulation and patho-physiology of REMS.  相似文献   

12.
CH Wang  CP Hung  MT Chen  YH Shih  YY Lin 《PloS one》2012,7(6):e39763
Status epilepticus (SE), a pro-epileptogenic brain insult in rodent models of temporal lobe epilepsy, is successfully induced by pilocarpine in some, but not all, rats. This study aimed to identify characteristic alterations within the hippocampal neural network prior to the onset of SE. Sixteen microwire electrodes were implanted into the left hippocampus of male Sprague-Dawley rats. After a 7-day recovery period, animal behavior, hippocampal neuronal ensemble activities, and local field potentials (LFP) were recorded before and after an intra-peritoneal injection of pilocarpine (350 mg/kg). The single-neuron firing, population neuronal correlation, and coincident firing between neurons were compared between SE (n?=?9) and nonSE rats (n?=?12). A significant decrease in the strength of functional connectivity prior to the onset of SE, as measured by changes in coincident spike timing between pairs of hippocampal neurons, was exclusively found in SE rats. However, single-neuron firing and LFP profiles did not show a significant difference between SE and nonSE rats. These results suggest that desynchronization in the functional circuitry of the hippocampus, likely associated with a change in synaptic strength, may serve as an electrophysiological marker prior to SE in pilocarpine-treated rats.  相似文献   

13.
Neuromodulators, such as neuropeptides, can regulate and reconfigure neural circuits to alter their output, affecting in this way animal physiology and behavior. The interplay between the activity of neuronal circuits, their modulation by neuropeptides, and the resulting behavior, is still poorly understood. Here, we present a quantitative framework to study the relationships between the temporal pattern of activity of peptidergic neurons and of motoneurons during Drosophila ecdysis behavior, a highly stereotyped motor sequence that is critical for insect growth. We analyzed, in the time and frequency domains, simultaneous intracellular calcium recordings of peptidergic CCAP (crustacean cardioactive peptide) neurons and motoneurons obtained from isolated central nervous systems throughout fictive ecdysis behavior induced ex vivo by Ecdysis triggering hormone. We found that the activity of both neuronal populations is tightly coupled in a cross-frequency manner, suggesting that CCAP neurons modulate the frequency of motoneuron firing. To explore this idea further, we used a probabilistic logistic model to show that calcium dynamics in CCAP neurons can predict the oscillation of motoneurons, both in a simple model and in a conductance-based model capable of simulating many features of the observed neural dynamics. Finally, we developed an algorithm to quantify the motor behavior observed in videos of pupal ecdysis, and compared their features to the patterns of neuronal calcium activity recorded ex vivo. We found that the motor activity of the intact animal is more regular than the motoneuronal activity recorded from ex vivo preparations during fictive ecdysis behavior; the analysis of the patterns of movement also allowed us to identify a new post-ecdysis phase.  相似文献   

14.
We have investigated the detailed regulation of neuronal firing pattern by the cytosolic calcium buffering capacity using a combination of mathematical modeling and patch-clamp recording in acute slice. Theoretical results show that a high calcium buffer concentration alters the characteristic regular firing of cerebellar granule cells and that a transition to various modes of oscillations occurs, including bursting. Using bifurcation analysis, we show that this transition from spiking to bursting is a consequence of the major slowdown of calcium dynamics. Patch-clamp recordings on cerebellar granule cells loaded with a high concentration of the fast calcium buffer BAPTA (15 mM) reveal dramatic alterations in their excitability as compared to cells loaded with 0.15 mM BAPTA. In high calcium buffering conditions, granule cells exhibit all bursting behaviors predicted by the model whereas bursting is never observed in low buffering. These results suggest that cytosolic calcium buffering capacity can tightly modulate neuronal firing patterns leading to generation of complex patterns and therefore that calcium-binding proteins may play a critical role in the non-synaptic plasticity and information processing in the central nervous system.  相似文献   

15.
Neural synchronization is considered as an important mechanism for information processing. In addition, based on recent neurophysiologic findings, it is believed that astrocytes regulate the synaptic transmission of neuronal networks. Therefore, the present study focused on determining the functional contribution of astrocytes in neuronal synchrony using both computer simulations and extracellular field potential recordings. For computer simulations, as a first step, a minimal network model is constructed by connecting two Morris-Lecar neuronal models. In this minimal model, astrocyte-neuron interactions are considered in a functional-based procedure. Next, the minimal network is extended and a biologically plausible neuronal population model is developed which considers functional outcome of astrocyte-neuron interactions too. The employed structure is based on the physiological and anatomical network properties of the hippocampal CA1 area. Utilizing these two different levels of modeling, it is demonstrated that astrocytes are able to change the threshold value of transition from synchronous to asynchronous behavior among neurons. In this way, variations in the interaction between astrocytes and neurons lead to the emergence of synchronous/asynchronous patterns in neural responses. Furthermore, population spikes are recorded from CA1 pyramidal neurons in rat hippocampal slices to validate the modeling results. It demonstrates that astrocytes play a primary role in neuronal firing synchronicity and synaptic coordination. These results may offer a new insight into understanding the mechanism by which astrocytes contribute to stabilizing neural activities.  相似文献   

16.
The relevant scale for the study of the electrical activity of neural networks is a problem of mathematical and biological interest. From a continuous model of the cortex activity we derive a simple model of an interconnected pair of excitatory and inhibitory neural populations that describes the activity of a homogeneous network. Our model depends on three parameters that stand for the scale variability of the network. A bifurcation analysis reveals a great variety of patterns that arise from the interplay of excitatory and inhibitory populations provided by synaptic interactions. We emphasize the differences between the dynamical regimes when considering a moderate and a high inhibitory scale. We discuss the consequences on a propagating activity.  相似文献   

17.
Ascoli GA  Atkeson JC 《Bio Systems》2005,79(1-3):173-181
The specific connectivity patterns among neuronal classes can play an important role in the regulation of firing dynamics in many brain regions. Yet most neural network models are built based on vastly simplified connectivity schemes that do not accurately reflect the biological complexity. Taking the rat hippocampus as an example, we show here that enough quantitative information is available in the neuroanatomical literature to construct neural networks derived from accurate models of cellular connectivity. Computational simulations based on this approach lend themselves to a direct investigation of the potential relationship between cellular connectivity and network activity. We define a set of fundamental parameters to characterize cellular connectivity, and are collecting the related values for the rat hippocampus from published reports. Preliminary simulations based on these data uncovered a novel putative role for feedforward inhibitory neurons. In particular, "mopp" cells in the dentate gyrus are suitable to help maintain the firing rate of granule cells within physiological levels in response to a plausibly noisy input from the entorhinal cortex. The stabilizing effect of feedforward inhibition is further shown to depend on the particular ratio between the relative threshold values of the principal cells and the interneurons. We are freely distributing the connectivity data on which this study is based through a publicly accessible web archive (http://www.krasnow.gmu.edu/L-Neuron).  相似文献   

18.
FIFTY YEARS AGO, FITZHUGH INTRODUCED A PHASE PORTRAIT THAT BECAME FAMOUS FOR A TWOFOLD REASON: it captured in a physiological way the qualitative behavior of Hodgkin-Huxley model and it revealed the power of simple dynamical models to unfold complex firing patterns. To date, in spite of the enormous progresses in qualitative and quantitative neural modeling, this phase portrait has remained a core picture of neuronal excitability. Yet, a major difference between the neurophysiology of 1961 and of 2011 is the recognition of the prominent role of calcium channels in firing mechanisms. We show that including this extra current in Hodgkin-Huxley dynamics leads to a revision of FitzHugh-Nagumo phase portrait that affects in a fundamental way the reduced modeling of neural excitability. The revisited model considerably enlarges the modeling power of the original one. In particular, it captures essential electrophysiological signatures that otherwise require non-physiological alteration or considerable complexification of the classical model. As a basic illustration, the new model is shown to highlight a core dynamical mechanism by which calcium channels control the two distinct firing modes of thalamocortical neurons.  相似文献   

19.
The organization of computations in networks of spiking neurons in the brain is still largely unknown, in particular in view of the inherently stochastic features of their firing activity and the experimentally observed trial-to-trial variability of neural systems in the brain. In principle there exists a powerful computational framework for stochastic computations, probabilistic inference by sampling, which can explain a large number of macroscopic experimental data in neuroscience and cognitive science. But it has turned out to be surprisingly difficult to create a link between these abstract models for stochastic computations and more detailed models of the dynamics of networks of spiking neurons. Here we create such a link and show that under some conditions the stochastic firing activity of networks of spiking neurons can be interpreted as probabilistic inference via Markov chain Monte Carlo (MCMC) sampling. Since common methods for MCMC sampling in distributed systems, such as Gibbs sampling, are inconsistent with the dynamics of spiking neurons, we introduce a different approach based on non-reversible Markov chains that is able to reflect inherent temporal processes of spiking neuronal activity through a suitable choice of random variables. We propose a neural network model and show by a rigorous theoretical analysis that its neural activity implements MCMC sampling of a given distribution, both for the case of discrete and continuous time. This provides a step towards closing the gap between abstract functional models of cortical computation and more detailed models of networks of spiking neurons.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号