首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elongation of the epidermis of the nematode Caenorhabditis elegans involves both actomyosin-mediated changes in lateral epidermal cell shape and body muscle attachment to dorsal and ventral epidermal cells via intermediate-filament/hemidesmosome structures. vab-19 mutants are defective in epidermal elongation and muscle attachment to the epidermis. VAB-19 is a member of a conserved family of ankyrin repeat-containing proteins that includes the human tumor suppressor Kank. In epidermal cells, VAB-19::GFP localizes with components of epidermal attachment structures. In vab-19 mutants, epidermal attachment structures form normally but do not remain localized to muscle-adjacent regions of the epidermis. VAB-19 localization requires function of the transmembrane attachment structure component Myotactin. vab-19 mutants also display aberrant actin organization in the epidermis. Loss of function in the spectrin SMA-1 partly bypasses the requirement for VAB-19 in elongation, suggesting that VAB-19 and SMA-1/spectrin might play antagonistic roles in regulation of the actin cytoskeleton.  相似文献   

2.
3.

Background

Palmitoylation is a reversible post-translational protein modification which involves the addition of palmitate to cysteine residues. Palmitoylation is catalysed by the DHHC family of palmitoyl-acyl transferases (PATs) and reversibility is conferred by palmitoyl-protein thioesterases (PPTs). Mutations in genes encoding both classes of enzymes are associated with human diseases, notably neurological disorders, underlining their importance. Despite the pivotal role of yeast studies in discovering PATs, palmitoylation has not been studied in the key animal model Caenorhabditis elegans.

Results

Analysis of the C. elegans genome identified fifteen PATs, using the DHHC cysteine-rich domain, and two PPTs, by homology. The twelve uncategorised PATs were officially named using a dhhc-x system. Genomic data on these palmitoylation enzymes and those in yeast, Drosophila and humans was collated and analysed to predict properties and relationships in C. elegans. All available C. elegans strains containing a mutation in a palmitoylation enzyme were analysed and a complete library of RNA interference (RNAi) feeding plasmids against PAT or PPT genes was generated. To test for possible redundancy, double RNAi was performed against selected closely related PATs and both PPTs. Animals were screened for phenotypes including size, longevity and sensory and motor neuronal functions. Although some significant differences were observed with individual mutants or RNAi treatment, in general there was little impact on these phenotypes, suggesting that genetic buffering exists within the palmitoylation network in worms.

Conclusions

This study reports the first characterisation of palmitoylation in C. elegans using both in silico and in vivo approaches, and opens up this key model organism for further detailed study of palmitoylation in future.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-841) contains supplementary material, which is available to authorized users.  相似文献   

4.
Nazir A  Sammi SR  Singh P  Tripathi RK 《PloS one》2010,5(12):e15312

Background

Caenorhabditis elegans has emerged as a very powerful model for studying the host pathogen interactions. Despite the absence of a naturally occurring viral infection for C. elegans, the model is now being exploited experimentally to study the basic aspects of virus-host interplay. The data generated from recent studies suggests that the virus that infects mammalian cells does infect, replicate and accumulate in C. elegans.

Methodology/Principal Findings

We took advantage of the easy-to-achieve protein introduction in C. elegans and employing the methodology, we administered HIV-1 protein Nef into live worms. Nef is known to be an important protein for exacerbating HIV-1 pathogenesis in host by enhancing viral replication. The deletion of nef from the viral genome has been reported to inhibit its replication in the host, thereby leading to delayed pathogenesis. Our studies, employing Nef introduction into C. elegans, led to creation of an in-vivo model that allowed us to study, whether or not, the protein induces effect in the whole organism. We observed a marked lipodystrophy, effect on neuromuscular function, impaired fertility and reduced longevity in the worms exposed to Nef. The observed effects resemble to those observed in Nef transgenic mice and most interestingly the effects also relate to some of the pathogenic aspects exhibited by human AIDS patients.

Conclusions/Significance

Our studies underline the importance of this in vivo model for studying the interactions of Nef with host proteins, which could further be used for identifying possible inhibitors of such interactions.  相似文献   

5.
6.

Background

Firm attachments binding muscles to skeleton are crucial mechanical components of the vertebrate body. These attachments (entheses) are complex three-dimensional structures, containing distinctive arrangements of cells and fibre systems embedded in the bone, which can be modified during ontogeny. Until recently it has only been possible to obtain 2D surface and thin section images of entheses, leaving their 3D histology largely unstudied except by extrapolation from 2D data. Entheses are frequently preserved in fossil bones, but sectioning is inappropriate for rare or unique fossil material.

Methodology/Principal Findings

Here we present the first non-destructive 3D investigation, by propagation phase contrast synchrotron microtomography (PPC-SRµCT), of enthesis histology in extant and fossil vertebrates. We are able to identify entheses in the humerus of the salamander Desmognathus from the organization of bone-cell lacunae and extrinsic fibres. Statistical analysis of the lacunae differentiates types of attachments, and the orientation of the fibres, reflect the approximate alignment of the muscle. Similar histological structures, including ontogenetically related pattern changes, are perfectly preserved in two 380 million year old fossil vertebrates, the placoderm Compagopiscis croucheri and the sarcopterygian fish Eusthenopteron foordi.

Conclusions/Significance

We are able to determine the position of entheses in fossil vertebrates, the approximate orientation of the attached muscles, and aspects of their ontogenetic histories, from PPC-SRµCT data. Sub-micron microtomography thus provides a powerful tool for studying the structure, development, evolution and palaeobiology of muscle attachments.  相似文献   

7.
Caenorhabditis elegans embryonic elongation depends on both epidermal and muscle cells. The hemidesmosome-like junctions, commonly called fibrous organelles (FOs), that attach the epidermis to the extracellular matrix ensure muscle anchoring to the cuticular exoskeleton and play an essential role during elongation.To further define how hemidesmosomes might control elongation, we searched for factors interacting with the core hemidesmosome component, the spectraplakin homolog VAB-10. Using the VAB-10 plakin domain as bait in a yeast two-hybrid screen, we identified the novel protein T17H7.4. We also identified T17H7.4 in an independent bioinformatic search for essential nematode-specific proteins that could define novel anti-nematode drug or vaccine targets. Interestingly, T17H7.4 corresponds to the C. elegans equivalent of the parasitic OvB20 antigen, and has a characteristic hemidesmosome distribution. We identified two mutations in T17H7.4, one of which defines the uncharacterized gene pat-12, previously identified in screens for genes required for muscle assembly. Using isoform-specific GFP constructs, we showed that one pat-12 isoform with a hemidesmosome distribution can rescue a pat-12 null allele. We further found that lack of pat-12 affects hemidesmosome integrity, with marked defects at the apical membrane. PAT-12 defines a novel component of C. elegans hemidesmosomes, which is required for maintaining their integrity. We suggest that PAT-12 helps maintaining VAB-10 attachment with matrix receptors.  相似文献   

8.
Little is known about how microtubules are regulated in different cell types during development. EB1 plays a central role in the regulation of microtubule plus ends. It directly binds to microtubule plus ends and recruits proteins which regulate microtubule dynamics and behaviour. We report the identification of Kank, the sole Drosophila orthologue of human Kank proteins, as an EB1 interactor that predominantly localises to embryonic attachment sites between muscle and tendon cells. Human Kank1 was identified as a tumour suppressor and has documented roles in actin regulation and cell polarity in cultured mammalian cells. We found that Drosophila Kank binds EB1 directly and this interaction is essential for Kank localisation to microtubule plus ends in cultured cells. Kank protein is expressed throughout fly development and increases during embryogenesis. In late embryos, it accumulates to sites of attachment between muscle and epidermal cells. A kank deletion mutant was generated. We found that the mutant is viable and fertile without noticeable defects. Further analysis showed that Kank is dispensable for muscle function in larvae. This is in sharp contrast to C. elegans in which the Kank orthologue VAB-19 is required for development by stabilising attachment structures between muscle and epidermal cells.  相似文献   

9.

Background

The FEZ (fasciculation and elongation protein zeta) family designation was purposed by Bloom and Horvitz by genetic analysis of C. elegans unc-76. Similar human sequences were identified in the expressed sequence tag database as FEZ1 and FEZ2. The unc-76 function is necessary for normal axon fasciculation and is required for axon-axon interactions. Indeed, the loss of UNC-76 function results in defects in axonal transport. The human FEZ1 protein has been shown to rescue defects caused by unc-76 mutations in nematodes, indicating that both UNC-76 and FEZ1 are evolutionarily conserved in their function. Until today, little is known about FEZ2 protein function.

Methodology/Principal Findings

Using the yeast two-hybrid system we demonstrate here conserved evolutionary features among orthologs and non-conserved features between paralogs of the FEZ family of proteins, by comparing the interactome profiles of the C-terminals of human FEZ1, FEZ2 and UNC-76 from C. elegans. Furthermore, we correlate our data with an analysis of the molecular evolution of the FEZ protein family in the animal kingdom.

Conclusions/Significance

We found that FEZ2 interacted with 59 proteins and that of these only 40 interacted with FEZ1. Of the 40 FEZ1 interacting proteins, 36 (90%), also interacted with UNC-76 and none of the 19 FEZ2 specific proteins interacted with FEZ1 or UNC-76. This together with the duplication of unc-76 gene in the ancestral line of chordates suggests that FEZ2 is in the process of acquiring new additional functions. The results provide also an explanation for the dramatic difference between C. elegans and D. melanogaster unc-76 mutants on one hand, which cause serious defects in the nervous system, and the mouse FEZ1 -/- knockout mice on the other, which show no morphological and no strong behavioural phenotype. Likely, the ubiquitously expressed FEZ2 can completely compensate the lack of neuronal FEZ1, since it can interact with all FEZ1 interacting proteins and additional 19 proteins.  相似文献   

10.
Lee SH  Ooi SK  Mahadi NM  Tan MW  Nathan S 《PloS one》2011,6(3):e16707

Background

Burkholderia pseudomallei is the causative agent of melioidosis, a disease of significant morbidity and mortality in both human and animals in endemic areas. Much remains to be known about the contributions of genotypic variations within the bacteria and the host, and environmental factors that lead to the manifestation of the clinical symptoms of melioidosis.

Methodology/Principal Findings

In this study, we showed that different isolates of B. pseudomallei have divergent ability to kill the soil nematode Caenorhabditis elegans. The rate of nematode killing was also dependent on growth media: B. pseudomallei grown on peptone-glucose media killed C. elegans more rapidly than bacteria grown on the nematode growth media. Filter and bacteria cell-free culture filtrate assays demonstrated that the extent of killing observed is significantly less than that observed in the direct killing assay. Additionally, we showed that B. pseudomallei does not persistently accumulate within the C. elegans gut as brief exposure to B. pseudomallei is not sufficient for C. elegans infection.

Conclusions/Significance

A combination of genetic and environmental factors affects virulence. In addition, we have also demonstrated that a Burkholderia-specific mechanism mediating the pathogenic effect in C. elegans requires proliferating B. pseudomallei to continuously produce toxins to mediate complete killing.  相似文献   

11.
12.

Background

In metazoans, Piwi-related Argonaute proteins play important roles in maintaining germline integrity and fertility and have been linked to a class of germline-enriched small RNAs termed piRNAs. Caenorhabditis elegans encodes two Piwi family proteins called PRG-1 and PRG-2, and PRG-1 interacts with the C. elegans piRNAs (21U-RNAs). Previous studies found that mutation of prg-1 causes a marked reduction in the expression of 21U-RNAs, temperature-sensitive defects in fertility and other phenotypic defects.

Results

In this study, we wanted to systematically demonstrate the function of PRG-1 in the regulation of small RNAs and their targets. By analyzing small RNAs and mRNAs with and without a mutation in prg-1 during C. elegans development, we demonstrated that (1) mutation of prg-1 leads to a decrease in the expression of 21U-RNAs, and causes 35 ~ 40% of miRNAs to be down-regulated; (2) in C. elegans, approximately 3% (6% in L4) of protein-coding genes are differentially expressed after mutating prg-1, and 60 ~ 70% of these substantially altered protein-coding genes are up-regulated; (3) the target genes of the down-regulated miRNAs and the candidate target genes of the down-regulated 21U-RNAs are enriched in the up-regulated protein-coding genes; and (4) PRG-1 regulates protein-coding genes by down-regulating small RNAs (miRNAs and 21U-RNAs) that target genes that participate in the development of C. elegans.

Conclusions

In prg-1-mutated C. elegans, the expression of miRNAs and 21U-RNAs was reduced, and the protein-coding targets, which were associated with the development of C. elegans, were up-regulated. This may be the mechanism underlying PRG-1 function.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-321) contains supplementary material, which is available to authorized users.  相似文献   

13.

Background

Caenorhabditis elegans (C. elegans) has become a widely used model to explore the effect of food constituents on health as well as on life-span extension. The results imply that besides essential nutrients several flavonoids are able to impact the aging process. What is less investigated is the bioavailability and biotransformation of these compounds in C. elegans. In the present study, we focused on the soy isoflavone genistein and its metabolism in the nematode as a basis for assessing whether this model system mimics the mammalian condition.

Principal Findings

C. elegans was exposed to 100 µM genistein for 48 hours. The worm homogenate was extracted and analyzed by liquid chromatography (LC). 11 metabolites of genistein were detected and characterized using LC electrospray ionization mass spectrometry. All genistein metabolites formed by C. elegans were found to be sugar conjugates, primarily genistein-O-glucosides. The dominant metabolite was identified as genistein-7-O-phosphoglucoside. Further interesting metabolites include two genistein-di-O-glycosides, a genistein-O-disaccharide as well as a genistein-O-phosphodisaccharide.

Conclusions/Significance

Our study provides evidence for a novel biotransformation pathway in C. elegans leading to conjugative metabolites which are not known for mammals. The metabolism of genistein in mammals and in C. elegans differs widely which may greatly impact the bioactivity. These differences need to be appropriately taken into consideration when C. elegans is used as a model to assess possible health or aging effects.  相似文献   

14.

Background

Automated standoff detection and classification of explosives based on their characteristic vapours would be highly desirable. Biologically derived odorant receptors have potential as the explosive recognition element in novel biosensors. Caenorhabditis elegans'' genome contains over 1,000 uncharacterised candidate chemosensory receptors. It was not known whether any of these respond to volatile chemicals derived from or associated with explosives.

Methodology/Principal Findings

We assayed C. elegans for chemotactic responses to chemical vapours of explosives and compounds associated with explosives. C. elegans failed to respond to many of the explosive materials themselves but showed strong chemotaxis with a number of compounds associated with commercial or homemade explosives. Genetic mutant strains were used to identify the likely neuronal location of a putative receptor responding to cyclohexanone, which is a contaminant of some compounded explosives, and to identify the specific transduction pathway involved. Upper limits on the sensitivity of the nematode were calculated. A sensory adaptation protocol was used to estimate the receptive range of the receptor.

Conclusions/Significance:

The results suggest that C. elegans may be a convenient source of highly sensitive, narrowly tuned receptors to detect a range of explosive-associated volatiles.  相似文献   

15.

Background

Selenium is an essential micronutrient that has a narrow exposure window between its beneficial and toxic effects. This study investigated the protective potential of selenite (IV) against lead (Pb(II))-induced neurotoxicity in Caenorhabditis elegans.

Principal Findings

The results showed that Se(IV) (0.01 µM) pretreatment ameliorated the decline of locomotion behaviors (frequencies of body bends, head thrashes, and reversal ) of C. elegans that are damaged by Pb(II) (100 µM) exposure. The intracellular ROS level of C. elegans induced by Pb(II) exposure was significantly lowered by Se(IV) supplementation prior to Pb(II) exposure. Finally, Se(IV) protects AFD sensory neurons from Pb(II)-induced toxicity.

Conclusions

Our study suggests that Se(IV) has protective activities against Pb(II)-induced neurotoxicity through its antioxidant property.  相似文献   

16.

Background

Whole-genome sequencing represents a promising approach to pinpoint chemically induced mutations in genetic model organisms, thereby short-cutting time-consuming genetic mapping efforts.

Principal Findings

We compare here the ability of two leading high-throughput platforms for paired-end deep sequencing, SOLiD (ABI) and Genome Analyzer (Illumina; “Solexa”), to achieve the goal of mutant detection. As a test case we used a mutant C. elegans strain that harbors a mutation in the lsy-12 locus which we compare to the reference wild-type genome sequence. We analyzed the accuracy, sensitivity, and depth-coverage characteristics of the two platforms. Both platforms were able to identify the mutation that causes the phenotype of the mutant C. elegans strain, lsy-12. Based on a 4 MB genomic region in which individual variants were validated by Sanger sequencing, we observe tradeoffs between rates of false positives and false negatives when using both platforms under similar coverage and mapping criteria.

Significance

In conclusion, whole-genome sequencing conducted by either platform is a viable approach for the identification of single-nucleotide variations in the C. elegans genome.  相似文献   

17.

Background

Selenium (Se) is an important nutrient that carries out many biological processes including maintaining optimal immune function. Here, inorganic selenite (Se(IV)) was evaluated for its pathogen resistance and potential-associated factors in Caenorhabditis elegans. The immune effects of Se(IV) were investigated by examining the responses of C. elegans to Pseudomonas aerugonisa PA14 strain.

Principal Findings

Se(IV)-treated C. elegans showed increased survival under PA14 infection compared with untreated controls. The significant pathogen resistance of Se(IV) on C. elegans might not be attributed to the effects of Se(IV) on PA14 as Se(IV) showed no effect on bacterial quorum-sensing and virulence factors of PA14. This study showed that Se(IV) enhanced the expression of a gene pivotal for the innate immunity in C. elegans. The study found that the pathogen-resistant phenotypes contributed by Se(IV) was absent from the skn-1 mutant worms. Moreover, Se(IV) influenced the subcellular distribution of SKN-1/Nrf in C. elegans upon PA14 infection. Furthermore, Se(IV) increased mRNA levels of SKN-1 target genes (gst-4 and gcs-1).

Conclusions

This study found evidence of Se(IV) protecting C. elegans against P. aeruginosa PA14 infection by exerting effects on the innate immunity of C. elegans that is likely mediated via regulation of a SKN-1-dependent signaling pathway.  相似文献   

18.
19.
20.

Background

Mammalian ATAD3 is a mitochondrial protein, which is thought to play an important role in nucleoid organization. However, its exact function is still unresolved.

Results

Here, we characterize the Caenorhabditis elegans (C. elegans) ATAD3 homologue (ATAD-3) and investigate its importance for mitochondrial function and development. We show that ATAD-3 is highly conserved among different species and RNA mediated interference against atad-3 causes severe defects, characterized by early larval arrest, gonadal dysfunction and embryonic lethality. Investigation of mitochondrial physiology revealed a disturbance in organellar structure while biogenesis and function, as indicated by complex I and citrate synthase activities, appeared to be unaltered according to the developmental stage. Nevertheless, we observed very low complex I and citrate synthase activities in L1 larvae populations in comparison to higher larval and adult stages. Our findings indicate that atad-3(RNAi) animals arrest at developmental stages with low mitochondrial activity. In addition, a reduced intestinal fat storage and low lysosomal content after depletion of ATAD-3 suggests a central role of this protein for metabolic activity.

Conclusions

In summary, our data clearly indicate that ATAD-3 is essential for C. elegans development in vivo. Moreover, our results suggest that the protein is important for the upregulation of mitochondrial activity during the transition to higher larval stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号