首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Little is known about how growth factors control tissue stem cell survival and proliferation. We analyzed mice with a null mutation of Shp2 (Ptpn11), a key component of receptor tyrosine kinase signaling. Null embryos die peri-implantation, much earlier than mice that express an Shp2 truncation. Shp2 null blastocysts initially develop normally, but they subsequently exhibit inner cell mass death, diminished numbers of trophoblast giant cells, and failure to yield trophoblast stem (TS) cell lines. Molecular markers reveal that the trophoblast lineage, which requires fibroblast growth factor-4 (FGF4), is specified but fails to expand normally. Moreover, deletion of Shp2 in TS cells causes rapid apoptosis. We show that Shp2 is required for FGF4-evoked activation of the Src/Ras/Erk pathway that culminates in phosphorylation and destabilization of the proapoptotic protein Bim. Bim depletion substantially blocks apoptosis and significantly restores Shp2 null TS cell proliferation, thereby establishing a key mechanism by which FGF4 controls stem cell survival.  相似文献   

2.
Guanine nucleotide exchange factors (GEFs) activate Ras by facilitating its GTP binding. Ras guanyl nucleotide-releasing protein (GRP) was recently identified as a Ras GEF that has a diacylglycerol (DAG)-binding C1 domain. Its exchange factor activity is regulated by local availability of signaling DAG. DAG kinases (DGKs) metabolize DAG by converting it to phosphatidic acid. Because they can attenuate local accumulation of signaling DAG, DGKs may regulate RasGRP activity and, consequently, activation of Ras. DGK zeta, but not other DGKs, completely eliminated Ras activation induced by RasGRP, and DGK activity was required for this mechanism. DGK zeta also coimmunoprecipitated and colocalized with RasGRP, indicating that these proteins associate in a signaling complex. Coimmunoprecipitation of DGK zeta and RasGRP was enhanced in the presence of phorbol esters, which are DAG analogues that cannot be metabolized by DGKs, suggesting that DAG signaling can induce their interaction. Finally, overexpression of kinase-dead DGK zeta in Jurkat cells prolonged Ras activation after ligation of the T cell receptor. Thus, we have identified a novel way to regulate Ras activation: through DGK zeta, which controls local accumulation of DAG that would otherwise activate RasGRP.  相似文献   

3.
The Ras guanine-nucleotide exchange factor Ras-GRF/Cdc25(Mn) harbors a complex array of structural motifs that include a Dbl-homology (DH) domain, usually found in proteins that interact functionally with the Rho family GTPases, and the role of which is not yet fully understood. Here, we present evidence that Ras-GRF requires its DH domain to translocate to the membrane, to stimulate exchange on Ras, and to activate mitogen-activated protein kinase (MAPK). In an unprecedented fashion, we have found that these processes are regulated by the Rho family GTPase Cdc42. We show that GDP- but not GTP-bound Cdc42 prevents Ras-GRF recruitment to the membrane and activation of Ras/MAPK, although no direct association of Ras-GRF with Cdc42 was detected. We also demonstrate that catalyzing GDP/GTP exchange on Cdc42 facilitates Ras-GRF-induced MAPK activation. Moreover, we show that the potentiating effect of ionomycin on Ras-GRF-mediated MAPK stimulation is also regulated by Cdc42. These results provide the first evidence for the involvement of a Rho family G protein in the control of the activity of a Ras exchange factor.  相似文献   

4.
Phosphoinositide 3-kinase (PI3K) participates in extracellular signal-regulated kinase 1 and 2 (ERK1-2) activation according to signal strength, through unknown mechanisms. We report herein that Gab1/Shp2 constitutes a PI3K-dependent checkpoint of ERK1-2 activation regulated according to signal intensity. Indeed, by up- and down-regulation of signal strength in different cell lines and through different methods, we observed that Gab1/Shp2 and Ras/ERK1-2 in concert become independent of PI3K upon strong epidermal growth factor receptor (EGFR) stimulation and dependent on PI3K upon limited EGFR activation. Using Gab1 mutants, we observed that this conditional role of PI3K is dictated by the EGFR capability of recruiting Gab1 through Grb2 or through the PI3K lipid product PIP3, according to a high or weak level of receptor stimulation, respectively. In agreement, Grb2 siRNA generates, in cells with maximal EGFR stimulation, a strong dependence on PI3K for both Gab1/Shp2 and ERK1-2 activation. Therefore, Ras/ERK1-2 depends on PI3K only when PIP3 is required to recruit Gab1/Shp2, which occurs only under weak EGFR mobilization. Finally, we show that, in glioblastoma cells displaying residual EGFR activation, this compensatory mechanism becomes necessary to efficiently activate ERK1-2, which could probably contribute to tumor resistance to EGFR inhibitors.  相似文献   

5.
Chiu D  Ma K  Scott A  Duronio V 《The FEBS journal》2005,272(17):4372-4384
We used two inhibitors of the signaling enzyme phosphatidylinositol 3-kinase (PtdIns3K), wortmannin and LY294002, to evaluate the potential involvement of PtdIns3K in the activation of the MAP kinases (MAPK), Erk1 and Erk2. In dose-response studies carried out on six different cell lines and a primary cell culture, we analyzed the ability of the inhibitors to block phosphorylation of protein kinase B/akt (PKB/akt) at Ser473 as a measure of PtdIns3K activity, or the phosphorylation of Erk1/2 at activating Thr/Tyr sites as a measure of the extent of activation of MAPK/Erk kinase (MEK/Erk). In three different hemopoietic cell lines stimulated with cytokines, and in HEK293 cells, stimulated with serum, either wortmannin or LY294002, but never both, could partially block phosphorylation of Erks. The same observations were made in a B-cell line and in primary fibroblasts. In only one cell type, the A20 B cells, was there a closer correlation between the PtdIns3K inhibition by both inhibitors, and their corresponding effects on Erk phosphorylation. However, this stands out as an exception that gives clues to the mechanism by which cross-talk might occur. In all other cells, acute activation of the pathway leading to Erk phosphorylation could proceed independently of PtdIns3K activation. In a biological assay comparing these two pathways, the ability of LY294002 and the MEK inhibitor, U0126, to induce apoptosis were tested. Whereas LY294002 caused death of cytokine-dependent hemopoietic cells, U0126 had little effect, but both inhibitors together had a synergistic effect. The data show that these two pathways are regulating very different downstream events involved in cell survival.  相似文献   

6.
Shp2 is a ubiquitous tyrosine phosphatase containing Src Homology 2 domains which plays major biological functions in response to various growth factors, hormones or cytokines. This is essentially due to its particularity of promoting the activation of the Ras/Mitogen-activated protein kinase pathway. Recent progresses have been made in the understanding of the molecular mechanisms involved in this regulation. We review here, and discuss the physiological relevance, of the following molecular functions of Shp2 that have been proposed to couple the phosphatase to Ras activation: promoter of Grb2/Sos recruitment through direct binding to Grb2, binding partner and regulator of SHPS-1, negative regulator of Sprouty, negative regulator of RasGAP recruitment, and activator of Src through dephosphorylation of Src-regulatory proteins.  相似文献   

7.
8.
Fibroblast growth factors (FGFs) inhibit chondrocyte proliferation via the Erk MAP kinase pathway. Here, we explored the role of protein kinase C in FGF signaling in chondrocytes. Erk activity in FGF2-treated RCS (rat chondrosarcoma) chondrocytes or human primary chondrocytes was abolished by the protein kinase C inhibitor bisindolylmaleimide I (Bis I). Bis I inhibited FGF2-induced activation of MEK, Raf-1, and Ras members of Erk signaling module but not the FGF2-induced tyrosine phosphorylation of Frs2 or the kinase activity of FGFR3, demonstrating that it targets the Erk cascade immediately upstream of Ras. Indeed, Bis I abolished the FGF2-mediated association of Shp2 tyrosine phosphatase with Frs2 and Gab1 adaptor proteins necessary for proper Ras activation. We also determined which PKC isoform is involved in FGF2-mediated activation of Erk. When both conventional and novel PKCs expressed by RCS chondrocytes (PKCalpha, -gamma, -delta, and -epsilon) were down-regulated by phorbol ester, cells remained responsive to FGF2 with Erk activation, and this activation was sensitive to Bis I. Moreover, treatment with PKClambda/zeta pseudosubstrate lead to significant reduction of FGF2-mediated activation of Erk, suggesting involvement of an atypical PKC.  相似文献   

9.
HGF and phorbol ester induce the scattering of HepG2 cells. Recently, we have reported that the motility and morphological responses that accompany this process require the activation of Erk1/Erk2 MAP kinases, and phosphatidylinositol 3-kinase contributes to the activation of Erk1/Erk2 in HGF-induced cells. The cell scattering-associated appearance of a high-M(r) (>300 kDa) protein pair has also been observed, and has been proven to be a sensitive marker of the intensity of Erk1/Erk2 activation. Our present study demonstrates that in HGF-induced cells protein kinase C and phosphatidylinositol 3-kinase regulate oppositely the expression of these cell scattering-associated proteins. While in phorbol ester-treated cells the sustained activation of protein kinase C is essential for this expression, in HGF-induced cells the inhibition of protein kinase C with bisindolylmaleimide I stimulates the expression. Protein kinase C reduces the HGF-induced phosphorylation of Erk1/Erk2, and in this way it can limit the intensity of Erk1/Erk2-dependent gene-expression  相似文献   

10.
Src family tyrosine kinases are down-regulated through phosphorylation of a single C-terminal tyrosine by the nonreceptor tyrosine kinase Csk. Despite the fundamental role of Csk in controlling cell growth and differentiation, it is unclear what limits this key signaling reaction and controls the production of catalytically repressed Src. To investigate this issue, stopped-flow fluorescence experiments were performed to determine which steps modulate catalysis. Both Src binding and phosphorylation can be monitored by changes in intrinsic tryptophan fluorescence. Association kinetics are biphasic with the initial phase corresponding to the bimolecular interaction of both proteins and the second phase representing a slow conformational change that coincides with the rate of maximum turnover. The kinetic transients for the phosphorylation reaction are also biphasic with the initial phase corresponding to the rapid phosphorylation and the release of phospho-Src. These data, along with equilibrium sedimentation and product inhibition experiments, suggest that steps involving Src association, phosphorylation, and product release are fast and that a structural change in Csk participates in limiting the catalytic cycle.  相似文献   

11.
Csk (carboxyl-terminal Src kinase) is a cytoplasmic tyrosine kinase that phosphorylates a critical tyrosine residue in each of the Src family kinases (SFKs) to inhibit their activities. Recently, we identified a transmembrane protein, Cbp (Csk-binding protein), that, when phosphorylated, can recruit Csk to the membrane where the SFKs are located. The Cbp-mediated relocation of Csk to the membrane may play a role in turning off the signaling events initiated by SFKs. To further characterize the Csk-Cbp interaction, we have generated a reconstituted system using soluble, highly purified proteins. Csk and phosphorylated Cbp were co-purified as a large protein complex consisting of at least four Csk.Cbp units. The addition of the phosphorylated, but not nonphosphorylated, Cbp to an in vitro assay stimulated Csk activity toward Src. Csk was also activated by a phosphopeptide containing the tyrosine in Cbp that binds to Csk (Tyr-314). Kinetic analysis revealed that Cbp or the phosphopeptide induced up to a 6-fold reduction in the K(m) for Src, indicating that the Csk.Cbp complex has a greater affinity for Src than free Csk. These findings suggest that Cbp is involved in the regulation of SFKs not only by relocating Csk to the membrane but also by directly activating Csk.  相似文献   

12.
Ras-GRF2 (GRF2) is a widely expressed, calcium-activated regulator of the small-type GTPases Ras and Rac. It is a multidomain protein composed of several recognizable sequence motifs in the following order (NH(2) to COOH): pleckstrin homology (PH), coiled-coil, ilimaquinone (IQ), Dbl homology (DH), PH, REM (Ras exchanger motif), PEST/destruction box, Cdc25. The DH and Cdc25 domains possess guanine nucleotide exchange factor (GEF) activity and interact with Rac and Ras, respectively. The REM-Cdc25 region was found to be sufficient for maximal activation of Ras in vitro and in vivo caused Ras and extracellular signal-regulated kinase (ERK) activation independent of calcium signals, suggesting that, at least when expressed ectopically, it contains all of the determinants required to access and activate Ras signaling. Additional mutational analysis of GRF2 indicated that the carboxyl PH domain imparts a modest inhibitory effect on Ras GEF activity and probably normally participates in intermolecular interactions. A variant of GRF2 missing the Cdc25 domain did not activate Ras and functions as an inhibitor of wild-type GRF2, presumably by competing for interactions with molecules other than calmodulin, Ras, and ligands of the PH domain. The binding of calmodulin was found to require several amino-terminal domains of GRF2 in addition to the IQ sequence, and no correlation between calmodulin binding by GRF2 and its ability to directly activate Ras and indirectly stimulate the mitogen-activated protein (MAP) kinase ERK in response to calcium was found. The precise role of the GRF2-calmodulin association, therefore, remains to be determined. A GRF2 mutant missing the IQ sequence was competent for Ras activation but failed to couple this to stimulation of the ERK pathway. This demonstrates that Ras-GTP formation is not sufficient for MAP kinase signaling. We conclude that in addition to directly activating Ras, GRF2, and likely other GEFs, promote the assembly of a protein network able to couple the GTPase with particular effectors.  相似文献   

13.

Background  

Erythropoietin is a multifunctional cytokine which regulates the number of erythrocytes circulating in mammalian blood. This is crucial in order to maintain an appropriate oxygen supply throughout the body. Stimulation of primary human erythroid progenitors (PEPs) with erythropoietin (Epo) leads to the activation of the mitogenic kinases (MEKs and Erks). How this is accomplished mechanistically remained unclear.  相似文献   

14.
Contractile forces mediated by RhoA and Rho kinase (ROCK) are required for a variety of cellular processes, including cell adhesion. In this study, we show that RhoA-dependent ROCKII activation is negatively regulated by phosphorylation at a conserved tyrosine residue (Y722) in the coiled-coil domain of ROCKII. Tyrosine phosphorylation of ROCKII is increased with cell adhesion, and loss of Y722 phosphorylation delays adhesion and spreading on fibronectin, suggesting that this modification is critical for restricting ROCKII-mediated contractility during these processes. Further, we provide evidence that Shp2 mediates dephosphorylation of ROCKII and, therefore, regulates RhoA-induced cell rounding, indicating that Shp2 couples with RhoA signaling to control ROCKII activation during deadhesion. Thus, reversible tyrosine phosphorylation confers an additional layer of control to fine-tune RhoA-dependent activation of ROCKII.  相似文献   

15.
Cot is one of the MAP kinase kinase kinases that regulates the ERK1/ERK2 pathway under physiological conditions. Cot is activated by LPS, by inducing its dissociation from the inactive p105 NFkappaB-Cot complex in macrophages. Here, we show that IL-1 promotes a 10-fold increase in endogenous Cot activity and that Cot is the only MAP kinase kinase kinase that activates ERK1/ERK2 in response to this cytokine. Moreover, in cells where the expression of Cot is blocked, IL-1 fails to induce an increase in IL-8 and MIP-1betamRNA levels. The activation of Cot-MKK1-ERK1/ERK2 signalling pathway by IL-1 is dependent on the activity of the transducer protein TRAF6. Most important, IL-1-induced ERK1/ERK2 activation is inhibited by PP1, a known inhibitor of Src tyrosine kinases, but this tyrosine kinase activity is not required for IL-1 to activate other MAP kinases such as p38 and JNK. This Src kinases inhibitor does not block the dissociation and subsequently degradation of Cot in response to IL-1, indicating that other events besides Cot dissociation are required to activate Cot. All these data highlight the specific requirements for activation of the Cot-MKK1-ERK1/ERK2 pathway and provide evidence that Cot controls the functions of IL-1 that are mediated by ERK1/ERK2.  相似文献   

16.
The retinoid-inducible gene 1 (RIG1) protein is a retinoid-inducible growth regulator. Previous studies have shown that the RIG1 protein inhibits the signaling pathways of Ras/mitogen-activated protein kinases. However, neither the mode of action nor the site of inhibition of RIG1 is known. This study investigated the effects of RIG1, and the mechanisms responsible for these effects, on the activation of Ras proteins in HtTA cervical cancer cells. RIG1 reduced the levels of activated Ras (Ras-GTP) and total Ras protein in cells transfected with mutated H-, N-, or K-Ras(G12V), or in cells transfected with the wild type H- or N-Ras followed by stimulation with epidermal growth factor. The half-life of Ras protein decreased from more than 36 h in control cells to 18 h in RIG1-transfected cells. RIG1 immunoprecipitated with the Ras protein in co-transfected cellular lysates. In contrast to the predominant plasma membrane localization in control cells, the H-Ras fusion protein EGFP-H-Ras was localized within a discrete cytoplasmic compartment where it co-localized with RIG1. RIG1 inhibited more than 93% of the Elk- and CHOP-mediated transactivation induced by H- or K-Ras(G12V). However, RIG1 did not inhibit the transactivation induced by MEK1 or MEK3, and failed to suppress the phosphorylation of extracellular signal-regulated kinases 1 and 2 induced by the constitutively activated B-Raf(V599E). The RIG1 with carboxyl terminal truncation (RIG1DeltaC) did not immunoprecipitate with Ras and had no effect on Ras activation or transactivation of the downstream signal pathways. These data indicate that RIG1 exerts its inhibitory effect at the level of Ras activation, which is independent of Ras subtype but dependent on the membrane localization of the RIG1 protein. This inhibition of Ras activation may be mediated through downregulation of Ras levels and alteration of Ras subcellular distribution.  相似文献   

17.
Lysophosphatidic acids (LPA) exert multiple biological effects through specific G protein-coupled receptors. The LPA-activated receptor subtype LPA(2) contains a carboxyl-terminal motif that allows interaction with PDZ domain-containing proteins, such as NHERF2 and PDZ-RhoGEF. To identify additional interacting partners of LPA(2), the LPA(2) carboxyl-terminus was used to screen a proteomic array of PDZ domains. In addition to the previously identified NHERF2, several additional LPA(2)-interacting PDZ domains were found. These included MAGI-2, MAGI-3 and neurabin. In the present work, we demonstrate the specific interaction between LPA(2) and MAGI-3, and the effects of MAGI-3 in colon cancer cells using SW480 as a cell model. MAGI-3 specifically bound to LPA(2), but not to LPA(1) and LPA(3). This interaction was mediated via the fifth PDZ domain of MAGI-3 interacting with the carboxyl-terminal 4 amino acids of LPA(2), and mutational alteration of the carboxyl-terminal sequences of LPA(2) severely attenuated its ability to bind MAGI-3. LPA(2) also associated with MAGI-3 in cells as determined by co-affinity purification. Overexpression of MAGI-3 in SW480 cells showed no apparent effect on LPA-induced activation of Erk and Akt. In contrast, silencing of MAGI-3 expression by siRNA drastically inhibited LPA-induced Erk activation, suggesting that the lack of an effect by overexpression was due to the high endogenous MAGI-3 level in these cells. Previous studies have shown that the cellular signaling elicited by LPA results in activation of the small GTPase RhoA by Galpha(12/13) - as well as Galpha(q)-dependent pathways. Overexpression of MAGI-3 stimulated LPA-induced RhoA activation, whereas silencing of MAGI-3 by siRNA resulted in a small but statistically significant decrease in RhoA activation. These results demonstrate that MAGI-3 interacts directly with LPA(2) and regulates the ability of LPA(2) to activate Erk and RhoA.  相似文献   

18.
Sprouting angiogenesis is a multistep process that involves endothelial cell activation, basement membrane degradation, proliferation, lumen formation, and stabilization. In this study, we identified annexin 2 as a regulator of endothelial morphogenesis using a three-dimensional in vitro model where sprouting angiogenesis was driven by sphingosine 1-phosphate and angiogenic growth factors. We observed that sphingosine 1-phosphate triggered annexin 2 translocation from the cytosol to the plasma membrane and its association with vascular endothelial (VE)-cadherin. In addition, annexin 2 depletion attenuated Akt activation, which was associated with increased phosphorylation of VE-cadherin and endothelial barrier leakage. Disrupting homotypic VE-cadherin interactions with EGTA, antibodies to the extracellular domain of VE-cadherin, or gene silencing all resulted in decreased Akt (but not Erk1/2) activation. Furthermore, expression of constitutively active Akt restored reduced endothelial sprouting responses observed with annexin 2 and VE-cadherin knockdown. Collectively, we report that annexin 2 regulates endothelial morphogenesis through an adherens junction-mediated pathway upstream of Akt.  相似文献   

19.
Cell growth (accumulation in cell mass) ensues through the promotion of macromolecular biosynthesis. S 6 ribosomal kinase 1 (S6K1), which is activated by the mammalian target of rapamycin, is critical for cell growth. The early events that control S6K1 signaling remain unclear. Here we show that SHP-2 suppresses S6K1 activity under conditions of growth factor deprivation. We show that under conditions of growth factor deprivation, S6K1 activity was increased in fibroblasts lacking functional SHP-2 and in cells where knock down of SHP-2 expression was established by small interference RNA. Consistent with these findings, fibroblasts lacking functional SHP-2 exhibited increased cell size as compared with wild type cells. Growth factor deprivation reduces cellular energy, and the energy-sensing 5'-AMP-activated protein kinase (AMPK) negatively regulates S6K1. We found that SHP-2 promoted AMPK activity under conditions of growth factor deprivation (low energy), suggesting that SHP-2 negatively regulates S6K1 via an AMPK-dependent pathway. These results implicate SHP-2 as an early mediator in the S6K1 signaling pathway to limit cell growth in low energy states.  相似文献   

20.
Several genetic studies in Drosophila have shown that the dSprouty (dSpry) protein inhibits the Ras/mitogen-activated protein (MAP) kinase pathway induced by various activated receptor tyrosine kinase receptors, most notably those of the epidermal growth factor receptor (EGFR) and fibroblast growth factor receptor (FGFR). Currently, the mode of action of dSpry is unknown, and the point of inhibition remains controversial. There are at least four mammalian Spry isoforms that have been shown to co-express preferentially with FGFRs as compared with EGFRs. In this study, we investigated the effects of the various mammalian Spry isoforms on the Ras/MAP kinase pathway in cells overexpressing constitutively active FGFR1. hSpry2 was significantly more potent than mSpry1 or mSpry4 in inhibiting the Ras/MAP kinase pathway. Additional experiments indicated that full-length hSpry2 was required for its full potency. hSpry2 had no inhibitory effect on either the JNK or the p38 pathway and displayed no inhibition of FRS2 phosphorylation, Akt activation, and Ras activation. Constitutively active mutants of Ras, Raf, and Mek were employed to locate the prospective point of inhibition of hSpry2 downstream of activated Ras. Results from this study indicated that hSpry2 exerted its inhibitory effect at the level of Raf, which was verified in a Raf activation assay in an FGF signaling context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号