首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
STAM1 and STAM2, which have been identified as regulators of receptor signaling and trafficking, interact directly with Hrs, which mediates the endocytic sorting of ubiquitinated membrane proteins. The STAM proteins interact with the same coiled-coil domain that is involved in the targeting of Hrs to endosomes. In this work, we show that STAM1 and STAM2, as well as an endocytic regulator protein, Eps15, can be co-immunoprecipitated with Hrs both from membrane and cytosolic fractions and that recombinant Hrs, STAM1/STAM2, and Eps15 form a ternary complex. We find that overexpression of Hrs causes a strong recruitment of STAM2 to endosome membranes. Moreover, STAM2, like Hrs and Eps15, binds ubiquitin, and Hrs, STAM2, and Eps15 colocalize with ubiquitinated proteins in clathrin-containing endosomal microdomains. The localization of Hrs, STAM2, Eps15, and clathrin to endosome membranes is controlled by the AAA ATPase mVps4, which has been implicated in multivesicular body formation. Depletion of cellular Hrs by small interfering RNA results in a strongly reduced recruitment of STAM2 to endosome membranes and an impaired degradation of endocytosed epidermal growth factor receptors. We propose that Hrs, Eps15, and STAM proteins function in a multivalent complex that sorts ubiquitinated proteins into the multivesicular body pathway.  相似文献   

2.
3.
Retrograde transport links early/recycling endosomes to the trans-Golgi network (TGN), thereby connecting the endocytic and the biosynthetic/secretory pathways. To determine how internalized molecules are targeted to the retrograde route, we have interfered with the function of clathrin and that of two proteins that interact with it, AP1 and epsinR. We found that the glycosphingolipid binding bacterial Shiga toxin entered cells efficiently when clathrin expression was inhibited. However, retrograde transport of Shiga toxin to the TGN was strongly inhibited. This allowed us to show that for Shiga toxin, retrograde sorting on early/recycling endosomes depends on clathrin and epsinR, but not AP1. EpsinR was also involved in retrograde transport of two endogenous proteins, TGN38/46 and mannose 6-phosphate receptor. In conclusion, our work reveals the existence of clathrin-independent and -dependent transport steps in the retrograde route, and establishes a function for clathrin and epsinR at the endosome-TGN interface.  相似文献   

4.
The majority of Rab proteins are posttranslationally modified with two geranylgeranyl lipid moieties that enable their stable association with membranes. In this study, we present evidence to demonstrate that there is a specific lipid requirement for Rab protein localization and function. Substitution of different prenyl anchors on Rab GTPases does not lead to correct function. In the case of YPT1 and SEC4, two essential Rab genes in Saccharomyces cerevisiae, alternative lipid tails cannot support life when present as the sole source of YPT1 and SEC4. Furthermore, our data suggest that double geranyl-geranyl groups are required for Rab proteins to correctly localize to their characteristic organelle membrane. We have identified a factor, Yip1p that specifically binds the di-geranylgeranylated Rab and does not interact with mono-prenylated Rab proteins. This is the first demonstration that the double prenylation modification of Rab proteins is an important feature in the function of this small GTPase family and adds specific prenylation to the already known determinants of Rab localization.  相似文献   

5.
Movement through the endocytic pathway occurs principally via a series of membrane fusion and fission reactions that allow sorting of molecules to be recycled from those to be degraded. Endosome fusion is dependent on SNARE proteins, although the nature of the proteins involved and their regulation has not been fully elucidated. We found that the endosome-associated hepatocyte responsive serum phosphoprotein (Hrs) inhibited the homotypic fusion of early endosomes. A region of Hrs predicted to form a coiled coil required for binding the Q-SNARE, SNAP-25, mimicked the inhibition of endosome fusion produced by full-length Hrs, and was sufficient for endosome binding. SNAP-25, syntaxin 13, and VAMP2 were bound from rat brain membranes to the Hrs coiled-coil domain. Syntaxin 13 inhibited early endosomal fusion and botulinum toxin/E inhibition of early endosomal fusion was reversed by addition of SNAP-25(150-206), confirming a role for syntaxin 13, and establishing a role for SNAP-25 in endosomal fusion. Hrs inhibited formation of the syntaxin 13-SNAP-25-VAMP2 complex by displacing VAMP2 from the complex. These data suggest that SNAP-25 is a receptor for Hrs on early endosomal membranes and that the binding of Hrs to SNAP-25 on endosomal membranes inhibits formation of a SNARE complex required for homotypic endosome fusion.  相似文献   

6.
Cell surface receptor proteins that have undergone endocytosis are transported to the endosome. From the endosome, ligand-activated receptor tyrosine kinases are further transported to the lysosome for degradation, a process called "receptor downregulation." By contrast, nutrient receptors, such as those for low-density lipoprotein and transferrin, are recycled back to the plasma membrane. Sorting of these two types of receptors occurs at the endosome, where ubiquitination of receptor proteins serves as the sorting signal. Namely, ubiquitinated receptors are incorporated into the lysosomal degradation pathway, whereas those that are not ubiquitinated are returned to the cell surface. Hrs and STAM are proteins that form a complex on the endosomal membrane. Recent studies have shown that the Hrs/STAM complex binds ubiquitin moieties and acts as sorting machinery that recognizes ubiquitinated receptors and transfers them to further sequential lysosomal sorting/trafficking processes.  相似文献   

7.
POSH (plenty of SH3s) acts as a scaffold that links activated Rac1 and downstream c-Jun N-terminal kinase (JNK) signaling modules. However, it is unknown whether it's functional domain-mediated roles including the interesting RING-finger domain or its cellular function. Here, we provide evidence that subcellular localization of POSH is regulated by a particular domain of the protein and POSH was colocalized with hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) on early endosomes via interaction of Hrs with POSH's two rear SH3 domains. Moreover, the RING domain of POSH specifically regulates the stability of Hrs, but not of JNK1, via a ubiquitin-proteasomal degradation pathway. Finally, we demonstrate that JNK1 does not interact with Hrs under the conditions of POSH interacted with Hrs, but instead reduces the POSH-catalyzed ubiquitination of Hrs and their reciprocal interaction. Together, these data suggest that POSH has a distinct role as a specific E3 ubiquitin ligase for Hrs on early endosomes, and there exists a relationship between its separate activities as a scaffold and as an E3.  相似文献   

8.
9.
We previously reported that the STAM family members STAM1 and STAM2 are phosphorylated on tyrosine upon stimulation with cytokines through the gammac-Jak3 signaling pathway, which is essential for T-cell development. Mice with targeted mutations in either STAM1 or STAM2 show no abnormality in T-cell development, and mice with double mutations for STAM1 and STAM2 are embryonically lethal; therefore, here we generated mice with T-cell-specific double mutations for STAM1 and STAM2 using the Cre/loxP system. These STAM1(-/-) STAM2(-/-) mice showed a significant reduction in thymocytes and a profound reduction in peripheral mature T cells. In proliferation assays, thymocytes derived from the double mutant mice showed a defective response to T-cell-receptor (TCR) stimulation by antibodies and/or cytokines, interleukin-2 (IL-2) and IL-7. However, signaling events downstream of receptors for IL-2 and IL-7, such as activations of STAT5, extracellular signal-regulated kinase (ERK), and protein kinase B (PKB)/Akt, and c-myc induction, were normal in the double mutant thymocytes. Upon TCR-mediated stimulation, prolonged activations of p38 mitogen-activated protein kinase and Jun N-terminal protein kinase were seen, but activations of ERK, PKB/Akt, and intracellular calcium flux were normal in the double mutant thymocytes. When the cell viability of cultured thymocytes was assessed, the double mutant thymocytes died more quickly than controls. These results demonstrate that the STAMs are indispensably involved in T-cell development and survival in the thymus through the prevention of apoptosis but are dispensable for the proximal signaling of TCR and cytokine receptors.  相似文献   

10.
One of the hallmarks of Trypanosoma cruzi invasion of non-professional phagocytes is facilitation of the process by host cell actin depolymerization. Host cell entry by invasive T. cruzi trypomastigotes is accomplished by exploiting a cellular wound repair process involving Ca(2+)-regulated lysosome exocytosis (i.e. lysosome-dependent) or by engaging a recently recognized lysosome-independent pathway. It was originally postulated that cortical actin microfilaments present a barrier to lysosome-plasma membrane fusion and that transient actin depolymerization enhances T. cruzi entry by increasing access to the plasma membrane for lysosome fusion. Here we demonstrate that cytochalasin D treatment of host cells inhibits early lysosome association with invading T. cruzi trypomastigotes by uncoupling the cell penetration step from lysosome recruitment and/or fusion. These findings provide the first indication that lysosome-dependent T. cruzi entry is initiated by plasma membrane invagination similar to that observed for lysosome-independent entry. Furthermore, prolonged disruption of host cell actin microfilaments results in significant loss of internalized parasites from infected host cells. Thus, the ability of internalized trypomastigotes to remain cell-associated and to fuse with host cell lysosomes is critically dependent upon host cell actin reassembly, revealing an unanticipated role for cellular actin remodelling in the T. cruzi invasion process.  相似文献   

11.
12.
The species C adenovirus type 2 (Ad2) and Ad5 bind the coxsackievirus B Ad receptor and alphav integrin coreceptors and enter epithelial cells by clathrin-mediated endocytosis. This pathway is rapid and efficient. It leads to cell activation and the cholesterol-dependent formation of macropinosomes. Macropinosomes are triggered to release their contents when incoming Ad2 escapes from endosomes. Here, we show that cholesterol extraction of epithelial cells by methyl-beta-cyclodextrin (mbetaCD) treatment reduced Ad5-mediated luciferase expression approximately 4-fold. The addition of cholesterol to normal cells increased gene expression in a dose-dependent manner up to threefold, but it did not restore gene expression in mbetaCD-treated cells. mbetaCD had no effect in the presence of excess cholesterol, indicating that the inhibition of gene expression was due specifically to cholesterol depletion. Cholesterol depletion inhibited rapid Ad2 endocytosis, endosomal escape, and nuclear targeting, consistent with the notion that clathrin-dependent endocytosis of Ad2 is cholesterol dependent. In cholesterol-reduced cells, Ad2 internalized at a low rate, suggestive of an alternative, clathrin-independent, low-capacity entry pathway. While exogenous cholesterol completely restored rapid Ad2 endocytosis, macropinocytosis, and macropinosome disruption, it did not, surprisingly, restore viral escape from endosomes. Our results indicate that macropinosome disruption and endosomal escape of Ad2 are independent events in cells depleted of and then refilled with cholesterol, suggesting that viral escape from endosomes requires lipid-controlled membrane homeostasis, trafficking, or signaling.  相似文献   

13.
Drosophila embryonic dorsal-ventral polarity originates in the ovarian follicle through the restriction of pipe gene expression to a ventral subpopulation of follicle cells. Pipe, a homolog of vertebrate glycosaminoglycan-modifying enzymes, directs the ventral activation of an extracellular serine proteolytic cascade which defines the ventral side of the embryo. When pipe is expressed uniformly in the follicle cell layer, a strong ventralization of the resulting embryos is observed. Here, we show that this ventralization is dependent on the other members of the dorsal group of genes controlling dorsal-ventral polarity, but not on the state of the Epidermal Growth Factor Receptor signal transduction pathway which defines egg chamber polarity. Pipe protein expressed in vertebrate tissue culture cells localizes to the endoplasmic reticulum. Strikingly, coexpression of the dorsal group gene windbeutel in those cells directs Pipe to the Golgi. Similarly, Pipe protein exhibits an altered subcellular localization in the follicle cells of females mutant for windbeutel. Thus, Windbeutel protein enables the correct subcellular distribution of Pipe to facilitate its pattern-forming activity.  相似文献   

14.
Lrrc10 is required for early heart development and function in zebrafish   总被引:1,自引:0,他引:1  
Leucine-rich Repeat Containing protein 10 (LRRC10) has recently been identified as a cardiac-specific factor in mice. However, the function of this factor remains to be elucidated. In this study, we investigated the developmental roles of Lrrc10 using zebrafish as an animal model. Knockdown of Lrrc10 in zebrafish embryos (morphants) using morpholinos caused severe cardiac morphogenic defects including a cardiac looping failure accompanied by a large pericardial edema, and embryonic lethality between day 6 and 7 post fertilization. The Lrrc10 morphants exhibited cardiac functional defects as evidenced by a decrease in ejection fraction and cardiac output. Further investigations into the underlying mechanisms of the cardiac defects revealed that the number of cardiomyocyte was reduced in the morphants. Expression of two cardiac genes was deregulated in the morphants including an increase in atrial natriuretic factor, a hallmark for cardiac hypertrophy and failure, and a decrease in cardiac myosin light chain 2, an essential protein for cardiac contractility in zebrafish. Moreover, a reduced fluorescence intensity from NADH in the morphant heart was observed in live zebrafish embryos as compared to control. Taken together, the present study demonstrates that Lrrc10 is necessary for normal cardiac development and cardiac function in zebrafish embryos, which will enhance our understanding of congenital heart defects and heart disease.  相似文献   

15.
Early endosome antigen 1 (EEA1) is 170-kDa polypeptide required for endosome fusion. EEA1 binds to both phosphtidylinositol 3-phosphate (PtdIns3P) and to Rab5-GTP in vitro, but the functional role of this dual interaction at the endosomal membrane is unclear. Here we have determined the structural features in EEA1 required for binding to these ligands. We have found that the FYVE domain is critical for both PtdIns3P and Rab5 binding. Whereas PtdIns3P binding only required the FYVE domain, Rab5 binding additionally required a 30-amino acid region directly adjacent to the FYVE domain. Microinjection of glutathione S-transferase fusion constructs into Cos cells revealed that the FYVE domain alone is insufficient for localization to cellular membranes; the upstream 30-amino acid region required for Rab5 binding must also be present for endosomal binding. The importance of Rab5 in membrane binding of EEA1 is underscored by the finding that the increased expression of wild-type Rab5 increases endosomal binding of EEA1 and decreases its dependence on PtdIns3P. Thus, the levels of Rab5 are rate-limiting for the recruitment of EEA1 to endosome membranes. PtdIns3P may play a role in modulating the Rab5 EEA1 interaction.  相似文献   

16.
Cells of the yeast Saccharomyces cerevisiae choose bud sites in a manner that is dependent upon cell type: a and alpha cells select axial sites; a/alpha cells utilize bipolar sites. Mutants specifically defective in axial budding were isolated from an alpha strain using pseudohyphal growth as an assay. We found that a and alpha mutants defective in the previously identified PMT4 gene exhibit unipolar, rather than axial budding: mother cells choose axial bud sites, but daughter cells do not. PMT4 encodes a protein mannosyl transferase (pmt) required for O-linked glycosylation of some secretory and cell surface proteins (Immervoll, T., M. Gentzsch, and W. Tanner. 1995. Yeast. 11:1345-1351). We demonstrate that Axl2/Bud10p, which is required for the axial budding pattern, is an O-linked glycoprotein and is incompletely glycosylated, unstable, and mislocalized in cells lacking PMT4. Overexpression of AXL2 can partially restore proper bud-site selection to pmt4 mutants. These data indicate that Axl2/Bud10p is glycosylated by Pmt4p and that O-linked glycosylation increases Axl2/ Bud10p activity in daughter cells, apparently by enhancing its stability and promoting its localization to the plasma membrane.  相似文献   

17.
The Met receptor tyrosine kinase (RTK) regulates epithelial remodeling, dispersal, and invasion and is deregulated in many human cancers. It is now accepted that impaired down-regulation, as well as sustained activation, of RTKs could contribute to their deregulation. Down-regulation of the Met receptor involves ligand-induced internalization, ubiquitination by Cbl ubiquitin ligases, and lysosomal degradation. Here we report that a ubiquitination-deficient Met receptor mutant (Y1003F) is tumorigenic in vivo. The Met Y1003F mutant is internalized, and undergoes endosomal trafficking with kinetics similar to the wild-type Met receptor, yet is inefficiently targeted for degradation. This results in sustained activation of Met Y1003F and downstream signals involving the Ras-mitogen-activated protein kinase pathway, cell transformation, and tumorigenesis. Although Met Y1003F undergoes endosomal trafficking and localizes with the cargo-sorting protein Hrs, it is unable to induce phosphorylation of Hrs. Fusion of monoubiquitin to Met Y1003F is sufficient to decrease Met receptor stability and prevent sustained MEK1/2 activation. In addition, this rescues Hrs tyrosine phosphorylation and decreases transformation in a focus-forming assay. These results demonstrate that Cbl-dependent ubiquitination is dispensable for Met internalization but is critical to target the Met receptor to components of the lysosomal sorting machinery and to suppress its inherent transforming activity.  相似文献   

18.
African trypanosomes are the only organisms known to use RNA polymerase I (pol I) to transcribe protein-coding genes. These genes include VSG, which is essential for immune evasion and is transcribed from an extranucleolar expression site body (ESB). Several trypanosome pol I subunits vary compared to their homologues elsewhere, and the question arises as to how these variations relate to pol I function. A clear example is the N-terminal extension found on the second-largest subunit of pol I, RPA2. Here, we identify an essential role for this region. RPA2 truncation leads to nuclear exclusion and a growth defect which phenocopies single-allele knockout. The N terminus is not a general nuclear localization signal (NLS), however, and it fails to accumulate unrelated proteins in the nucleus. An ectopic NLS is sufficient to reinstate nuclear localization of truncated RPA2, but it does not restore function. Moreover, NLS-tagged, truncated RPA2 has a different subnuclear distribution to full-length protein and is unable to build stable pol I complexes. We conclude that the RPA2 N-terminal extension does not have a role exclusive to the expression of protein-coding genes, but it is essential for all pol I functions in trypanosomes because it directs trypanosomatid-specific interactions with RPA1.  相似文献   

19.
The human CD8 glycoprotein functions as a co-receptor during T cell activation by both binding to MHC class I and transducing a transmembrane signal. The ability of CD8 to transduce a signal is mediated in part by its association with the protein tyrosine kinase p56lck. Using a panel of human CD8 alpha mutants, we demonstrated that the presence of a functional p56lck binding site is required for the early signalling events transduced by CD8, including increased [Ca2+]i and protein tyrosine phosphorylation. In addition, our results demonstrate that wild-type and all mutant forms of CD8 alpha have an inhibitory effect on signal transduction after CD3-CD3 or CD3-CD4 crosslinking when transfected into the (CD3+, CD4+, CD8-) H9 T cell line, suggesting that intermolecular associations of CD8, independent of its association with p56lck, are responsible for this effect. Signalling through CD4 or CD8 in a double positive thymocyte may therefore be different than in a single positive thymocyte or mature T cell.  相似文献   

20.
The cytoskeletal proteins HMW1 and HMW2 are components of the terminal organelle of the cell wall-less bacterium Mycoplasma pneumoniae. HMW1 is required for a tapered, filamentous morphology but exhibits accelerated turnover in the absence of HMW2. Here, we report that a reciprocal dependency exists between HMW1 and HMW2, with HMW2 subject to accelerated turnover with the loss of HMW1. Furthermore, the instability of HMW2 correlated with its failure to localize to the attachment organelle. The C-terminal domain of HMW1 is essential for both function and its accelerated turnover in the absence of HMW2. We constructed HMW1 deletion derivatives lacking portions of this domain and examined each for stability and function. The C-terminal 41 residues were particularly important for proper localization and function in cell morphology and P1 localization, but the entire C-terminal domain was required to stabilize HMW2. The significance of these findings in the context of attachment organelle assembly is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号