首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some proline-containing tripeptides with the general formulas R0CO-L -Pro-X-NHR3 (X = Gly,Sar,L -Ala,D -Ala) and R0CO-X-L -Pro-NHR3 (X = Gly,L -Ala,D -Ala) have been investigated in solution by ir and 1H-nmr spectroscopies. Their favored conformational states depend mainly on both the primary structure and the chiral sequence of the molecules. In inert solvents the βII-folding mode is the most favored conformation for the L -Pro-D -Ala and L -Pro-Gly tripeptides, while the βII′-turn is largely preferred by D -Ala-L -Pro derivatives. Under the same conditions only about one-third of the whole conformers of L -Pro-L -Ala molecules adopts the βI-folding mode. Semiopened C7C5 and C5C7 conformations are appreciably populated in the L -Pro-L -Ala sequence, on the one hand, and in the Gly-L -Pro and L -Ala-L -Pro derivatives, on the other hand. In L -Pro-Sar and X-L -Pro models, the cistrans isomerism around the middle tertiary amide function is observed. Thus cis L -Pro-Sar and L -Ala-L -Pro conformers are folded by an intramolecular i + 3 → i hydrogen bond, whereas cis D -Ala-L -Pro and Gly-L -Pro molecules accommodate an open conformation. In dimethylsulfoxide the βII- and βII′-folding modes are not essentially destabilized, as contrasted with the βI conformation, which is less populated. In water solution all the above-mentioned conformations, with the possible exception of the βII′-folding mode for D -Ala-L -Pro molecules, seem to vanish. Solute conformations are also compared with the crystal structures of four proline-containing tripeptides.  相似文献   

2.
The 13C nmr equilibration method lends itself as a tool for study of conformational rate processes involving aqueous media in conjunction with high activation barriers. This method is applied for measurement of kinetic and thermodynamic parameters of isomerism in the dipeptide L -Pro-L -4Hyp. The activation barrier for cis ? trans interconversion (ω 0° → 180°) is determined, ΔG = 22.3 kcal/mol. From low-temperature study, an upper limit ΔG < 9.7 kcal/mol is evaluated for cis′ ? trans′ rotation (ψ ?40° → 160°). These data are compared with computed values found in literature. The results are discussed in connection with the helix–coil transition of collagen involving Gly-L -Pro-L -4Hyp as nucleation sites.  相似文献   

3.
The membrane channel-forming polypeptide, Leu1-zervamicin, Ac-Leu-Ile-Gln-Iva-Ile5-Thr-Aib-Leu-Aib-Hyp10-Gln-Aib-Hyp-Aib-Pro15-Phol (Aib: α-aminoisobutyric acid; Iva: isovaline; Hyp: 4-hydroxyproline; Phol: phenylalininol) has been analyzed by x-ray diffraction in a third crystal form. Although the bent helix is quite similar to the conformations found in crystals A and B, the amount of bending is more severe with a bending angle ≈ 47°. The water channel formed by the convex polar faces of neighboring helices is larger at the mouth than in crystals A and B, and the water sites have become disordered. The channel is interrupted in the middle by a hydrogen bond between the OH of Hyp (10) and the NH2 of the Gln (11) of a neighboring molecule. The side chain of Gln (11) is wrapped around the helix backbone in an unusual fashion in order that it can augment the polar side of the helix. In the present crystal C there appears to be an additional conformation for the Gln (11) side chain (with ≈ 20% occupancy) that opens the channel for possible ion passage. Structure parameters for C85H140N18O22 · xH2O · C2H5OH are space group P212121, a = 10.337(2) Å, b = 28.387(7) Å, c = 39.864(11) Å, Z = 4, agreement factor R = 12.99% for 3250 data observed > 3σ(F), resolution = 1.2 Å. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
Vincent Madison 《Biopolymers》1977,16(12):2671-2692
A survey of over 50 crystal structures indicates that both imino acid and peptide derivatives of proline populate ring conformers consistent with the torsional potentials about single bonds. In both cases, lower barriers for rotation about C? N bonds relative to those about C? C bonds favor smaller values for dihedral angles about the former bonds. In peptides a minimum in the torsional potential about C? N bonds occurs at zero dihedral angle, further favoring small angles. The pyrrolidine-ring dihedral angles of the proline compounds in the solid state obey a cyclopentane-type pseudorotation function. Thus the puckering of the five-membered ring can be quantitatively described by two parameters. Consistent with small dihedral angles about C? N bonds, Cβ and/or Cγ are puckered out of the mean plane of the ring in nearly all of the nonstrained compounds. Utilizing the consistent force-field method of Lifson and coworkers [see A. Warshel, M. Levitt, and S. Lifson (1970) J. Mol. Spectrosc. 33 , 84] the intramolecular energy of five proline peptides was minimized with respect to all internal coordinates. In addition, the energy surface near minima was explored by constraining a particular dihedral angle and reminimizing the energy with respect to all remaining variables. In linear peptides two types of pyrrolidine-ring conformers have identical predicted energies. In the cyclic dipeptide cyclo (Pro-Gly) one of the ring conformers is favored by about 3 kcal/mol, while the cyclic tripeptide cyclo(Pro-Gly-Gly) favors the other conformer by a comparable margin. In agreement with observations in the solid state and in solution, Cβ and/or Cγ are puckered in the predicted conformers. A correlation between proline Φ and the details of the puckered conformation was predicted and found to match precisely conformers observed in crystals. For the diamides N-acetyl-L -proline-N′-methyl-amide and N-acetyl-L -proline-N′,N′-dimethylamide (AcProMe2A) 30% and 60% cis acetyl peptide bonds were predicted in good agreement with observations in nonpolar solvents for the respective compounds. The conformational distributions with respect to proline Ψ are also in accord with experimental observations. For AcProMe2A, a model for a -Pro-Pro-sequence in a peptide chain, this study is the first to predict stable conformers for proline Ψ either ca. ?50° or 140° for both cis and trans peptides.  相似文献   

5.
Combinations of L - and D -proline residues are useful compounds for finding new structures and properties of cyclic peptides. This is demonstrated with one striking example, the cyclic tetrapeptide c(D -Pro-L -Pro-D -Pro-L -Pro). For this molecule composed of strictly alternating D - and L -configurated residues, a highly symmetrical structure is expected, which should be an optically inactive meso-form. Cyclization of the enantiomeric pure linear precursor D -Pro-L -Pro-D -Pro-L -Pro, however, yields a racemic mixture of two enantiomeric cyclotetrapeptides, both with twofold symmetry and a cistranscistrans sequence of the peptide bonds. Remarkably, this formation of a racemate was not caused by racemization, but by cis/trans isomerization of all peptide bonds in the ring. This process may occur in the linear precursor during the ring formation (cyclization of conformers with transcistrans or cistranscis arrangement of the amide bonds) as well as in the enantiomeric pure cyclic tetrapeptide at higher temperature. In the latter case, an all-cis structure should exist as the intermediate, which can form a cistranscistrans sequence in two equivalent ways, leading finally to two enantiomeric cyclotetrapeptides. In the first one, the cis peptide bonds are attributed to the L -residues and the trans peptide bonds to the D -residues; in the second one, the cis bonds belong to the D and the trans bonds to the L -residues. The mixture of these two enantiomers does not crystallize in the racemic form, but in enantiomeric pure separate crystals. The structural properties could be proved by 1H- and 13C-nmr spectroscopy and x-ray analysis. The cis/trans isomerization process was confirmed by optical rotation measurements and CD spectroscopy, as well as DREIDING model studies. Calorimetric measurements in the solid state suggest the existence of the expected all-cis intermediate. The backbone conformation of the 12-membered medium-sized ring shows only slight deviations—up to 6° —from the planarity of the peptide bonds. On the other hand, the four pyrrolidine rings show different types of puckering of the Cγ or the Cβ atoms.  相似文献   

6.
The crystal structure of N′-acetyl-L -prolinamide and its isomorphous alalog N′-acetyl-(S)-thiazolidine-4-carboxamide was determined using highly accurate parameters obtained by room- and low-temperature data-collecting systems. Both crystals are orthorhombic, space group P212121, with four molecules per unit cell held together by a hydrogen-bond system that extends in all directions. Both molecules exhibit the following conformational features: the acetyl group is in the trans configuration in respect to the tertiary amide. The primary amide is almost at right angles with respect to the mean plane of the ring and the –NH2 group is over the ring. The pyrrolidine and thiazolidine rings were found to be rather flexible with Cβ puckering in the former and sulfur in the latter.  相似文献   

7.
Derivatives of tetrapeptide sequences considered likely to form β-turns were investigated by the study of their proton magnetic resonances in methanol and in water. Differential broadening of N—H resonances by an added nitroxyl was used to indicate the presence of the sequestered N—H proton expected in β-turn conformations. Transfer of magnetic saturation from solvent water protons to N—H protons was also examined. The evidence is consistent with significant contributions by β-turn-like backbones to the conformational averages in methanol of the sequences Gly-L -Pro-D -Val-Gly, D (or L )-Val-L -Pro-Gly-Gly, and Gly-L -Pro-L -Asn-Gly, but not the sequence Gly-D -Ala-L -Val-Gly. It is suggested that a Type I turn, Likely in Gly-L -Pro-L -Asn-Gly derivatives, is characterized by sequestered N—H protons of both the third and fourth residues. For all of the peptide derivatives, save possibly Ac-L -Val-L -Pro-Gly-Gly-NHNH2, contributions from folded structures in water are not detectable by line-broadening experiments. However, the transfer of saturation experiments may be interpreted as indicating some degree of chain folding in water.  相似文献   

8.
The 1H- and 13C-NMR spectra of N-acetyl-L -alanine methylester and N-acetyl-L -alanine methylamide were measured to examine the modes of self-association of these molecules in solution. The different dilution shifts between these molecules seem to correspond to the difference in the associated state for each molecule. Consequently, for the former molecule, a dimer model forming the intermolecular hydrogen bond through Ala NH hydrogen atom in one molecule to Ala C?O oxygen atom in another molecule was proposed. Another dimer model, which coincides with that proposed recently by Neel and coworkers, was proposed for the latter molecule. This second dimer model forms an intermolecular hydrogen bond through the NH of the N-methylamide group in one molecule to the acetyl C?O in another molecule.  相似文献   

9.
In the present paper we describe the synthesis, purification, single crystal x-ray analysis, and nmr solution characterization, combined with restrained molecular dynamic simulations, of the cyclic hexapeptide cyclo-(L -Pro-L -Phe-β-Ala)2. The peptide was synthesized by classical solution methods and the cyclization of the free hexapeptide was accomplished in good yields in diluted methylene chloride solution using N,N-dicyclohexyl-carbodiimide. The compound crystallizes in the monoclinic space group P21 from methanol-dichloro-methane solution. The two identical halves of the molecule adopt in the solid state two different conformations. One β-Ala-L -Pro peptide bond is trans, while the second is cis. The molecule is present in dimethylsulfoxide d6 solutions as a mixture of conformational families. One of these corresponds to a C2 symmetrical molecule with both β-Ala-Pro cis peptide bonds, while the second major conformation is very similar to that observed in the solid state. All Pro-Phe segments, both in the solid state and the symmetrical and unsym-metrical solution conformations, display ?,ψ angles close to that of position i + 1 and i + 2 of type II β-turns. In addition, the segments preceeded by a trans β-Ala-Pro peptide bond are characterized by a typical ii + 3 hydrogen bond, which is absent in the conformer containing a cis β-Ala-Pro peptide bond. The latter conformation corresponds to a new structural domain we define as the “pseudo type II β-turn.” © 1994 John Wiley & Sons, Inc.  相似文献   

10.
The self-association of N-acetylglycine N,N-dimethylamide, N-acetyl-L -valine N,N-dimethylamide, and N-acetyl-L -phenylalanine N,N-dimethylamide in carbon tetrachloride was investigated by using ir and 1H-nmr methods. It was concluded from ir measurements that the associated species is the dimer formed as a result of the simultaneous formation of two intermolecular hydrogen bonds. This is supported by the results of 1H-nmr measurements. Thermodynamic quantities for the association were determined from the temperature and concentration dependence of the NH proton chemical shifts of the sample solutions. Compared with the Gly derivative, L -Val and L -Phe derivatives have larger values of ?ΔH for association, which shows good correlation with ΔvNH values, the difference between the maxima of the monomer and dimer bands, obtained from ir spectra. This is due to the less stable monomer conformation and to the stronger intermolecular hydrogen bonding of the dimers in L -Val and L -Phe derivatives. The line shapes of both methyl proton resonances of L -Val residue and methylene proton resonances of L -Phe residue were found to vary with concentration and temperature of the sample solutions. These data indicate that the rotation about the Cα—Cβ bond is restricted by the steric hindrance present in the associated dimers. All these experimental results can be related to the fact that L -Val and L -Phe derivatives have a warped framework because of the bulky side chains, whereas the Gly derivative has a planar framework.  相似文献   

11.
J L Flippen  I L Karle 《Biopolymers》1976,15(6):1081-1092
Chlamydocin, Iabu-L -Phe-D -Pro-L X, is a naturally occurring cyclic tetrapeptide that exhibits high cytostatic activity. The conformation of the peptide ring, as well as the stereo configuration in the vicinity of the epoxide ring, have been established by a single-crystal X-ray study of dihydrochlamydocin: C28H40N4O6·H2O. It crystallizes in the monoclinic space group P21 with a = 12.616(6) Å, b = 12.355(6) Å, c = 9.442(5) Å, and β = 99.5(1)°. The structure was solved by the symbolic addition procedure for phase determination followed by the tangent formula method of phase refinement. This structure represents the first cyclic tetrapeptide in which all four peptide units have been found in the trans conformation; however, each peptide unit is significantly nonplanar with ω angles deviating by 14–24° from the ideal value of 180°. This molecule contains two intramolecular 3 → 1 hydrogen bonds and experimentally determined parameters for these seven-membered turns are presented.  相似文献   

12.
The crystal structure of the title compound, a model for the glycosyl linkage between the asparagine side chain and N-acetyl glucosamine in glycoproteins, has been determined and compared to other model structures. The pyranose ring in the crystal is in the 4C1 chair conformation and the amide functions at C1 and at C2 are both oriented such that the amide protons are nearly trans to their respective sugar-ring protons. Coupling constants determined from the fully assigned proton nmr spectrum in aqueous solution are consistent with the conformation in the crystal.  相似文献   

13.
A Aubry  B Vitoux  M Marraud 《Biopolymers》1985,24(6):1089-1100
The crystal structures of ButCO-L -Pro-L -Pro-NHMe, H2O (1: monoclinic; P21; a = 6.662, b = 11.067, c = 12.205 Å; β = 96.28°) and ButCO-L -Pro-D -Pro-NHMe (2: monoclinic; P21; a = 10.770, b = 15.039, c = 11.325 Å; β = 110.00°) have been solved by x-ray diffraction. Structure 1 accommodates an open disposition with intermolecular interactions involving the water molecule, while 2 is βII-folded by an intramolecular i + 3 → i hydrogen bond. In both derivatives, small thermal parameters are indicative of fairly fixed conformations for the proline rings. Comparison between conformations of either isolated or adjacent L -Pro residues in the crystal structures of unstrained oligopeptides shows that the conformational properties of L -Pro-L -Pro sequences are probably a simple combination of those found for isolated L -Pro residues.  相似文献   

14.
The molecular structures, relative stability order, and dipole moments of a complete family of 21 planar hypoxanthine (Hyp) prototropic molecular–zwitterionic tautomers including ylidic forms were computationally investigated at the MP2/6–311++G(2df,pd)//B3LYP/6–311++G(d,p) level of theory in vacuum and in three different surrounding environments: continuum with a low dielectric constant (??=?4) corresponding to a hydrophobic interface of protein–nucleic acid interactions, dimethylsulfoxide (DMSO), and water. The keto-N1HN7H tautomer was established to be the global minimum in vacuum and in continuum with ??=?4, while Hyp molecule exists as a mixture of the keto-N1HN9H and keto-N1HN7H tautomers in approximately equal amounts in DMSO and in water at T?=?298.15?K. We found out that neither intramolecular tautomerization by single proton transfer in the Hyp base, nor intermolecular tautomerization by double proton transfer in the most energetically favorable Hyp·Hyp homodimer (symmetry C 2h ), stabilized by two equivalent N1H…O6 H-bonds, induces the formation of the enol tautomer (marked with an asterisk) of Hyp with cis-oriented O6H hydroxyl group relative to neighboring N1C6 bond. We first discovered a new scenario of the keto–enol tautomerization of Hyp?·?Hyp homodimer (C 2h ) via zwitterionic near-orthogonal transition state (TS), stabilized by N1+H…N1? and O6+H…N1? H-bonds, to heterodimer Hyp??·?Hyp (C s ), stabilized by O6H…O6 and N1H…N1 H-bonds. We first showed that Hyp??·?Thy mispair (C s ), stabilized by O6H…O4, N3H…N1, and C2H…O2 H-bonds, mimicking Watson–Crick base pairing, converts to the wobble Hyp?·?Thy base pair (C s ), stabilized by N3H…O6 and N1H…O2 H-bonds, via high- and low-energy TSs and intermediate Hyp?·?Thy?, stabilized by O4H…O6, N1H…N3, and C2H…O2 H-bonds. The most energetically favorable TS is the zwitterionic pair Hyp+?·?Thy? (C s ), stabilized by O6+H…O4?, O6+H…N3?, N1+H…N3?, and N1+H…O2? H-bonds. The authors expressed and substantiated the hypothesis, that the keto tautomer of Hyp is a mutagenic compound, while enol tautomer Hyp? does not possess mutagenic properties. The lifetime of the nonmutagenic tautomer Hyp? exceeds by many orders the time needed to complete a round of DNA replication in the cell. For the first time purine–purine planar H-bonded mispairs containing Hyp in the anti-orientation with respect to the sugar moiety – Hyp?·?Ade syn , Hyp?·?Gua? syn , and Hyp?·?Gua syn , that closely resembles the geometry of the Watson–Crick base pairs, have been suggested as the source of transversions. An influence of the surrounding environment (??=?4) on the stability of studied complexes and corresponding TSs was estimated by means of the conductor-like polarizable continuum model. Electron-topological, structural, vibrational, and energetic characterictics of all conventional and nonconventional H-bonds in the investigated structures are presented. Presented data are key to understanding elementary molecular mechanisms of mutagenic action of Hyp as a product of the adenine deamination in DNA.  相似文献   

15.
An apolar synthetic octapeptide, Boc-(Ala-Aib)4-OMe, was crystallized in the triclinic space group P1 with cell dimensions a = 11.558 Å, b = 11.643 Å, c = 9.650 Å, α = 120.220°, β = 107.000°, γ = 90.430°, V = 1055.889 Å3, Z = 1, C34H60O11N8·H2O. The calculated crystal density was 1.217 g/cm3 and the absorption coefficient ? was 6.1. All the intrahelical hydrogen bonds are of the 310 type, but the torsion angles, ? and ψ, of Ala(5) and Ala(7) deviate from the standard values. The distortion of the 310-helix at the C-terminal half is due to accommodation of the bulky Boc group of an adjacent peptide in the nacking. A water molecule is held between the N-terminal of one peptide and the C-terminal of the other. The oxygen atom of water forms hydrogen bonds with N (1) -H and N (2) -H, which are not involved in the intrahelical hydrogen bonds. The hydrogen atoms of water also formed hydrogen bonds with carbonyl oxygens of the adjacent peptide molecule. On the other hand, 1H-nmr analysis revealed that the octapeptide took an α-helical structure in a CD3CN solution. The longer peptides, Boc-(Ala-Aib)6-OMe and Boc-(Ala-Aib)8-OMe, were also shown to take an α-helical structure in a CD3CN solution. An α-helical conformation of the hexadecapeptide in the solid state was suggested by x-ray analysis of the crystalline structure. Thus, the critical length for transition from the 310- to α-helix of Boc-(Ala-Aib)n-OMe is 8. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
Molar Kerr contants mK have been determined for N-methylacetamide, N-ethyl-acatamide, N-methylpropionamide, N-acetylglycine-N′-methylamide, N-acetyl-L -ala-nine-N′-methylamide, and N-acetyl-L -leucine-N′-methylamide from electric birefringence measurements on dilute solutions in dioxane. The resultes are compared with configurational averatges 〈mK〉 calculated on the basis of conformational energies. Values ofmK calculated for various fixed confromations on the peptides vary over a wide range depending on the choice of conformation; hece, the configurational averages 〈mK〉 are sensitive to smalll changes in the conformational enerey. Kerr constants are calculated for random coiled oligoglycine and oligoalanine peptides as functions of chain length. The Kerr constant is an especially acute index of the average conformation.  相似文献   

17.
The use of 6-(N-acetyl-L -phenylalanyl)-aminoluciferin as a novel substrate for α-chymotrypsin has been demonstrated. The kinetic parameters determined are KM = 0.38mmol/L, kcat = 6.5 s?1 and kcat/kM = 17,100 (L/mols). The test principle of the coupled assay is the release of aminoluciferin by enzymatic cleavage of 6-(N-acetyl-L -phenylalanyl)-aminoluciferin. Aminoluciferin is oxidized, with light emission, by firefly luciferase (Photinus pyralis) and can be quantified in a luminometric assay. The detection limit for chymotrypsin was found to be 0.3 ng per assay. 6-(N-acetyl-L -phenylalanyl)-aminoluciferin has been synthesized as an example for a new class of highly sensitive substrates. By modification of the peptide residue these new substrates may be suitable for ultrasensitive detection of different proteinases.  相似文献   

18.
The crystal structure of methyl-α-maltotrioside tetrahydrate C16H34O16, 4H2O), has been established by direct methods from 2269 independent reflections and refined to a final R value of 0.054. The crystal belongs to the orthorhombic system, space group P212121 and has a unit cell of dimensions: a = 1.037 (1), b = 2.439 (1) and c = 1.065 (1) nm. The three glucose residues have the 4C1 pyranose conformation and are α-(1–4)-linked. The conformation of the glycosidic linkage is characterized by torsion angles (φ, ψ) which take the values (82.2, −148.9) between the non-reducing and the middle residue and (82.8, −151.8) between the middle residue and the reducing one. The primary hydroxyl groups exist in a gauche-gauche conformation. This structure is also characterized by the lack of intramolecular hydrogen bonding between secondary hydroxyl groups belonging to contiguous residues. The molecules are held together by a complicated network of hydrogen bonds involving all the hydroxylic groups and the water molecules. the three dimensional arrangement corresponds to a regular alternation of antiparallel bilayers strongly linked by water molecules. A survey of the distribution of the glycosidic torsion angles in all known linear α-(1–4)-linked d-glucose residues, discloses the existence of three stable conformers. This crystal structure provides the first experimental evidence of a regular left-handed fragment of the amylosic chain in a highly hydrated neighbourhood. Furthermore, the helical conformation adopted by the trisaccharide gives rise to helical parameters which are close to those found experimentally for native A and B amyloses. The relevance of the present results to the rationalization of the polymorphic transformation of amylose, along with its crystallization habits is also discussed.  相似文献   

19.
The crystal structure and conformation of the synthetic cyclic tetrapeptide, cyclo(L -Pro-Sar)2, was determined by x-ray analysis. The peptide crystallizes in the orthorhombic space group P212121 with cell parameters a = 9.277(1), b = 12.884(1), and c = 15.581(2) Å. The crystal structure was solved by the symbolic addition procedure for direct phase determination and least-squares refinement using 1796 reflections, which led to the final R value of 0.043. This structure provides the first example observed in a crystal of a cyclic tetrapeptide in which all four peptide units have been found in the cis conformation with ω angles deviating slightly by 2°–10° from the ideal value of 0°. It was also found that the two Pro Cα-CO single bonds assumed a trans′ (ψ = 159.6° and 158.4°) conformation. Adjoining average planes of the peptide groups fall at nearly right angles to each other. The pyrrolidine ring conformations of the two prolyl residues are in the envelope form, with Cγ carbon out of the least-squares planes for the remaining four atoms.  相似文献   

20.
The collagen-like peptides (L -Pro-L -Pro-Gly)n and (L -Pro-L -Hyp-Gly)n with n = 5 and 10, were examined in terms of their triple helix ? coil transitions in aqueous and nonaqueous solvents. The peptides were soluble in 1,2-propanediol containing 3% acetic acid and they were found to form triple-helical structures in this solvent system. The water content of the solvent system and the amount of water bound to the peptides were assayed by equilibrating the solvent with molecular sieves and carrying out Karl Fischer titrations on the solvent phase. After the solvent was dehydrated, much less than one molecule of water per tripeptide unit was bound to the peptides. Since the peptides remained in a triple-helical conformation, the results indicated that water was not an essential component of the triple-helical structure. Comparison of peptides with the same chain length demonstrated that the presence of hydroxyproline increased the thermal stability of the triple helix even under anhydrous conditions. The results, therefore, did not support recent hypotheses that hydroxyproline stabilizes the triple helix of collagen and collagen-like peptides by a specific interaction with water molecules. Analysis of the thermal transition curves in several solvent systems showed that although the peptides containing hydroxyproline had tm values which were 18.6° to 32.7°C higher, the effect of hydroxyproline on ΔG was only 0.1 to 0.3 kcal per tripeptide unit at 25°C. The results suggested, therefore, that the influence of hydroxyproline on helical stability may be explained by intrinsic effects such as dipole–dipole interactions or by changes in the solvation of the peptides by alcohol, acetic acid, and water. A direct calorimetric measurement of the transition enthalpy for (L -Pro-L -Pro-Gly)n in 3% or 10% acetic acid gave a value of ?1.84 kcal per tripeptide unit for the coil-to-helix transition. From the value for enthalpy and from data on the effects of different chain lengths on the thermal transition, it was calculated that the apparent free energy for nucleation was +5 kcal/mol at 25°C (apparent nucleation parameter = 2 × 10?4 M?2). The value was dependent on solvent and on chemical modification of end groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号