首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CMR. Fauron  M. Havlik    RIS. Brettell 《Genetics》1990,124(2):423-428
The mitochondrial genome (mtDNA) organization from a fertile revertant line (V3) derived from the maize cytoplasmic male sterile type T (cmsT) callus tissue culture has been determined. We report that the sequence complexity can be mapped on to a circular ``master chromosome' of 705 kb which includes a duplication of 165 kb of DNA when compared to its male sterile progenitor. Associated with this event is also a 0.423-kb deletion, which removed the cmsT-associated urf13 gene. As found for the maize normal type (N) and cmsT mitochondrial genomes, the V3 master chromosome also exists as a multipartite structure generated by recombination through repeated sequences.  相似文献   

2.
Regeneration of plants from maize cytoplasmic male sterile type T (cmsT) callus tissue culture promotes, in some instances, genetic variability in their mitochondrial genomes. These mutations have been analyzed in various cmsT regenerated plants that have or have not regained the male fertile phenotype. A unique multi-recombination model explains the various mitochondrial genome rearrangements. First, recombination involving two different sets of direct repeats gives rise to subgenomic recombinant circles. Second, intermolecular recombination between some selected subgenomes gives rise to a new rearranged master chromosome. The consequence of these events is the formation of a new master chromosome containing sequence deletions and duplications when compared to the progenitor. This new mitochondrial genome seems stable, although it does not contain the entire genetic complexity of the progenitor.  相似文献   

3.
A physical restriction map of the mitochondrial genome from one clone (TCC 854) of the sexually isolated populations (syngens) of the morphologically uniform species Pandorina morum Bory has been constructed using restriction endonucleases Ava I, Bam HI, Bgl II, Eco RI, Kpn I, and Pst I. The 20 kb linear genome can easily be separated from plastid DNA, nuclear satellite rDNA, and main band (nuclear) DNA on a Hoechst/CsCl buoyant density gradient. The Pandorina mitochondrial DNA shows sufficient similarity to the 16 kb mitochondrial genome of Chlamydomonas reinhardtii to cross-hybridize, and also hybridizes with a probe containing maize mitochondrial 18S rRNA genes. Double digests, self-probing, and Bal31 exonuclease experiments suggest that 1.8 to 3.3 kb of sequence is repeated at each end of the genome as an inverted repeat. Mitochondrial genome sizes of other P. morum syngens were found to range from ca. 20 to ca. 38 kb. The mitochondrial genome should be valuable for taxonomic studies; it can be used for comparative organellar studies; and it should be of interest to compare with that of other plant and animal mitochondrial genomes.  相似文献   

4.
Summary To investigate the evolution of conifer species, we constructed a physical map of the chloroplast DNA of sugi, Cryptomeria japonica, with four restriction endonucleases, PstI, SalI, SacI and XhoI. The chloroplast genome of C. japonica was found to be a circular molecule with a total size of approximately 133 kb. This molecule lacked an inverted repeat. Twenty genes were localized on the physical map of C. japonica cpDNA by Southern hybridization. The chloroplast genome structure of C. japonica showed considerable rearrangements of the standard genome type found in vascular plants and differed markedly from that of tobacco. The difference was explicable by one deletion and five inversions. The chloroplast genome of C. japonica differed too from that of the genus Pinus which also lacks one of the inverted repeats. The results indicate that the conifer group originated monophyletically from an ancient lineage, and diverged independently after loss of an inverted repeat structure.  相似文献   

5.
Summary A circular supercoiled mitochondrial DNA plasmid P1 (1.45 kb) is shown in both normal fertile plants of Helianthus annuus, and some cytoplasmic male sterile lines (CMS A and CMS P). In contrast, no plasmid is found in some other types of CMS C, I, B and K. A circular supercoiled DNA (P2) of higher molecular weight (1.8 kb) is observed in CMS F. The mitochondrial plasmid P1 was cloned, nick-translated and hybridized with native mitochondrial DNA from different lines of male fertile, CMS or wild Helianthus. No sequence homology has been detected between plasmid DNA P1 and high molecular weight mitochondrial DNA in any line examined. A slight hybridization occurs between plasmids P1 and P2. Thus, there is no apparent relationship between mitochondrial plasmid DNA and CMS or Helianthus species. On the contrary, each Helianthus CMS and male fertile strain can be characterized by digestion fragment patterns (Sal I and Bgl I). Analysis of mitochondrial DNA from wild Helianthus strains indicated a relation between some CMS and the strain from which they were maternally derived, as for example CMS I and H. annuus ssp lenticularis and CMS F and H. petiolaris fallax. On the basis of restriction endonuclease patterns, a CMS phylogenic tree is proposed which illustrates a molecular polymorphism in the mitochondrial genome of Helianthus.  相似文献   

6.
Analysis of a 120-Kilobase Mitochondrial Chromosome in Maize   总被引:4,自引:2,他引:2       下载免费PDF全文
A. A. Levy  C. P. Andre    V. Walbot 《Genetics》1991,128(2):417-424
The organization of the mitochondrial genome in plants is not well understood. In maize mitochondrial DNA (mtDNA) several subgenomic circular molecules as well as an abundant fraction of linear molecules have been seen by electron microscopy. It has been hypothesized that the circular molecules are the genetic entities of the mitochondrial genome while the linear molecules correspond to randomly sheared mtDNA. A model has been proposed that explains the mechanism of generation of subgenomic circles (of a predictable size) by homologous recombination between pairs of large direct repeats found on a large (approximately 570 kb for the fertile (N) cytoplasm) master circle. So far the physical entities of the mitochondrial genome, as they exist in vivo, and the genes they carry, have not been identified. For this purpose, we used two gel systems (pulsed field gel electrophoresis and Eckhardt gels) designed to resolve large DNA. Large DNA was prepared from the Black Mexican Sweet (BMS) cultivar. We resolved several size classes of mtDNA circles and designate these as chromosomes. A 120 kb chromosome was mapped in detail. It is shown to contain the three ribosomal genes (rrn26, rrn18 and rrn5) plus two genes encoding subunits of cytochrome oxidase (Cox1 and Cox3); it appears to be colinear with the 570-kb master circle map of another fertile cytoplasm (B37N) except at the "breakpoints" required to form the 120-kb circle. The presence of the 120-kb chromosome could not have been predicted by homologous recombination through any of the known repetitive sequences nor is it a universal feature of normal maize mitochondria. It is present in mitochondria of BMS suspension cultures and seedlings, but is not detectable in seedlings of B37N. No master genome was detected in BMS.  相似文献   

7.
Twenty-eight Bam H 1 restriction fragments were isolated from normal mitochondrial DNA of maize by recombinant DNA techniques to investigate the organization of the mitochondrial genome. Each cloned fragment was tested by molecular hybridization against a Bam digest of total mitochondrial DNA. Using Southern transfers, we identified the normal fragment of origin for d each clone. Twenty-three of the tested clones hybridized only to the fragment from which the clone was derived. In five cases, labeling of an additional band indicated some sequence repetition in the mitochondrial genome. Four clones from normal mitochondrial DNA were found which share sequences with the plasmid-like DNAs, S-1 and S-2, found in S male sterile cytoplasm. The total sequence complexity of the clones tested is 121×106 d (daltons), which approximates two thirds of the total mitochondrial genome (estimated at 183×106 d). Most fragments do not share homology with other fragments, and the total length of unique fragments exceeds that of the largest circular molecules observed. Therefore, the different size classes of circular molecules most likely represent genetically discrete chromosomes in a complex organelle genome. The variable abundance of different mitochondrial chromosomes is of special interest because it represents an unusual mechanism for the control of gene expression by regulation of gene copy number. This mechanism may play an important role in metabolism or biogenesis of mitochondria in the development of higher plants.  相似文献   

8.
Most green algal taxa have circular‐mapping mitochondrial genomes, whereas some have linear genome‐ or subgenomic‐sized mitochondrial DNAs (mtDNA). It is not clear, however, if the circular‐mapping genomes represent genome‐sized circular molecules, if such circular molecules and the linear forms are the predominant in vivo mtDNA structures, or if the linear forms arose only once or multiple times among extant green algal lineages. We therefore examined the DNA components detected with homologous mtDNA probes after pulsed‐field gel electrophoresis of total cellular DNA from the chlorophycean basal bodies displaced clockwise(CW)‐group taxa Chlamydomonas reinhardtii and Chlamydomonas moewusii. For C. reinhardtii, the 15.8‐kb linear mtDNA was the only DNA component detected, and there was no evidence of circular or large linear precursors of this DNA. In the case of C. moewusii, which is known to have a circular‐mapping 22.9‐kb mitochondrial genome, three DNA components were detected; these appeared to be circular (relaxed and supercoiled) and genome‐sized linear DNA molecules, the latter of which likely resulted from random double‐strand breaks in the circular forms during DNA isolation. In further studies, DNA from additional CW‐group taxa was examined using conventional gel electrophoresis and DNA‐filter blot analysis with C. reinhardtii and C. moewusii mtDNA probes. We conclude that all taxa from the “Volvox clade” (sensu Nakayama et al. 1996 of the CW‐group have genome‐ or subgenomic‐sized linear mtDNAs as their predominant mtDNA form and that these arose from a genome‐sized circular form in an ancestor that existed near the base of this clade.  相似文献   

9.
Summary Cytoplasmic reversion to fertility in cms-S maize has been previously correlated with changes in mitochondrial genome organization, specifically with loss of the autonomously replicating linear plasmid-like DNAs, S1 and S2, and with accompanying alterations in the high molecular weight mtDNA (main genome) that specifically involved S1 and S2 sequences. These studies, however, dealt with cytoplasmic revertants occurring in the cms-VG M825 inbred line and in the cms-VG M825/Oh07 F1 hybrid. This paper deals principally with patterns of mitochondrial DNA reorganization accompanying cytoplasmic reversion to fertility in the WF9 inbred line nuclear background. Here the free S1 and S2 plasmid-like DNAs are retained in the revertants. Mitochondrial DNA analysis by Southern hybridization using cloned fragments of S1 and S2 shows altered organization around S-homologous regions in the main mitochondrial genome of revertants as compared with that of the male-sterile parental controls, but the pattern of main genome changes involving these regions differs from that of the cytoplasmic revertants that occurred in M825 and M825/Oh07 backgrounds. Similar experiments using a clone of the cytochrome oxidase I (COX I) gene of maize as a probe indicate that reorganization in this region is also involved in the changes in mtDNA that accompany cytoplasmic reversion to male fertility in cms-S WF9. The heterogeneity in patterns of reorganization of the main mtDNA genome that accompany cytoplasmic reversion in the same and different nuclear backgrounds are discussed in relation to cytoplasmic male sterility (CMS).  相似文献   

10.
Physical mapping of plastid DNA variation among eleven Nicotiana species   总被引:1,自引:0,他引:1  
Summary Plastid DNA of seven American and four Australian species of the genus Nicotiana was examined by restriction endonuclease analysis using the enzymes Sal I, Bgl I, Pst I, Kpn I, Xho I, Pvu II and Eco RI. These endonucleases collectively distinguish more than 120 sites on N. tabacum plastid DNA. The DNAs of all ten species exhibited restriction patterns distinguishable from those of N. tabacum for at least one of the enzymes used. All distinctive sites were physically mapped taking advantage of the restriction cleavage site map available for plastid DNA from Nicotiana tabacum (Seyer et al. 1981). This map was extended for the restriction endonucleases Pst I and Kpn I. In spite of variation in detail, the overall fragment order was found to be the same for plastid DNA from the eleven Nicotiana species. Most of the DNA changes resulted from small insertions/deletions and, possibly, inversions. They are located within seven regions scattered along the plastid chromosome. The divergence pattern of the Nicotiana plastid chromosomes was strikingly similar to that found in the genus Oenothera subsection Euoenothera (Gordon et al. 1982). The possible role of replication as a factor in the evolution of divergence patterns is discussed. The restriction patterns of plastid DNA from species within a continent resembled each other with one exception in each instance. The American species N. repanda showed patterns similar to those of most Australian species, and those of the Australian species N. debneyi resembled those of most American species.Abbreviations ims isonuclear male sterile - ptDNA plastid chloroplast DNA - Rubisco ribulosebisphosphate carboxylase/oxygenase - kbp kilobase pairs - LSU large subunit of Rubisco  相似文献   

11.
Recombinant DNA and hybridization techniques have been used to compare the organization of mitochondrial DNA (mtDNA) from normal (N) and Texas male sterile (T) cytoplasms of maize. Bam H1 restriction fragments of normal mtDNA were cloned and used in molecular hybridizations against Southern blots of Bam H1 digested N and T mtDNA. Fifteen of the 35 fragments were conserved in both N and T as indicated by hybridization to comigrating bands in their restriction patterns. Only three fragments produced autoradiographs whose differences could reasonably be attributed to single changes in the cleavage site of the enzyme while approximately half (17/35) of the clones resulted in more complicated differences between N and T. The autoradiographs produced by these 17 clones indicated multiple cleavage site changes and/or sequence rearrangements of the mtDNA. Patterns of six of these 17 clones indicated partial duplication of the sequence and two showed variation in the intensity of hybridization between N and T, which may be related to the molecular heterogeneity phenomenon found in maize mitochondrial genomes. The large proportion of changes observed between N and T mtDNA indicates that rearrangements may have played an important role in the evolution of the maize mitochondrial genome.  相似文献   

12.
Summary The XhoI and SmaI restriction map of the chloroplast genome from the fertile cytoplasm of sugar beet has been constructed from overlapping cosmid clones. The genome was found to be typical of that of a dicotyledonous species, being 147.3 kb in size and having an inverted repeat. RbcL for the large subunit of ribulose-1,5-bisphosphate carboxylase, psbA for the 32 kD protein of the photosystem II reaction centre, and the 16S ribosomal RNA were located using heterologous probes. In both sugar beet and maize the inverted repeats recombine giving two isomeric forms of the genome.  相似文献   

13.
the entire mitochondrial genome (mt genome) of the unicellular green alga Platymonas subcordiformis (synonym Tetraselmis subcordiformis; Prasinophyceae) was cloned and a physical map for the four restriction enzymes Hind III, Eco RI, Bgl II and Xba I was constructed. The mt genome of P. subcordiformis is a 42.8 kb circular molecule, coding for at least 23 genes. Hybridization and sequence analysis revealed the presence of a ca. 1.5 kb inverted repeat on the mt genome of P. subcordiformis. Phylogenetic analyses based on sequences of several coxI genes were carried out. Our data indicate that mitochondria from P. subcordiformis and from land plants form a natural, monophyletic group.  相似文献   

14.
Summary A linear 2.3 kb DNA molecule found in maize mitochondria was cloned into pUC8. A natural deletion of this plasmid, found in cmsT and some N (fertile) types of maize plants, was mapped to one end of the plasmid. A minor sequence homology to S-2, another linear mitochondrial plasmid, was detected, as well as more significant sequence homology with chloroplast and maize nuclear DNA. Hybridization to teosinte mitochondrial DNA (mtDNA) revealed the presence of part of the maize plasmid in the high molecular weight mtDNA of the maize relatives. RNA dot hybridization indicates that the plasmid is transcribed in mitochondria. The termini of the 2.3 kb linear plasmid contain inverted repeated sequences; of the first 17 nucleotides of the termini, 16 are identical to the terminal inverted repeats of the linear S plasmids found in the mitochondria of cmsS maize plants.  相似文献   

15.
Mitochondrial DNA (mtDNA) from the cryptomonad Pyrenomonas salina was isolated by CsCl-buoyant density centrifugation of whole-cell DNA in the presence of Hoechst dye 33258. mtDNA consists of circular molecules about 47 kb in size as estimated from restriction enzyme analysis. A physical map for six restriction enzymes (Bam HI, Bge I, Eco RI, Pst I, Sac I and Sac I) has been constructed. Genes coding for the small subunit of rRNA, cytochrome oxidase subunits I and II, and apocytochrome b were localized on this map using Southern blot hybridization with heterologous gene probes from Oenothera. Genes for 5S rRNA and NADH dehydrogenase subunit 5 are absent from P. salina mtDNA. The mitochondrial genome, being the first analysed to this extent in chromophytic algae, should be valuable for taxonomic and phylogenetic studies.  相似文献   

16.
17.
Summary The mitochondrial DNA (mtDNA) from the cultured cells of a cytoplasmic male-sterile line (A-58CMS) of rice (Oryza sativa) was cloned and its physical map was constructed. There was structural alteration on the mitochondrial genome during the cell culture. Detailed restriction analysis of cosmid clones having mtDNA fragments suggested either that the master genome has a 100-kb duplication (the genome size becomes 450 kb) or that a master circle is not present in the genome (the net structural complexity becomes 350 kb). The physical map of plant mitochondrial genomes thus far reported is illustrated in a single circle, namely a master circle. However, no circular DNA molecule corresponding to a master circle has yet been proved. In the present report, representation of plant mitochondrial genomes and a possibility for mitochondrial genome without a master circle are discussed.  相似文献   

18.
Summary We report that the mitochondrial genome of Chlamydomonas moewusii has a 22 kb circular map and thus contrasts with the mitochondrial genome of Chlamydomonas reinhardtii, which is linear and about 6 kb shorter. Overlapping restriction fragments spanning over 90% of the C. moewusii mitochondrial DNA (mtDNA) were identified in a clone bank constructed using a Sau3AI partial digest of a C. moewusii DNA fraction enriched for mtDNA by preparative CsCI density gradient centrifugation. Overlapping Sau3AI clones were identified by a chromosome walk initiated with a clone of C. moewusii mtDNA. The mtDNA map was completed by Southern blot analysis of the C. moewusii mtDNA fraction using isolated mtDNA clones. Regions that hybridized to C. reinhardtii or wheat mitochondrial gene probes for subunit I of cytochrome oxidase (cox1), apocytochrome b (cob), three subunits of NADH dehydrogenase (nadl, nad2 and nad5) and the small and the large ribosomal RNAs (rrnS and rrnL, respectively) were localized on the C. moewusii mtDNA map by Southern blot analysis. The results show that the order of genes in the mitochondrial genome of C. moewusii is completely rearranged relative to that of C. reinhardtii.  相似文献   

19.
Evolution of plant mitochondrial genomes via substoichiometric intermediates   总被引:28,自引:0,他引:28  
I Small  R Suffolk  C J Leaver 《Cell》1989,58(1):69-76
Comparison of the modern fertile maize mitochondrial genome (N) with an ancestral maize mitochondrial genome (RU) reveals a 12 kb duplication (containing the atpA gene) in the modern genome that is absent from the ancestor. Cloning, mapping, and sequencing of the relevant portions of the ancestral genome shows that this duplication probably arose via a three-stage recombination process involving substoichiometric intermediates. Comparison with analogous observations on yeast mitochondrial genomes suggests that this three-stage model of genome reorganization can be generally applied to plant mitochondrial genomes to explain both deletions and the creation of novel repeats, common features of plant mitochondrial genome evolution.  相似文献   

20.
Summary We have physically mapped the loci conferring resistance to antibiotics that inhibit mitochondrial protein synthesis (erythromycin, chloramphenicol and paromomycin) or respiration (oligomycin I and II), as well as the 21s and 14s rRNA and tRNA genes on the restriction map of the mitochondrial genome of the yeast Saccharomyces cerevisiae. The mitochondrial genes were localized by hybridization of labeled RNA probes to restriction fragments of grande (strain MH41-7B) mitochondrial DNA (mtDNA)1 generated by endonucleases EcoRI, HpaI, BamHI, HindIII, SalI, PstI and HhaI. We have derived the HhaI restriction fragment map of MH41-7B mit DNA, to be added to our previously reported maps for the six other endonucleases.The antibiotic resistance loci (ant R) were mapped by hybridization of 3H-cRNA transcribed from single marker petite mtDNA's of low kinetic complexity to grande restriction fragments. We have chosen the single Sal I site as the origin of the circular physical map and have positioned the antibiotic loci as follows: C (99.5-1.Ou)-P(27-36.Ou)-OII (58.3-62u)-OI (80-84u)-E (94.4-98.4u). The 21s rRNA is localized at 94.4-99.2u, and the 14s rRNA is positioned between 36.2-39.8u. The two rRNA species are separated by 36% of the genome. Total mitochondrial tRNA labeled with 125I hybridized primarily to two regions of the genome, at 99.5-11.5u and 34-44u. A third region of hybridization was occasionally detected at 70-76u, which probably corresponds to seryl and glutamyl tRNA genes, previously located to this region by petite deletion mapping.Supported by USPHS Training Grant T32-GM-07197.Supported by USPHS Training Grant 5-T01-GM-0090-19.The Franklin McLean Memorial Research Institute is operated by the University of Chicago for the U. S. Energy Research and Development Administration under Contract EY-76-C-02-0069.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号