首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 587 毫秒
1.
偶氮染料广泛应用于纺织、造纸和包装等行业,因其具有三致性、结构稳定且难降解,已成为染料废水处理的研究热点之一。本研究以白腐真菌作为脱色菌株,考察了不同白腐真菌对偶氮类染料酸性橙7(acid orange 7,AO7)的脱色降解,探讨了AO7染料的浓度、pH、温度以及脱色时间对染料脱色率的影响,同时应用紫外-可见光谱吸收法、红外光谱吸收法、高效液相色谱法和气相色谱-质谱法对AO7的降解产物进行分析,并对其产物进行植物毒性实验,以推断AO7可能的降解途径及其降解产物的毒性。结果表明:在pH 4.5、28℃条件下,刺芹侧耳(Pleurotus eryngii)和杂色云芝(Trametes versicolor)的混合菌丝脱色降解100 mg/L AO7,24 h脱色率可达93.46%。推测AO7可能的生物降解途径:AO7偶氮键断裂生成对氨基苯磺酸和1-氨基-2-萘酚;接着对氨基苯磺酸脱去磺酸基,生成对苯二酚;同时1-氨基-2-萘酚开环生成邻苯二甲酸和对羟基苯甲醛,之后进一步降解生成苯甲酸;最后对苯二酚和苯甲酸继续氧化成其他小分子中间体、H2O和CO_(2)。植物毒性实验表明,P.eryngii和T.versicolor混合菌丝对AO7脱毒效果较好。以上研究为探究白腐真菌在工业废水中降解偶氮类染料的应用奠定基础。  相似文献   

2.
白腐真菌对染料废水脱色及降解的研究   总被引:7,自引:0,他引:7  
染料废水是最难处理的工业废水之一,近年来许多学者就白腐真菌对染料废水的脱色进行了广泛的研究,系统介绍了白腐真菌对染料脱色和降解作用的研究进展,脱色机理及其影响因素,旨在为以后真菌对染料废水的脱色及降解提供参考和依据。  相似文献   

3.
白腐真菌的木质素降解酶   总被引:2,自引:0,他引:2  
简述了白腐真菌木质素降解酶的概念、催化反应机理及在纸浆的生物漂白和染料脱色中的应用。  相似文献   

4.
白腐菌菌体对染料的生物吸附脱色及机理研究   总被引:1,自引:0,他引:1  
目的:研究了白腐菌菌体吸附染料特性、影响因素及吸附机理。方法:采用分光光度法、吸附热特性、傅立叶变换红外光谱(FTIR)分析等系统地对菌体吸附特性及机理进行研究。结果:白腐菌BP对不同类型的染料有不同的吸附效果,240min内染料RBBR脱色率能达82.35%。菌体对RBBR的合适吸附条件为:温度28℃、转速100r/min、菌体粒径小于60目。吸附符合Freun-dlich模式,为多分子层吸附。菌体吸附染料主要通过菌体表面的羟基、羧基、胺基及磷酸基团与染料分子以共价键、离子交换或氢键结合来进行。结论:利用白腐菌菌体能有效的对部分染料进行吸附脱色。  相似文献   

5.
白腐菌对染料脱色和降解作用的研究进展   总被引:2,自引:0,他引:2  
白腐菌应用于废水处理始于二十世纪八十年代。本文对印染废水的处理方法、白腐菌及其对污染物的降解机理作了简要概述 ,着重介绍了白腐菌对染料脱色和降解作用的研究进展。白腐菌对染料的脱色解降作用机理有部分尚待进一步研究 ;同时 ,白腐菌的吸附作用亦不容忽视。  相似文献   

6.
白腐菌对染料脱色和降解作用的研究进展   总被引:19,自引:0,他引:19  
白腐菌应用于废水处理始于二十世纪八十年代,本文对印染废水的处理方法,白腐菌及其对污染物的降解机理作了简要概述,着重介绍了白腐菌对染料脱色和降解作用的研究进展。白腐菌对染料的脱色解降作用机理有部分尚待进一步研究;同时,白腐菌的吸附作用亦不容忽视。  相似文献   

7.
【目的】在无营养条件下,利用白腐真菌绒毛栓孔菌(Trametes pubescens)菌丝体对染料进行脱色可减少试验成本,提高染料处理的实用性。【方法】将该菌株液体培养的菌丝体在无营养条件下对染料进行脱色,并对其中脱色效果较好的偶氮染料刚果红的脱色过程进行分析。在此过程中,测定了该菌株分泌的胞外胞内酶活力,优化影响因子如初始pH值、温度、染料浓度和盐度,同时利用气相色谱-质谱联用技术分析无营养条件下偶氮染料刚果红的降解产物。植物毒性试验测定刚果红经绒毛栓孔菌菌丝体脱色前后的毒性变化。【结果】菌丝体对偶氮染料刚果红有较好的脱色效果,在初始pH值为2.0,温度为30°C,染料浓度为80 mg/L,盐度为2.5%(质量体积比)时,150 r/min转速下培养7 d后脱色率可达80.52%。在此过程中,菌丝体可被连续使用2次,且其所分泌的酶系可降解染料。此外,通过气相色谱-质谱联用分析得到刚果红的降解产物为萘胺、联苯胺和叠氮萘。植物毒性试验显示在无营养条件下的绒毛栓孔菌菌丝体对染料有明显的脱毒作用。【结论】研究发现绒毛栓孔菌菌丝体在无营养条件下的偶氮染料废水处理中具有广阔的应用前景。  相似文献   

8.
赵锦  王晓慧  王栋  吴志  吴庆喜  陈彦 《微生物学报》2022,62(4):1513-1523
[目的]利用真菌茅草菇菌丝球对染料铬黑T(EBT)进行脱色和降解,探究在不同环境条件下对染料脱色性能的影响及作用机制.[方法]采用单因素分析探究真菌的最佳脱色能力,分光光度法测定真菌酶活,小麦种子萌发、大肠杆菌接触抑制试验及秀丽隐杆线虫毒性试验测定脱色前后废水的毒性.[结果]茅草菇菌丝球受摇床温度和转速影响较小,在pH...  相似文献   

9.
开放条件下烟管菌XX-2对孔雀石绿染料的高效降解   总被引:1,自引:0,他引:1  
[目的]评价白腐真菌Bjerkandera adusta XX-2处理孔雀石绿染料废水的能力,为其在染料废水中的应用提供参考依据.[方法]采用批次实验在开放条件下研究通气、pH、温度、染料初始浓度、培养时间、碳源、氮源、金属离子、盐度等因子对该菌降解孔雀石绿的影响.同时利用植物萌发、微生物抑菌和水生动物致死实验对降解产物进行毒性测试.[结果]B.adusta XX-2菌株在开放的非灭菌条件下也能高效降解孔雀石绿.例如,在初始浓度为120 mg/L且以孔雀石绿为唯一营养源的条件下降解率也能达到60%.静置培养和摇动培养呈现出几乎相同的降解率,这可以为技术应用节约动力成本.最适降解pH与温度分别为7.0和25℃.在上述参数体系的优化基础上,分别进行了碳源、氮源与金属离子的添加优化实验,结果显示低浓度的碳源(如柠檬酸钠)、氮源(如氯化铵)和金属离子(如Zn2+)均可大大提高B.adusta XX-2对孔雀石绿的脱色效率.同时B.adusta XX-2的降解也能在很高的盐浓度下进行.毒性测试表明降解后的染料对植物、微生物、水生生物的毒性大大减少.[结论]B.adusta XX-2菌株在处理染料废水方面具有很大的应用潜力.  相似文献   

10.
白腐真菌生物技术降解氯酚污染物   总被引:4,自引:0,他引:4  
彭丹  曾光明  陈耀宁  喻曼  胡霜 《生态学杂志》2007,26(10):1657-1664
生物降解是降解氯酚污染物的一条重要的转化途径,白腐真菌是一种高效的生物降解菌种,应用白腐真菌生物技术降解具有毒性和抗降解性的氯酚具有重要意义。本文阐述了白腐菌降解氯酚类污染物的途径,阐述了白腐真菌技术,主要包括酶技术、固定化技术、真菌强化技术、堆肥化和生物反应器等在氯酚污染环境治理中的应用,并概述了近几年白腐菌降解氯酚的研究热点和白腐真菌生物技术的应用趋势。  相似文献   

11.
Decolorization of an anthraquinone-type dye using a laccase formulation   总被引:7,自引:0,他引:7  
Decolorization of the dye Remazol Brilliant Blue R (RBBR) was studied, as it is representative of an important class of recalcitrant anthraquinone-type dyes. For this purpose a commercial laccase formulation (CLF) containing laccase, a redox mediator and a non-ionic surfactant was used. Small molecular weight components were removed from the CLF by gel filtration, which made it possible to compare the effect of its laccase alone. Apart from slightly better thermostability of the CLF as compared with the laccase alone, the pH and temperature profiles were similar regardless of the presence of the small molecular weight components. The laccase alone did not decolorize RBBR. A small molecular weight redox mediator (HBT) was necessary for decolorization to occur. A comparison of the kinetics of RBBR decolorization using the CLF and its laccase alone is reported. Provided that a redox mediator is included, it is suggested that laccase may be suitable for the wastewater treatment of similar anthraquinone dyes.  相似文献   

12.
Phloroglucinol, thymol, and violuric acid (VIO) were selected as laccase mediators after screening 14 different compounds with indigo carmine (indigoid dye) as a substrate. With the presence of these three mediators, a nearly complete decolorization (90-100%) was attained in 1 h. Thus, these three compounds were used as mediators for the decolorization of other four dyes. The results indicated that VIO was effective mediator in decolorization of Remazol brilliant blue R (RBBR, anthraquinoid dye) and Coomassie brilliant blue G-250 (CBB, triphenylmethane dyes), and Acid red (diazo dye). In presence of VIO, the four dyes described above attained 70% decolorization. Thymol was able to mediate decolorization of RBBR and Azure A (heterocyclic dye). Phloroglucinol has no mediating capability in decolorization of the four dyes analyzed. Mediator concentration, pH, and copper ion have an effect on the decolorization of the RBBR. Our data suggested that the decolorization capabilities of laccase/mediator system were related to the types of mediator, the dye structure and decolorization condition.  相似文献   

13.
The ability of the white-rot fungus Ganoderma sp.En3 to decolorize different kinds of dyes widely applied in the textile and dyeing industry, including the anthraquinone dye Remazol Brilliant Blue R (RBBR), indigo dye indigo carmine and triphenylmethane dye methyl green, was evaluated in this study. Ganoderma sp.En3 had a strong capability of decolorizing high concentrations of RBBR, indigo carmine and methyl green. Obvious reduction of Chemical Oxygen Demand was observed after decolorization of different dyes. Ganoderma sp.En3 had a strong ability to tolerate RBBR, indigo carmine and methyl green with high concentrations. High concentrations of RBBR, indigo carmine and methyl green could also be efficiently decolorized by the crude enzyme of Ganoderma sp.En3. Different redox mediators such as syringaldehyde, acetosyringone and acetovanillone could enhance the decolorization capability for higher concentration of indigo carmine and methyl green. Different metal ions had little effect on the ability of the crude enzyme to decolorize indigo carmine and methyl green. Our study suggested that Ganoderma sp.En3 had a strong capability for decolorizing and tolerating high concentrations of different types of dyes such as RBBR, indigo carmine and methyl green.  相似文献   

14.
Remazol brilliant blue R (RBBR) is an anthraquinone dye derived from anthracene that is decolorized by a white rot fungus, Phlebia brevispora. Interestingly, P. brevispora produces two phenomena of yellowish and pinkish colors during the degradation of RBBR. Here, we characterized the decolorization of RBBR by P. brevispora. The fungus was significantly different between the two colors via UV spectrophotometry, and the morphology of the hyphae observed in the respective color culture was also entirely different. Moreover, both of the two ligninolytic enzymes, laccase and manganese‐dependent peroxidase (MnP), were remarkably stimulated in the yellowish culture at the beginning of the decolorization. It is possible that the RBBR decolorizing mechanism might be primarily related to the amount of laccase and MnP produced in the yellowish culture. Thus, the decolorized color may be rapidly estimated at initial period of incubation. In addition, GeneFishing technology revealed that two genes were differentially expressed in yellowish culture.  相似文献   

15.
Dye decolorizing potential of the white rot fungus Ganoderma lucidum KMK2 was demonstrated for recalcitrant textile dyes. G. lucidum produced laccase as the dominant lignolytic enzyme during solid state fermentation (SSF) of wheat bran (WB), a natural lignocellulosic substrate. Crude enzyme shows excellent decolorization activity to anthraquinone dye Remazol Brilliant Blue R (RBBR) without redox mediator whereas diazo dye Remazol Black-5 (RB-5) requires a redox mediator. Polyacrylamide gel electrophoresis (PAGE) of crude enzyme confirms that the laccase enzyme was the major enzyme involved in decolorization of either dyes. Native and SDS-PAGE indicates that the presence of single laccase with molecular weight of 43 kDa. N-Hydroxybenzotriazole (HBT) at a concentration of 1 mM was found as the best redox mediator. RB-5 (50 mg l−l) was decolorized by 62% and 77.4% within 1 and 2 h, respectively by the crude laccase (25 U ml−1). RBBR (50 mg l−l) was decolorized by 90% within 20 h, however, it was more efficient in presence of HBT showing 92% decolorization within 2 h. Crude laccase showed high thermostability and maximum decolorization activity at 60 °C and pH 4.0. The decolorization was completely inhibited by the laccase inhibitor sodium azide (0.5 mM). Enzyme inactivation method is a good method which averts the undesirable color formation in the reaction mixture after decolorization. High thermostability and efficient decolorization suggest that this crude enzyme could be effectively used to decolorize the synthetic dyes from effluents.  相似文献   

16.
The ability to decolorize eight chemically different synthetic dyes (Orange G, Amaranth, Orange I, Remazol Brilliant Blue R (RBBR), Cu-phthalocyanin, Poly R-478, Malachite Green and Crystal Violet) by the white rot fungus Dichomitus squalens was evaluated on agar plates. The fungus showed high decolorization capacity and was able to decolorize all dyes tested, but not to the same extent. Some of the dyes did not limit the decolorization capacity of the strain tested even at a concentration of 2g/l. The presence of the dyes in solid media reduced the mycelial growth rate of D. squalens; a positive correlation was found between the growth rate and the decolorization ability. Decolorization of Orange G and RBBR was studied also in liquid culture, where both dyes caused an enhancement of ligninolytic enzyme and overall hydrogen peroxide production and a decrease of biomass production. RBBR was removed to a higher extent than Orange G.  相似文献   

17.
In this work, the extracellular decolorization of aniline blue, a sulfonated triphenylmethane dye, by Shewanella oneidensis MR-1 was confirmed. S. oneidensis MR-1 showed a high capacity for decolorizing aniline blue even at a concentration of up to 1,000 mg/l under anaerobic conditions. Maximum decolorization efficiency appeared at pH?7.0 and 30 °C. Lactate was a better candidate of electron donor for the decolorization of aniline blue. The addition of nitrate, hydrous ferric oxide, or trimethylamine N-oxide all could cause a significant decline of decolorization efficiency. The Mtr respiratory pathway was found to be involved into the decolorization of aniline blue by S. oneidensis MR-1. The toxicity evaluation through phytotoxicity and genotoxicity showed that S. oneidensis MR-1 could decrease the toxicity of aniline blue during the decolorization process. Thus, this work may facilitate a better understanding on the degradation mechanisms of the triphenylmethane dyes by Shewanella and is beneficial to their application in bioremediation.  相似文献   

18.
Twenty-two azo dyes were used to study the influence of substituents on azo dye biodegradability and to explore the possibility of enhancing the biodegradabilities of azo dyes without affecting their properties as dyes by changing their chemical structures. Streptomyces spp. and Phanerochaete chrysosporium were used in the study. None of the actinomycetes (Streptomyces rochei A10, Streptomyces chromofuscus A11, Streptomyces diastaticus A12, S. diastaticus A13, and S. rochei A14) degraded the commercially available Acid Yellow 9. Decolorization of monosulfonated mono azo dye derivatives of azobenzene by the Streptomyces spp. was observed with five azo dyes having the common structural pattern of a hydroxy group in the para position relative to the azo linkage and at least one methoxy and/or one alkyl group in an ortho position relative to the hydroxy group. The fungus P. chrysosporium attacked Acid Yellow 9 to some extent and extensively decolorized several azo dyes. A different pattern was seen for three mono azo dye derivatives of naphthol. Streptomyces spp. decolorized Orange I but not Acid Orange 12 or Orange II. P. chrysosporium, though able to transform these three azo dyes, decolorized Acid Orange 12 and Orange II more effectively than Orange I. A correlation was observed between the rate of decolorization of dyes by Streptomyces spp. and the rate of oxidative decolorization of dyes by a commercial preparation of horseradish peroxidase type II, extracellular peroxidase preparations of S. chromofuscus A11, or Mn(II) peroxidase from P. chrysosporium. Ligninase of P. chrysosporium showed a dye specificity different from that of the other oxidative enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Twenty-two azo dyes were used to study the influence of substituents on azo dye biodegradability and to explore the possibility of enhancing the biodegradabilities of azo dyes without affecting their properties as dyes by changing their chemical structures. Streptomyces spp. and Phanerochaete chrysosporium were used in the study. None of the actinomycetes (Streptomyces rochei A10, Streptomyces chromofuscus A11, Streptomyces diastaticus A12, S. diastaticus A13, and S. rochei A14) degraded the commercially available Acid Yellow 9. Decolorization of monosulfonated mono azo dye derivatives of azobenzene by the Streptomyces spp. was observed with five azo dyes having the common structural pattern of a hydroxy group in the para position relative to the azo linkage and at least one methoxy and/or one alkyl group in an ortho position relative to the hydroxy group. The fungus P. chrysosporium attacked Acid Yellow 9 to some extent and extensively decolorized several azo dyes. A different pattern was seen for three mono azo dye derivatives of naphthol. Streptomyces spp. decolorized Orange I but not Acid Orange 12 or Orange II. P. chrysosporium, though able to transform these three azo dyes, decolorized Acid Orange 12 and Orange II more effectively than Orange I. A correlation was observed between the rate of decolorization of dyes by Streptomyces spp. and the rate of oxidative decolorization of dyes by a commercial preparation of horseradish peroxidase type II, extracellular peroxidase preparations of S. chromofuscus A11, or Mn(II) peroxidase from P. chrysosporium. Ligninase of P. chrysosporium showed a dye specificity different from that of the other oxidative enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
采用静置开敞式培养法研究了碳源、氮源、盐度、金属离子对Mucoromycotina sp.HS-3菌降解苯胺蓝的影响。结果表明,菌株脱色最适合条件为葡萄糖1 g/L,硫酸铵0.6 g/L,Fe3+0.15 mmol/L,盐度小于50 g/L,在上述各培养条件下,对浓度为100 mg/L不灭菌的苯胺蓝溶液静止培养5 d,脱色率达95%以上。此外,通过降解前后的苯胺蓝溶液对豇豆和枯草芽孢杆菌进行毒性测试发现,降解后的苯胺蓝溶液毒性明显降低。因此,该菌对处理以苯胺蓝为主要成分的印染废水具有较好的应用潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号