首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibition of brain protein synthesis following intravenous administration of d-lysergic acid diethylamide (LSD) is accompanied by generation of a translational inhibitor protein in the postribosomal supernatant of cerebral hemispheres. Addition of an enriched preparation of this factor to a brain cell-free translation system resulted in a selective reduction in the level of phosphorylation of proteins of molecular weight 55K, 41K, and 25K. A similar set of changes was also observed in a brain cell-free system prepared 1 hr subsequent to drug injection. The brain inhibitor reduced the translational capacity of a messenger RNA-dependent reticulocyte lysate programmed with brain polysomes isolated from saline-injected animals however little effect was apparent when polysomes were prepared from LSD-treated animals. The translational inhibitor did not affect the spectrum of translation products from either set of polysomes.Abbreviations used HRI heme-regulated inhibitor - K 1000 Molecular weight - LSD d-lysergic acid diethylamide - PMS postmitochondrial supernatant - TCA trichloroacetic acid  相似文献   

2.
3.
In previous studies, brains but not hearts of intact early chick embryos were found to be sensitive to protein starvation. In this study, the in vitro protein synthetic activity of polysomes isolated from brains was found to be greater than those isolated from hearts. Starvation reduced the protein synthetic activity of polysomes in vitro but the extent of the reduction was approximately the same for both brains and hearts. A reduction in the amount of ribosomes as polysomes may have contributed to the lower synthetic activity of polysomes from tissues of starved embryos but not to the differences in synthetic activities between brains and hearts. In addition, neither the stability of isolated polysomes nor ribosome-associated ribonuclease activity appeared responsible for the differences observed in polysome synthetic activities. In direct relationship to the differential sensitivity of brains and hearts to starvation observed in the intact embryo, ribosomes isolated from brains of both growing and starved embryos were more readily degraded during in vitro incubation than those from hearts.  相似文献   

4.
Analysis of Messenger RNA Coding for S100 Protein in the Mammalian Brain   总被引:1,自引:1,他引:0  
S100 protein is a brain-specific protein which is absent at birth and first appears in rabbit brain 2–3 days after birth. To determine how the synthesis of this brain-specific protein is regulated, mRNA was isolated from brain polysomes and assayed for S100 protein mRNA activity by in vitro translation in a heterologous cell-free system and immunoprecipitation of released polypeptides with rabbit anti-S I00 protein antiserum. 5100 protein mRNA was detected primarily in small polysomes containing five to eight ribosomes, and virtually no S 100 protein mRNA was present in polysomes containing more than eight ribosomes. S100 protein mRNA was not detected in brain polysomes at stages prior to the induction of synthesis of S100 protein, i.e., in fetal brain or in 1-day neonates. The amount of S100 protein mRNA in polysomes of the cerebral cortex and cerebellum was measured to see if it correlated with the level of S100 protein in the two regions of adult brain. The cerebellum, which contained three to four times the level of S100 protein in the cerebral cortex, contained four times more S100 protein mRNA.  相似文献   

5.
Abstract: Free and membrane-bound polysomes and polyadenylated mRNA isolated from rabbit brain were translated in an mRNA-dependent rabbit reticulocyte lysate system. Electrophoretic analysis of the cell-free translation products demonstrated that although most of the nascent proteins were common to both free and membrane-bound brain polysomes, qualitative and quantitative differences were observed. Compared with the results obtained with purified polyadenylated mRNA, the addition of intact polysomes to the cell-free translation assay was more efficient and produced higher molecular weight products. Analysis of the translation products of free and membrane-bound polysomes revealed the appearance of 74K protein following either LSD administration or hyperthermia induced by elevated temperature treatment. The presence of this 74K protein was verified by analysis of the translation products by two-dimensional gel electrophoresis.  相似文献   

6.
Intravenous administration of LSD to young adult rabbits induces a transient disaggregation of brain polysomes and a relocalization of mRNA from polysomes to monosomes. To analyze the spectrum of mRNA molecules which were associated with either the residual polysomes or the translationally inactive monosome complex, these two fractions were isolated on sucrose gradients and translated in a reticulocyte cell-free system. Analysis of [35S]methionine labeled translation products by one and two dimensional gel electrophoresis revealed that a full spectrum of mRNA molecules was relocalized from polysomes to monosomes following drug induced polysome disaggregation. The only exception was the mRNA coding for the LSD-induced 74K protein which was associated with the residual polysome fraction and not with the monosome complex. This brain protein is similar in molecular weight to one of the major heat shock proteins which are induced in tissue culture cells following elevation of ambient temperature and disaggregation of existing polysomes. The mRNA coding for the 74K brain protein was not observed in polysomes isolated following blockage of LSD-induced hyperthermia but it was noted when hyperthermia was induced by elevation of ambient temperature. The mRNA species coding for the 74K protein was polyadenylated.  相似文献   

7.
IN VIVO INHIBITION OF RAT BRAIN PROTEIN SYNTHESIS BY l-DOPA   总被引:3,自引:2,他引:1  
Abstract— A study has been made of the effect of a single intraperitoneal dose of l -DOPA on the in vivo metabolism of [14C]leucine and [14C]lysine by the brain, and on their uptake into brain protein. Administration of 500 mg DOPA/kg to 40-g rats raised the concentrations of several free amino acids; the only amino acid which underwent a statistically significant increment was alanine. Intracisternally-injected [U-14C]leucine was rapidly metabolized to other labelled compounds; DOPA administration did not influence significantly the rate of its metabolism. No similar metabolic change was observed after administering [U-14C]lysine intracisternally.
Incorporation of [14C]leucine and [14C]lysine into total brain protein was significantly reduced 45 min after DOPA administration. There was also depression of the uptake of labelled amino acid into a supernatant fraction, obtained by high speed centrifugation of the brain homogenate, and into brain microtubular protein (tubulin). Reduced amino-acid incorporation into brain proteins observed 45 min after l -DOPA injection coincided with extensive disaggregation of brain polyribosomes. At 120 min after DOPA treatment, disaggregation was no longer significant and there was a smaller depression in labelled amino aicd incorporation, which disappeared completely 240 min after l -DOPA injection. It is concluded that disaggregation of brain polysomes following DOPA treatment is an accurate reflection of a change in the intensity of brain protein synthesis in vivo.  相似文献   

8.
La is an abundant, mostly nuclear, RNA-binding protein that interacts with regions rich in pyrimidines. In the nucleus it has a role in the metabolism of several small RNAs. A number of studies, however, indicate that La protein is also implicated in cytoplasmic functions such as translation. The association of La in vivo with endogenous mRNAs engaged with polysomes would support this role, but this point has never been addressed yet. Terminal oligopyrimidine (TOP) mRNAs, which code for ribosomal proteins and other components of the translational apparatus, bear a TOP stretch at the 5' end, which is necessary for the regulation of their translation. La protein can bind the TOP sequence in vitro and activates TOP mRNA translation in vivo. Here we have quantified La protein in the cytoplasm of Xenopus oocytes and embryo cells and have shown in embryo cells that it is associated with actively translating polysomes. Disruption of polysomes by EDTA treatment displaces La in messenger ribonucleoprotein complexes sedimenting at 40-60 S. The results of polysome treatment with either low concentrations of micrococcal nuclease or with high concentrations of salt indicate, respectively, that La association with polysomes is mediated by mRNA and that it is not an integral component of ribosomes. Moreover, the analysis of messenger ribonucleoprotein complexes dissociated from translating polysomes shows that La protein associates with TOP mRNAs in vivo when they are translated, in line with a positive role of La in the translation of this class of mRNAs previously observed in cultured cells.  相似文献   

9.
10.
IN VIVO INHIBITION OF RAT BRAIN PROTEIN SYNTHESIS BY d-AMPHETAMINE   总被引:1,自引:1,他引:0  
Abstract— Between 1 and 4 h after rats received a single injection of d-amphetamine (15 mg/kg)(when brain polysomes are known to be disaggregated), the in vivo incorporation of [14C]lysine into trichloroacetic acid-precipitable brain protein was reduced by 28–48%. Incorporation of the 14C label into the protein present in a 100,000 g supernatant extract of whole brain was similarly reduced (by 44%). Amphetamine administration suppressed protein synthesis in rat cerebral cortex, cerebellum, hypothalamus, striatum, and brainstem to an equivalent extent. The drug did not significantly affect lysine pool sizes measured in these brain regions; thus the reduced incorporation of labeled lysine was not the result of an isotope dilution effect. We therefore conclude that the brain polysome disaggregation resulting from amphetamine administration is associated with decreased in vivo synthesis of some brain proteins.  相似文献   

11.
Tau protein is a collection of closely related polypeptides that associate with microtubules in vivo and stimulate their assembly in vitro. Using an affinity-purified antiserum against bovine brain tau protein, we found that the number and amount of tau polypeptides changes dramatically during mouse brain development. The different forms appear to result from changes in tau mRNA since in vitro translation products reflect the qualitative and quantitative changes found in vivo. To study the mRNA and genomic complexity of tau protein, we used tau mRNA, purified from polysomes with tau antiserum, to isolate embryonic mouse tau complementary DNA clones. With these probes we have determined that embryonic tau protein is translated from a 6-kb mRNA that persists throughout brain development.  相似文献   

12.
Abstract: Free and membrane-bound polysomes were isolated from the cerebral hemispheres and cerebellum of the young adult rabbit. The two polysomal populations were translated in an mRNA-dependent cell-free system derived from rabbit reticulocytes. Analysis of the [35S]methionine-labeled translation products on two-dimensional polyacrylamide gels indicated an efficient separation of the two classes of brain polysomes. The relative synthesis of S100 protein by free and membrane- bound polysomes was determined by direct immuno-precipitation of the cell-free translation products in the presence of detergents to reduce nonspecific trapping. Synthesis of S100 protein was found to be twofold greater on membrane-bound polysomes compared with free polysomes isolated from either the cerebral hemispheres or the cerebellum. In addition, the proportion of poly- (A+)mRNA coding for SlOO protein was also twofold greater in membrane-bound polysomes compared with free polysomes isolated from the cerebral hemispheres. These results indicate that the cytoplasmic S100 protein is synthesized predominantly on membrane-bound polysomes in the rabbit brain. We suggest that the nascent S100 polypeptide chain translation complex is attached to the rough endoplasmic reticulum by an ionic interaction involving a sequence of 13 basic amino acids in S100 protein.  相似文献   

13.
The relationship between an initial mechanical event causing brain tissue deformation and delayed neurodegeneration in vivo is complex because of the multiplicity of factors involved. We have used a simplified brain surrogate based on rat hippocampal slices grown on deformable silicone membranes to study stretch-induced traumatic brain injury. Traumatic injury was induced by stretching the culture substrate, and the biological response characterized after 4 days. Morphological abnormalities consistent with traumatic injury in humans were widely observed in injured cultures. Synaptic function was significantly reduced after a severe injury. The N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 attenuated neuronal damage, prevented loss of microtubule-associated protein 2 immunoreactivity and attenuated reduction of synaptic function. In contrast, the NMDA receptor antagonists 3-[(R)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid (CPP) and GYKI53655, were neuroprotective in a moderate but not a severe injury paradigm. Nifedipine, an L-type voltage-dependent calcium channel antagonist was protective only after a moderate injury, whereas omega-conotoxin attenuated damage following severe injury. These results indicate that the mechanism of damage following stretch injury is complex and varies depending on the severity of the insult. In conclusion, the pharmacological, morphological and electrophysiological responses of organotypic hippocampal slice cultures to stretch injury were similar to those observed in vivo. Our model provides an alternative to animal testing for understanding the mechanisms of post-traumatic delayed cell death and could be used as a high-content screen to discover neuroprotective compounds before advancing to in vivo models.  相似文献   

14.
Intravenous administration of d-lysergic acid diethylamide (LSD) to rabbits results in a transient inhibition of brain protein synthesis in vivo and in vitro. A translational inhibitor that appears in the postribosomal supernatant fraction of cerebral hemispheres following LSD administration was partially purified by gel filtration on Sephadex G-150 and precipitation with 60% ammonium sulfate. This inhibitor, which was proteinaceous, reduced the translational capacity of an initiating cell-free protein synthesis system derived from brain. It also inhibited a messenger RNA-dependent reticulocyte lysate programmed with brain polysomes and a globin-synthesizing reticulocyte lysate system. Addition of the partially purified inhibitor to a brain cell-free protein synthesis system resulted in the decreased formation of ternary complexes as well as 40 and 80S initiation complexes, suggesting that the inhibitor affects an early step in the initiation of protein synthesis in brain.  相似文献   

15.
Abstract— The synthesis of γ-aminobutyric acid (GABA) in mouse brain was decreased by treatment of the animals with pyridoxal phosphate- γ-glutamylhydrazone, an inhibitor of glutamate decarboxylase in vivo. Under these experimental conditions the following parameters were studied: (1) the incorporation of labeled leucine in vivo , into protein of brain subcellular fractions; (2) the brain polysome profile; (3) the incorporation of labeled leucine into protein in vitro , in ribosomal preparations isolated from brain tissue. In other experiments, GABA synthesis was also decreased in brain cortex slices by preincubation with aminooxyacetic acid. The incorporation of [3H]leucine or [14C]leucine into protein in these slices was studied, and samples from the proteins were subjected to acrylamide-sodium dodecylsulfate gel electrophoresis. Radioactivity was counted in slices of the gel. The results of the experiments in vivo and in vitro indicate that the previously reported decrease of protein synthesis induced by an inhibition of GABA synthesis affects proteins of all subcellular fractions and all populations of protein as separated by gel electrophoresis. The polysome profile from brains of mice with decreased GABA synthesis was similar to that of control mice. This result differs from that found when brain protein synthesis is inhibited by dopamine and serotonin.  相似文献   

16.
Studies were conducted to determine if soman, a cholinesterase inhibitor, could activate the protein kinase C system in the rat neocortex. Using microwave radiation for rapid tissue fixation, it was demonstrated that treatment with soman increased 32P incorporation into an acidic 80,000 molecular weight, heat-stable protein in vivo. Based on relative molecular weight and isoelectric point this protein appears to be identical to a protein identified as a substrate for protein kinase C. Additionally, a protein of the same molecular weight and isoelectric point could be phosphorylated in tissue slices prepared from the neocortex by cholinergic dependent mechanisms. Also, treatment with soman decreased protein kinase C in the soluble fraction of this brain region; however, no corresponding increase was observed in the particulate fraction. These results suggest that soman can activate protein kinase C in vivo, and demonstrate the utility of using microwave tissue fixation to study protein phosphorylation events in vivo.  相似文献   

17.
In this study, we determine that Saccharomyces cerevisiae Not4 E3 ligase ubiquitinates Rps7A in vivo and in vitro, but not its paralogue, Rps7B. Ubiquitinated Rps7A is detectable only in 80S and polysomes, but not in free 40S fractions. A different role of the Rps7 paralogues in vivo is supported by the observation that the deletion of Rps7A but not Rps7B is sensitive to translational inhibitors and leads to an accumulation of aggregated proteins. An important accumulation of aggregated proteins that include ribosomal proteins and ribosome-associated chaperones is also observed in cells lacking Not4. A contribution of Not4 to ribosomal function extending beyond Rps7A ubiquitination is supported by the observation that the deletion of Not4 displays a synthetic slow growth phenotype when combined with the deletion of either one of the two Rps7 paralogues. Not4 is detectable in polysome fractions, as are other subunits of the Ccr4-Not complex such as Not5. The optimal presence of Not5 in polysomes is dependent upon Not4 and the deletion of Not5 leads to a dramatic reduction of polysomes. These results lead us to suggest that Not4 contributes to normal polysome levels and is important for cellular protein solubility maybe in part by ubiquitination of Rps7A.  相似文献   

18.
Every year, nearly 200,000 patients undergo radiation for brain tumors. For both patients and caregivers the most distressing adverse effect is impaired cognition. Efforts to protect against this debilitating effect have suffered from inadequate understanding of the cellular mechanisms of radiation damage. In the past it was accepted that radiation-induced normal tissue injury resulted from a progressive reduction in the survival of clonogenic cells. Moreover, because radiation-induced brain dysfunction is believed to evolve over months to years, most studies have focused on late changes in brain parenchyma. However, clinically, acute changes in cognition are also observed. Because neurons are fully differentiated post-mitotic cells, little information exists on the acute effects of radiation on synaptic function. The purpose of our study was to assess the potential acute effects of radiation on neuronal function utilizing ex vivo hippocampal brain slices. The cellular localization and functional status of excitatory and inhibitory neurotransmitter receptors was identified by immunoblotting. Electrophysiological recordings were obtained both for populations of neuronal cells and individual neurons. In the dentate gyrus region of isolated ex vivo slices, radiation led to early decreases in tyrosine phosphorylation and removal of excitatory N-methyl-D-aspartate receptors (NMDARs) from the cell surface while simultaneously increasing the surface expression of inhibitory gamma-aminobutyric acid receptors (GABA(A)Rs). These alterations in cellular localization corresponded with altered synaptic responses and inhibition of long-term potentiation. The non-competitive NMDAR antagonist memantine blocked these radiation-induced alterations in cellular distribution. These findings demonstrate acute effects of radiation on neuronal cells within isolated brain slices and open new avenues for study.  相似文献   

19.
LSD-induced hyperthermia is implicated in the brain-specific disaggregation of polysomes which is induced following intravenous administration of the drug to rabbits. Both LSD-induced hyperthermia and brain polysome disaggregation were found to increase in parallel under conditions which accentuated the effect of the drug on brain protein synthesis. Pretreatment with neurotransmitter receptor blockers or placing the animal at an ambient temperature of 4°C after LSD administration prevented both hyperthermia and brain polysome disaggregation. The administration of apomorphine, which causes hyperthermia in rabbits also caused disaggregation of brain polysomes. Direct elevation of the body temperature to levels similar to that found after LSD was achieved by placing animals at an ambient temperature of 37°C. Under these conditions a brain-specific disaggregation of polysomes resulted which was not due to RNAase activation. After either LSD or direct heating, the brain polysome shift was associated with a relocalization of polyadenylated mRNA from polysomes to monosomes as determined by [3H]polyuridylate hybridization. Since polysome disaggregation was found only in brain, it appears that the brain may be more sensitive to elevations in body temperature compared to other organs.  相似文献   

20.
Intravenous injection of (+)-lysergic acid diethylamide into young rabbits induced a transient brain-specific disaggregation of polysomes to monosomes. Investigation of the fate of mRNA revealed that brain poly(A+)mRNA was conserved. In particular, mRNA coding for brain-specific S100 protein was not degraded, nor was it released into free ribonucleoprotein particles. Following the (+)-lysergic acid diethylamide-induced disaggregation of polysomes, mRNA shifted from polysomes and accumulated on monosomes. Formation of a blocked monosome complex, which contained intact mRNA and 40-S plus 60-S ribosomal subunits but lacked nascent peptide chains, suggested that (+)-lysergic acid diethylamide inhibited brain protein synthesis at a specific stage of late initiation or early elongation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号