首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Myxothiazol is synthesized by the myxobacterium Stigmatella aurantiaca DW4/3-1 via a combined polyketide synthase/polypeptide synthetase. The biosynthesis of this secondary metabolite is also dependent on the gene product of mtaA. The deduced amino acid sequence of mtaA shows similarity to 4'-phosphopantetheinyl transferases (4'-PP transferase). This points to an enzyme activity that converts inactive forms of the acyl carrier protein domains of polyketide synthetases (PKSs) and/or the peptidyl carrier protein domains of nonribosomal polypeptide synthetases (NRPSs) of the myxothiazol synthetase complex to their corresponding holo-forms. Heterologous co-expression of MtaA with an acyl carrier protein domain of the myxothiazol synthetase was performed in Escherichia coli. The proposed function as a 4'-PP transferase was confirmed and emphasizes the significance of MtaA for the formation of a catalytically active myxothiazol synthetase complex. Additionally, it is shown that MtaA has a relaxed substrate specificity: it processes an aryl carrier protein domain derived from the enterobactin synthetase of E. coli (ArCP) as well as a peptidyl carrier protein domain from a polypeptide synthetase of yet unknown function from Sorangium cellulosum. Therefore, MtaA should be a useful tool for activating heterologously expressed PKS and NRPS systems.  相似文献   

2.
To investigate the regulatory mechanism governing antifungal metabolite biosynthesis, two kinds of global regulator genes in Pseudomonas sp. M18, an rpoS and an rsmA gene, were cloned and mutated by inserting with an aacC1 cassette, respectively. Two mutants showed the same regulatory mode with repression of phenazine-1-carboxylic acid and remarkable enhancement of pyoluteorin. In the rpoS-mutant, a translational rsmA'-'lacZ fusion was expressed at the same level corresponding to that in the wild-type strain. In the rsmA-mutant, however, expression of the translational rpoS'-'lacZ fusion was only about 30% of that in the wild-type strain. The results indicated that the absence of RsmA leads to repression of the rpoS gene expression, which has further been confirmed with construction of chromosomal rpoS-lacZ fusion in the rsmA-mutant and the wild-type strain, respectively. The findings showed a new regulatory cascade controlling antifungal metabolite production in Pseudomonas sp. M18, suggesting that RpoS may serve as a mediator in RsmA-dependent regulation of secondary metabolite biosynthesis.  相似文献   

3.
为探索大肠杆菌λ噬菌体表达调控元件在链霉菌中的应用,构建了一个链霉菌大肠杆菌穿梭表达载体pHZ1080,并将来自链霉菌FR-008的聚酮合酶(PKS)基因置于其中的λ噬菌体启动子PR下游,得到表达PKS的穿梭质粒pHZ1067。与在大肠杆菌中一样,该质粒在变铅青链霉菌中也受热诱导表达100kD的PKS蛋白;表达的PKS蛋白可由SDSPAGE和Western-blot实验检测到。PKS在链霉菌中的热诱导表达表明,构建的载体也能用于链霉菌诱导表达外源基因。    相似文献   

4.
Mutka SC  Carney JR  Liu Y  Kennedy J 《Biochemistry》2006,45(4):1321-1330
The epothilones are a family of polyketide natural products that show a high potential as anticancer drugs. They are synthesized by the action of a hybrid nonribosomal peptide synthetase/polyketide synthase in the myxobacterium Sorangium cellulosum. In this work, the genes encoding the entire cluster,epoA, epoB, epoC, epoD, epoE, and epoF, were redesigned and synthesized to allow for expression in Escherichia coli. The expression of the largest of the proteins, EpoD, also required the protein be separated into two polypeptides with compatible module linkers. Using a combination of lowered temperature, chaperone coexpression, and alternative promoters, we succeeded in producing a soluble protein from all genes in the epothilone cluster. The entire synthetic epothilone cluster was then expressed in a strain of E. coli modified to enable polyketide biosynthesis, resulting in the production of epothilones C and D. Furthermore, feeding a thioester of the normal substrate for EpoD to cells expressing the epoD, epoE, and epoF genes also led to the production of epothilones C and D. The design of the synthetic epothilone genes together with E. coli expression provides the ideal platform for both the biochemical investigation of the epothilone PKS and the generation of novel biosynthetic epothilone analogues.  相似文献   

5.
Ligon J  Hill S  Beck J  Zirkle R  Molnár I  Zawodny J  Money S  Schupp T 《Gene》2002,285(1-2):257-267
A genomic DNA region of over 80 kb that contains the complete biosynthetic gene cluster for the synthesis of the antifungal polyketide metabolite soraphen A was cloned from Sorangium cellulosum So ce26. The nucleotide sequence of the soraphen A gene region, including 67,523 bp was determined. Examination of this sequence led to the identification of two adjacent type I polyketide synthase (PKS) genes that encode the soraphen synthase. One of the soraphen A PKS genes includes three biosynthetic modules and the second contains five additional modules for a total of eight. The predicted substrate specificities of the acyltransferase (AT) domains, as well as the reductive loop domains identified within each module, are consistent with expectations from the structure of soraphen A. Genes were identified in the regions flanking the two soraphen synthase genes that are proposed to have roles in the biosynthesis of soraphen A. Downstream of the soraphen PKS genes is an O-methyltransferase (OMT) gene. Upstream of the soraphen PKS genes there is a gene encoding a reductase and a group of genes that are postulated to have roles in the synthesis of methoxymalonyl-acyl carrier protein (ACP). This unusual extender unit is proposed to be incorporated in two positions of the soraphen polyketide chain. One of the genes in this group contains distinct domains for an AT, an ACP, and an OMT.  相似文献   

6.
Although many secondary metabolites exhibiting important pharmaceutical and agrochemical activities have been isolated from myxobacteria, most of these microorganisms remain difficult to handle genetically. To utilize their metabolic potential, heterologous expression methodologies are currently being developed. Here, the Red/ET recombination technology was used to perform all required gene cluster engineering steps in Escherichia coli prior to the transfer into the chromosome of the heterologous host. We describe the integration of the complete 57-kbp myxothiazol biosynthetic gene cluster reconstituted from two cosmids from a cosmid library of the myxobacterium Stigmatella aurantiaca DW4-3/1 into the chromosome of the thus far best-characterized myxobacterium, Myxococcus xanthus, in one step. The successful integration and expression of the myxothiazol biosynthetic genes in M. xanthus results in the production of myxothiazol in yields comparable to the natural producer strain.  相似文献   

7.
Although many secondary metabolites exhibiting important pharmaceutical and agrochemical activities have been isolated from myxobacteria, most of these microorganisms remain difficult to handle genetically. To utilize their metabolic potential, heterologous expression methodologies are currently being developed. Here, the Red/ET recombination technology was used to perform all required gene cluster engineering steps in Escherichia coli prior to the transfer into the chromosome of the heterologous host. We describe the integration of the complete 57-kbp myxothiazol biosynthetic gene cluster reconstituted from two cosmids from a cosmid library of the myxobacterium Stigmatella aurantiaca DW4-3/1 into the chromosome of the thus far best-characterized myxobacterium, Myxococcus xanthus, in one step. The successful integration and expression of the myxothiazol biosynthetic genes in M. xanthus results in the production of myxothiazol in yields comparable to the natural producer strain.  相似文献   

8.
Fungal secondary metabolites have been considered promising resources in the search for novel bioactive compounds. Given the high potential of fungi as genetic resources, it is essential to find an efficient way to link biosynthetic genes to the product in a heterologous system, because many genes for the secondary metabolite in the original strain are silent under standard laboratory conditions. In a previous study, we constructed a heterologous expression system for a biosynthetic gene cluster using Aspergillus oryzae as the host. To make the host more versatile for the expression of secondary metabolism genes, the expression levels of a global regulator, laeA, were increased by placing the A. oryzae laeA gene under the control of the constitutive active pgk promoter. In the A. oryzae overexpressing laeA, two clusters of heterologous biosynthetic genes [the monacolin K (MK) gene cluster from Monascus pilosus and the terrequinone A (TQ) gene cluster from Aspergillus nidulans] were successfully overexpressed, resulting in the production of the corresponding metabolite, MK or TQ. The successful production of secondary metabolites belonging to different structural groups, namely MK as a polyketide and TQ as a hybrid of amino acid and isoprenoid, indicated that the laeA-enriched A. oryzae was a versatile host for the heterologous expression of the biosynthetic gene cluster.  相似文献   

9.
The sequencing of Aspergillus genomes has revealed that the products of a large number of secondary metabolism pathways have not yet been identified. This is probably because many secondary metabolite gene clusters are not expressed under normal laboratory culture conditions. It is, therefore, important to discover conditions or regulatory factors that can induce the expression of these genes. We report that the deletion of sumO, the gene that encodes the small ubiquitin-like protein SUMO in A. nidulans, caused a dramatic increase in the production of the secondary metabolite asperthecin and a decrease in the synthesis of austinol/dehydroaustinol and sterigmatocystin. The overproduction of asperthecin in the sumO deletion mutant has allowed us, through a series of targeted deletions, to identify the genes required for asperthecin synthesis. The asperthecin biosynthesis genes are clustered and include genes encoding an iterative type I polyketide synthase, a hydrolase, and a monooxygenase. The identification of these genes allows us to propose a biosynthetic pathway for asperthecin.  相似文献   

10.
The heterologous expression of natural product biosynthetic pathways is of increasing interest in biotechnology and drug discovery. It enables the (over)production of structurally complex substances through transfer of the biosynthetic genes from the original producer to more amenable heterologous hosts, and provides the basis to generate novel analogs through biosynthetic engineering. Furthermore, the lateral transfer of 'silent' (not expressed under standard laboratory conditions) secondary metabolite pathways or metagenomic DNA into surrogate host strains is expected to yield new, potentially bioactive compounds. This review discusses recent reports on the heterologous production of natural products with emphasis on polyketide and nonribosomally biosynthesized peptide compounds.  相似文献   

11.
Tylosin polyketide synthase (Tyl PKS) was heterologously expressed in an engineered strain of Streptomyces venezuelae bearing a deletion of pikromycin PKS gene cluster using two compatible low-copy plasmids, each under the control of a pikAI promoter. The mutant strain produced 0.5 mg/l of the 16-membered ring macrolactone, tylactone, after a 4-day culture, which is a considerably reduced culture period to reach the maximum production level compared to other Streptomyces hosts. To improve the production level of tylactone, several precursors for ethylmalonyl-CoA were fed to the growing medium, leading to a 2.8-fold improvement (1.4 mg/ml); however, switching the pikAI promoter to an actI promoter had no observable effect. In addition, a small amount of desosamine-glycosylated tylactone was detected from the extract of the mutant strain, revealing that the native glycosyltransferase DesVII displayed relaxed substrate specificity in accepting the 16-membered ring macrolactone to produce the glycosylated tylactone. These results demonstrate a successful attempt for a heterologous expression of Tyl PKS in S. venezuelae and introduce S. venezuelae as a rapid heterologous expression system for the production of secondary metabolites.  相似文献   

12.
Deductions from the molecular analysis of the 65,000-bp stigmatellin biosynthetic gene cluster are reported. The biosynthetic genes (stiA-J) encode an unusual bacterial modular type I polyketide synthase (PKS) responsible for the formation of this aromatic electron transport inhibitor produced by the myxobacterium Stigmatella aurantiaca. Involvement of the PKS gene cluster in stigmatellin biosynthesis is shown using site-directed mutagenesis. One module of the PKS is assumed to be used iteratively during the biosynthetic process, which seems to involve an unusual transacylation of the biosynthetic intermediate from an acyl carrier protein domain back to the preceding ketosynthase domain. Finally, the polyketide chain which is presumably catalyzed by a novel C-terminal domain in StiJ that does not resemble thioesterases, is cyclized and aromatized. The presented results of feeding experiments are in good agreement with the proposed biosynthetic scheme. In contrast to all other PKS type I systems reported to date, each module of StiA-J is encoded on a separate gene. The gene cluster contains a "stand alone" O-methyltransferase and two unusual O-methyltransferase domains embedded in the PKS. In addition, inactivation of a cytochrome P450 monooxygenase-encoding gene involved in post-PKS hydroxylation of the aromatic ring leads to the formation of two novel stigmatellin derivatives.  相似文献   

13.
Horizontal gene transfer by transposition has been widely used for transgenesis in prokaryotes. However, conjugation has been preferred for transfer of large transgenes, despite greater restrictions of host range. We examine the possibility that transposons can be used to deliver large transgenes to heterologous hosts. This possibility is particularly relevant to the expression of large secondary metabolite gene clusters in various heterologous hosts. Recently, we showed that the engineering of large gene clusters like type I polyketide/nonribosomal peptide pathways for heterologous expression is no longer a bottleneck. Here, we apply recombineering to engineer either the epothilone (epo) or myxochromide S (mchS) gene cluster for transpositional delivery and expression in heterologous hosts. The 58-kb epo gene cluster was fully reconstituted from two clones by stitching. Then, the epo promoter was exchanged for a promoter active in the heterologous host, followed by engineering into the MycoMar transposon. A similar process was applied to the mchS gene cluster. The engineered gene clusters were transferred and expressed in the heterologous hosts Myxococcus xanthus and Pseudomonas putida. We achieved the largest transposition yet reported for any system and suggest that delivery by transposon will become the method of choice for delivery of large transgenes, particularly not only for metabolic engineering but also for general transgenesis in prokaryotes and eukaryotes.  相似文献   

14.
Genes for biosynthesis of a Streptomyces sp. FR-008 heptaene macrolide antibiotic with antifungal and mosquito larvicidal activity were cloned in Escherichia coli using heterologous DNA probes. The cloned genes were implicated in heptaene biosynthiesis by gene replacement. The FR-008 antibiotic contains a 38-membered, poiyketide-derived macrolide ring. Southern hybridization using probes encoding domains of the type i modular erythromycin polyketide synthase (PKS) showed that the Streptomyces sp. FR-008 PKS gene cluster contains repeated sequences spanning c. 105 kb of contiguous DNA; assuming c. 5 kb for each PKS module, this is in striking agreement with the expectation for the 21-step condensation process required for synthesis of the FR-008 carbon chain. The methods developed for transformation and gene replacement in Streptomyces sp. FR-008 make it possible to genetically manipulate polyene macrolide production, and may later lead to the biosynthesis of novel polyene macrolides.  相似文献   

15.
植物聚酮类化合物主要包括酚类、芪类及类黄酮化合物等,在植物花色、防止紫外线伤害、预防病原菌、昆虫危害以及作为植物与环境互作信号分子方面行使着重要的生物学功能。该类化合物具有显著多样的生物学活性,对人体保健及疾病治疗有显著意义。植物类型III 聚酮化合物合酶 (PKS) 在该类化合物生物合成起始反应中行使着关键作用,决定该类化合物基本分子骨架建成和代谢途径碳硫走向,为合成途径关键酶和限速酶。以查尔酮合酶为原型酶的植物类型III PKS超家族是研究系统进化和蛋白结构与功能关系的模式分子家族,目前已经分离得到14种植物类型III PKS基因,这些同祖同源基因及其表达产物既有共性,也表现出许多独特个性,这些个性赋予此类次生代谢产物结构上的多样性。以下综述了植物类型III PKS超家族基因结构、功能及代谢产物研究进展。  相似文献   

16.
Natural products discovery from actinomycetes has been on the decline in recent years, and has suffered from a lack of innovative ways to discover new secondary metabolites within a background of the thousands of known compounds. Recent advances in whole genome sequencing have revealed that actinomycetes with large genomes encode multiple secondary metabolite pathways, most of which remain cryptic. One approach to address the expression of cryptic pathways is to first identify novel pathways by bioinformatics, then clone and express them in well-characterized hosts with known secondary metabolomes. This process should eliminate the tedious dereplication process that has hampered natural products discovery. Several laboratory and industrial production strains have been used for heterologous production of secondary metabolite pathways. This review discusses the results of these studies, and the pros and cons of using various Streptomyces and one Saccharopolyspora strain for heterologous expression. This information should provide an experimental basis to help researchers choose hosts for current application and future development to express heterologous secondary metabolite pathways in yields sufficient for rapid scale-up, biological testing, and commercial production.  相似文献   

17.
Development of natural products for therapeutic use is often hindered by limited availability of material from producing organisms. The speed at which current technologies enable the cloning, sequencing, and manipulation of secondary metabolite genes for production of novel compounds has made it impractical to optimize each new organism by conventional strain improvement procedures. We have exploited the overproduction properties of two industrial organisms—Saccharopolyspora erythraea and Streptomyces fradiae, previously improved for erythromycin and tylosin production, respectively—to enhance titers of polyketides produced by genetically modified polyketide synthases (PKSs). An efficient method for delivering large PKS expression vectors into S. erythraea was achieved by insertion of a chromosomal attachment site (attB) for φC31-based integrating vectors. For both strains, it was discovered that only the native PKS-associated promoter was capable of sustaining high polyketide titers in that strain. Expression of PKS genes cloned from wild-type organisms in the overproduction strains resulted in high polyketide titers whereas expression of the PKS gene from the S. erythraea overproducer in heterologous hosts resulted in only normal titers. This demonstrated that the overproduction characteristics are primarily due to mutations in non-PKS genes and should therefore operate on other PKSs. Expression of genetically engineered erythromycin PKS genes resulted in production of erythromycin analogs in greatly superior quantity than obtained from previously used hosts. Further development of these hosts could bypass tedious mutagenesis and screening approaches to strain improvement and expedite development of compounds from this valuable class of natural products.  相似文献   

18.
The production of secondary metabolites by aposymbiotic lichen-forming fungi in culture is thought to be influenced by environmental conditions. The effects of the environment may be studied by culturing fungi under defined growing parameters to provide a better understanding of the role of the large number of polyketide synthase (PKS) gene paralogs detected in the genomes of many fungi. The objectives of this study were to examine the effects of culture conditions (media composition and pH level) on the colony growth, the numbers of secondary products, and the expression of two PKS genes by the lichen-forming fungus Ramalina dilacerata. Four types of growth media at four different pH levels were prepared to culture spore isolates of R. dilacerata. Colony diameter and texture were recorded. The number of secondary compounds were determined by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). Expression of two PKS genes (non-reducing (NR) and 6-MSAS-type PKS) were compared with expression of an internal control mitochondrial small subunit gene (mtSSU). The results showed that media containing yeast extracts produced the largest colony diameters and the fewest number of secondary metabolites. Colony growth rates also varied with different media conditions, and a significant negative relationship occurred between colony diameter and number of secondary metabolites. Expression of the NR PKS gene was significantly higher at pH 6.5 on the glucose malt agar than any other media, and expression of the 6-MSAS-type (partially-reducing) PKS gene was significantly higher at pH 8.5 on (malt agar) malt agar than on the other types of agar. Gene expression was correlated with the pH level and media conditions that induced the production of the larger number of secondary substances. This is the first study to examine secondary metabolite production in R. dilacerata by comparing the number of polyketides detected with quantitative polymerase chain reaction (qPCR) of two PKS genes under different culture conditions.  相似文献   

19.
The metabolic engineering of epothilones, as secondary metabolites, was investigated using Sorangium cellulosum to achieve the selective production of epothilone B, a potent anticancer agent. Thus, the propionyl-CoA synthetase gene (prpE) from Ralstonia solanacearum was heterologously expressed in S. cellulosum to increase the production of epothilone B. Propionyl-CoA synthetase converts propionate into propionyl-CoA, a potent precursor of epothilone B. The recombinant S. cellulosum containing the prpE gene exhibited a significant increase in the resolution of epothilones B/A, with an epothilone B to A ratio of 127 to 1, which was 100 times higher than that of the wild-type cells, demonstrating its potential use for the selective production of epothilone B.  相似文献   

20.
The structure of the Streptomyces sp. strain C5 daunorubicin type II polyketide synthase (PKS) gene region is different from that of other known type II PKS gene clusters. Directly downstream of the genes encoding ketoacylsynthase alpha and beta (KS alpha, KS beta) are two genes (dpsC, dpsD) encoding proteins of unproven function, both absent from other type II PKS gene clusters. Also in contrast to other type II PKS clusters, the gene encoding the acyl carrier protein (ACP), dpsG, is located about 6.8 kbp upstream of the genes encoding the daunorubicin KS alpha and KS beta. In this work, we demonstrate that the minimal genes required to produce aklanonic acid in heterologous hosts are dpsG (ACP), dauI (regulatory activator), dpsA (KS alpha), dpsB (KS beta), dpsF (aromatase), dpsE (polyketide reductase), and dauG (putative deoxyaklanonic acid oxygenase). The two unusual open reading frames, dpsC (KASIII homolog lacking a known active site) and dpsD (acyltransferase homolog), are not required to synthesize aklanonic acid. Additionally, replacement of dpsD or dpsCD in Streptomyces sp. strain C5 with a neomycin resistance gene (aphI) results in mutant strains that still produced anthracyclines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号