首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Since it was suggested that cobalt chloride (CoCl(2)) could mimic the O(2) sensing role of mitochondria by increasing reactive oxygen species (ROS) generation during normoxia, we studied the correlation between CoCl(2)-generation of free radicals and the induction of a hypoxic cellular response in myogenic cell lines. In both L6C5 and C2C12 cell lines, exposure to CoCl(2) induced an increase of intracellular oxidants, the accumulation of HIF-1alpha protein, and the expression of vascular endothelial growth factor (VEGF) and/or iNOS genes. On the other hand, only ascorbic acid, but not trolox, was effective in lowering the CoCl(2) gene up-regulation. Neither the cytotoxicity nor the apoptosis induced by CoCl(2) in skeletal muscle cells were modified by culture supplementation with either ascorbic acid or trolox. Thus, CoCl(2) treatment of myogenic cell lines may represent a useful and convenient in vitro model to study gene modulation induced by hypoxia in skeletal muscle, although cellular loss induced by this metal may involve mechanisms other than HIF-1alpha stabilization. It is unlikely, however, that ROS would represent the main mediators of CoCl(2) effects on muscle cells.  相似文献   

3.
The present study investigated the protective effects of scutellarin on cobalt chloride (CoCl2)-induced apoptosis in PC12 cells. Incubation of PC12 cells with 500 microM CoCl2 for 24 h resulted in significant apoptosis as evaluated by the crystal violet, electron microscopy and flow cytometry assays. The increase of caspase-3 activity, decrease of Bcl-XL expression, phosphorylation of p38 mitogen-activated protein kinase (MAPK) and accumulation of intracellular reactive oxygen species (ROS) were also seen in CoCl2-treated PC12 cells. Scutellarin at 0.1, 1 and 10 microM significantly protected against the apoptotic cell death induced by CoCl2. Scutellarin decreased caspase-3 activity, increased Bcl-XL expression, inhibited p38 phosphorylation and attenuated ROS production. These results demonstrate that scutellarin can protect PC12 cells from cobalt chloride induced apoptosis by scavenging ROS, inhibiting p38 phosphorylation, up-regulating Bcl-XL expression and decreasing caspase-3 activity, and may reduce the cellular damage in pathological conditions associated with hypoxia-mediated neuronal injury.  相似文献   

4.
Cobalt is an essential micronutrient but is toxic when present in excess. To study cobalt homeostasis we performed a genome-wide screen for deletion strains that show sensitivity or resistance to CoCl(2). Among 54 cobalt-sensitive strains, 18 are supersensitive strains, which are involved in histidine biosynthetic process, ubiquitination, mitochondria function, membrane trafficking, transporter and a variety of other known functions or still unknown functions. Furthermore, we identified 56 cobalt-resistant deletion strains, which are mainly involved in mitochondria function, signal transduction, ubiquitination, and gene expression and chromatin remodeling. Notably, deletion of the zhf1 (+) gene, encoding a zinc ion transporter, confers supersensitivity to cobalt and overexpression of the zhf1 (+) gene confers marked tolerance to cobalt, indicating that Zhf1 play key roles in cobalt detoxification. Interestingly, all the histidine-auxotrophic mutants displayed cobalt sensitivity and deletion of cationic amino acid transporter Cat1, which was shown to be involved in histidine uptake, suppressed the CoCl(2)-sensitive growth defect of the his2 mutants, suggesting that CoCl(2) may be transported into the cell together with histidine via histidine transporters including Cat1. In addition, we obtained results suggesting that the E2 ubiquitin conjugating enzyme Rhp6 and Sty1 stress MAP kinase pathway are involved in the regulation of cobalt homeostasis. Altogether, our genome-wide study demonstrates for the first time the mechanisms of cobalt homeostasis, particularly its uptake and detoxification in fission yeast.  相似文献   

5.
Hydrogen sulfide (H(2)S) has been shown to exert cardioprotective effects. However, the roles of extracellular signal-regulated protein kinases 1/2 (ERK1/2) in H(2)S-induced cardioprotection have not been completely elucidated. In this study, cobalt chloride (CoCl(2)), a chemical hypoxia mimetic agent, was applied to treat H9c2 cells to establish a chemical hypoxia-induced cardiomyocyte injury model. The results showed that pretreatment with NaHS (a donor of H(2)S) before exposure to CoCl(2) attenuated the decreased cell viability, the increased apoptosis rate, the loss of mitochondrial membrane potential (ΔΨm), and the intracellular accumulation of reactive oxygen species (ROS) in H9c2 cells. Exposure of H9c2 cells to CoCl(2) or hydrogen peroxide (H(2)O(2)) upregulated expression of phosphorylated (p) ERK1/2, which was reduced by pretreatment with NaHS or N-acetyl-L-cysteine, a ROS scavenger. More importantly, U0126, a selective inhibitor of ERK1/2, mimicked the above cytoprotection of H(2)S against CoCl(2)-induced injury in H9c2 cells. In conclusion, these results indicate that H(2)S protects H9c2 cells against chemical hypoxia-induced injury partially by inhibiting ROS-mediated activation of ERK1/2.  相似文献   

6.
We investigated the effects of the hypoxia-mimetic CoCl2 in the pathogenic fungus Cryptococcus neoformans and demonstrated that CoCl2 leads to defects in several enzymatic steps in ergosterol biosynthesis. Sterol defects were amplified in cells lacking components of the Sre1p-mediated oxygen-sensing pathway. Consequently, Sre1p and its binding partner Scp1p were essential for growth in the presence of CoCl2. Interestingly, high copies of a single gene involved in ergosterol biosynthesis, ERG25, rescued this growth defect. We show that the inhibitory effect of CoCl2 on scp1Delta and sre1Delta cells likely resulted from either an accumulation of non-viable methylated sterols or a decrease in the amount of ergosterol. Similar findings were also observed in the ascomycetous yeast, Schizosaccharomyces pombe, suggesting that the effects of CoCl2 on the Sre1p-mediated response are conserved in fungi. In addition, gene expression analysis revealed limited overlap between Sre1p-dependant gene activation in the presence of CoCl2 and low oxygen. The majority of genes similarly affected by both CoCl2 and low oxygen were involved in ergosterol synthesis and in iron/copper transport. This article identifies the Sre1p pathway as a common mechanism by which yeast cells sense and adapt to changes in both CoCl2 concentrations and oxygen levels.  相似文献   

7.
Curcumin exhibits antioxidant properties in normal cells where the uptake is low, unlike in tumor cells where uptake is high and curcumin increases reactive oxygen species (ROS) production and cell death. Mitochondria are the main source and primary target of cellular ROS. We hypothesized that curcumin would regulate cellular redox status and mitochondrial function, depending on cell sensitivity and/or curcumin concentration in normal cells. We examined the differences between low and high concentrations of curcumin, with specific attention focused on ROS levels, mitochondrial function, and cell viability in mouse C2C12 myoblast under normal and simulated conditions of diabetes. Cells incubated with high concentrations of curcumin (10–50 μM) resulted in decreased cell viability and sustained robust increases in ROS levels. Mechanistic studies showed that increased ROS levels in cells incubated with 20 μM curcumin induced opening of mitochondrial permeability transition pores and subsequent release of cytochrome c, activation of caspases 9 and 3/7, and apoptotic cell death. Low concentrations of curcumin (1–5 μM) did not affect cell viability, but induced a mild increase in ROS levels, which peaked at 2 hr after the treatment. Incubation with 5 μM curcumin also induced ROS-dependent increases in mitochondrial mass and membrane potential. Finally, pretreatment with 5 μM curcumin prevented high glucose-induced oxidative cell injury. Our study suggests that mitochondria respond differentially depending on curcumin concentration-dependent induction of ROS. The end result is either cell protection or death. Curcumin may be an effective therapeutic target for diabetes and other mitochondrial diseases when used in low concentrations.  相似文献   

8.
Cyclooxygenase-2 (COX-2) is an isoform of prostaglandin H synthase induced by hypoxia and has been implicated in the growth and progression of a variety of human cancers. In the present study, we investigated the role of phospholipase D (PLD) isozymes in cobalt chloride (CoCl(2))-induced hypoxia-driven COX-2 expression in U87 MG human astroglioma cells. CoCl(2) stimulated PLD activity and synthesis of COX-2 protein in a dose and time-dependent manner. Moreover, elevated expression of PLD1 and PLD2 increased hypoxia-induced COX-2 expression and prostaglandin E2 (PGE(2)) production. Pretreatment of cells with 1-butanol, but not 3-butanol, suppressed CoCl(2)-induced COX-2 expression and PGE(2) formation. In addition, evidence that PLD activity was involved in the stimulation of COX-2 expression was provided by the observations that overexpression of wild type PLD isozymes, but not catalytically inactive PLD isozymes, stimulated CoCl(2)-induced COX-2 expression and PGE(2) production. PLD1 enhanced COX-2 expression by CoCl(2) via reactive oxygen species (ROS), p38 MAPK kinase, PKC-delta, and PKA, but not ERK, whereas PLD2 enhanced CoCl(2)-induced COX-2 expression via ROS and p38 MAPK, but not ERK, PKC-delta, and PKA. Differential regulation of COX-2 expression mediated through PLD isozymes was comparable with that of CoCl(2)-induced PLD activity in these two PLD isozymes. Taken together, our results demonstrate for the first time that PLD1 and PLD2 isozymes enhance CoCl(2)-induced COX-2 expression through differential signaling pathways in astroglioma cells.  相似文献   

9.
Inhalation of particulate cobalt has been known to induce interstitial lung disease. There is growing evidence that apoptosis plays a crucial role in physiological and pathological settings and that the ubiquitin-proteasome system is involved in the regulation of apoptosis. Cadmium, the same transitional heavy metal as cobalt, has been reported to accumulate ubiquitinated proteins in neuronal cells. On the basis of these findings, we hypothesized that cobalt would induce apoptosis in the lung by disturbance of the ubiquitin-proteasome pathway. To evaluate this, we exposed U-937 cells and human alveolar macrophages (AMs) to cobalt chloride (CoCl(2)) and examined their apoptosis by DNA fragmentation assay, 4',6-diamidino-2'-phenylindol dihydrochloride staining, and Western blot analysis. CoCl(2) induced apoptosis and accumulated ubiquitinated proteins. Exposure to CoCl(2) inhibited proteasome activity in U-937 cells. Cobalt-induced apoptosis was mediated via mitochondrial pathway because CoCl(2) released cytochrome c from mitochondria. These results suggest that cobalt-induced apoptosis of AMs may be one of the mechanisms for cobalt-induced lung injury and that the accumulation of ubiquitinated proteins might be involved in this apoptotic process.  相似文献   

10.
11.
The aim of this study was to investigate the possible time- and dose-dependent cytotoxic effects of cobalt chloride on Vero cells. The cultured cells were incubated with different concentrations of cobalt chloride ranging from 0.5 to 1,000 μM, and cytotoxicity was determined by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) and resazurin assays. Possible protective effects of vitamin E, coenzyme Q(10), and zinc chloride were also tested in this system. A gradual decrease in cell proliferation was observed at concentrations ~≥ 200 μM in incubation periods of 24, 48, 72, and 96 h with MTT assay. Exposure of cells to 500 and 1,000 μM cobalt chloride caused significant decrease in cell survival. A biphasic survival profile of cells was observed at 1-25 μM concentration range following 96 h of incubation. With resazurin assay, cytotoxicity profile of CoCl(2) was found comparable to the results of MTT assay, particularly at high concentrations and long incubation periods. Dose-dependent cytotoxicity was noted following exposure of cells to ≥ 250 μM of CoCl(2) for 24 h and ≥ 100 μM concentrations of CoCl(2) for 48-96 h. Pretreatment of cells with ZnCl(2) for 4 or 24 h provided significant protection against cobalt chloride-induced cytotoxicity when measured with MTT assay. However, vitamin E or coenzyme Q(10) was not protective. CoCl(2) had dose- and time-dependent cytotoxic effects in Vero cells. Preventive effect of ZnCl(2) against CoCl(2)-induced cytotoxicity should be considered in detail to define exact mechanism of toxicity in Vero cells.  相似文献   

12.
The influence of mitochondrial permeability transition pore (MPTP) opening on reactive oxygen species (ROS) production in the rat brain mitochondria was studied. It was shown that ROS production is regulated differently by the rate of oxygen consumption and membrane potential, dependent on steady-state or non-equilibrium conditions. Under steady-state conditions, at constant rate of Ca2+-cycling and oxygen consumption, ROS production is potential-dependent and decreases with the inhibition of respiration and mitochondrial depolarization. The constant rate of ROS release is in accord with proportional dependence of the rate of ROS formation on that of oxygen consumption. On the contrary, transition to non-equilibrium state, due to the release of cytochrome c from mitochondria and progressive respiration inhibition, results in the loss of proportionality in the rate of ROS production on the rate of respiration and an exponential rise of ROS production with time, independent of membrane potential. Independent of steady-state or non-equilibrium conditions, the rate of ROS formation is controlled by the rate of potential-dependent uptake of Ca2+ which is the rate-limiting step in ROS production. It was shown that MPTP opening differently regulates ROS production, dependent on Ca2+ concentration. At low calcium MPTP opening results in the decrease in ROS production because of partial mitochondrial depolarization, in spite of sustained increase in oxygen consumption rate by a cyclosporine A-sensitive component due to simultaneous work of Ca2+-uniporter and MPTP as Ca2+-influx and efflux pathways. The effect of MPTP opening at low Ca2+ concentrations is similar to that of Ca2+-ionophore, A-23187. At high calcium MPTP opening results in the increase of ROS release due to the rapid transition to non-equilibrium state because of cytochrome c loss and progressive gating of electron flow in respiratory chain. Thus, under physiological conditions MPTP opening at low intracellular calcium could attenuate oxidative damage and the impairment of neuronal functions by diminishing ROS formation in mitochondria.  相似文献   

13.
Plants produce reactive oxygen species (ROS) when exposed to low oxygen (O2). Much experimental evidence has demonstrated the existence of an oxidative burst when there is an O2 shortage. This originates at various subcellular sites. The activation of NADPH oxidase(s), in complex with other proteins, is responsible for ROS production at the plasma membrane. Another source of low O2‐dependent ROS is the mitochondrial electron transport chain, which misfunctions when low O2 limits its activity. Arabidopsis mutants impaired in proteins playing a role in ROS production display an intolerant phenotype to anoxia and submergence, suggesting a role in acclimation to stress. In rice, the presence of the submergence 1A (SUB1A) gene for submergence tolerance is associated with a higher capacity to scavenge ROS. Additionally, the destabilization of group VII ethylene responsive factors, which are involved in the direct O2 sensing mechanism, requires nitric oxide (NO). All this evidence suggests the existence of a ROS and NO – low O2 mechanism interplay which likely includes sensing, anaerobic metabolism and acclimation to stress. In this review, we summarize the most recent findings on this topic, formulating hypotheses on the basis of the latest advances.  相似文献   

14.
Formation of reactive oxygen species (ROS) in mitochondrial isolates from gill tissues of the Antarctic polar bivalve Laternula elliptica was measured fluorimetrically under in vitro conditions. When compared to the rates measured at habitat temperature (1 degrees C), significantly elevated ROS formation was found under temperature stress of 7 degrees C and higher. ROS formation correlated significantly with oxygen consumption in individual mitochondrial preparations over the entire range of experimental temperatures (1-12 degrees C). ROS generation per mg of mitochondrial protein was significantly higher in state 3 at maximal respiration and coupling to energy conservation, than in state 4+, where ATPase-activity is inhibited by oligomycin and only proton leakage is driving the residual oxygen consumption. The percent conversion of oxygen to the membrane permeant hydrogen peroxide amounted to 3.7% (state 3) and 6.5% (state 4+) at habitat temperature (1 degrees C), and to 7% (state 3) and 7.6% (state 4+) under experimental warming to 7 degrees C. This is high compared to 1-3% oxygen to ROS conversion in mammalian mitochondrial isolates and speaks for a comparatively low control of toxic oxygen formation in mitochondria of the polar bivalve. However, low metabolic rates at cold Antarctic temperatures keep absolute rates of mitochondrial ROS production low and control oxidative stress at habitat temperatures. Mitochondrial coupling started to fall beyond 3 degrees C, closely to pejus temperature (4 degrees C) of the bivalve. Accordingly, the proportion of state 4 respiration increased from below 30% at 1 degrees C to over 50% of total oxygen consumption at 7 degrees C, entailing reduced ADP/O ratios under experimental warming. Progressive mitochondrial uncoupling and formation of hazardous ROS contribute to bias mitochondrial functioning under temperature stress in vitro. Deduced from a pejus temperature, heat stress commences already at 5 degrees C, and is linked to progressive loss of phosphorylation efficiency, increased mitochondrial oxygen demand and elevated oxidative stress above pejus temperatures.  相似文献   

15.
16.
During low O2 (hypoxia), hypoxia-inducible factor (HIF)-alpha is stabilized and translocates to the nucleus, where it regulates genes critical for survival and/or adaptation in low O2. While it appears that mitochondria play a critical role in HIF induction, controversy surrounds the underlying mechanism(s). To address this, we monitored HIF-2alpha expression and oxygen consumption in an O2-sensitive immortalized rat adrenomedullary chromaffin (MAH) cell line. Hypoxia (2-8% O2) caused a concentration- and time-dependent increase in HIF-2alpha induction, which was blocked in MAH cells with either RNA interference knockdown of the Rieske Fe-S protein, a component of complex III, or knockdown of cytochrome-c oxidase subunit of complex IV, or defective mitochondrial DNA (rho0 cells). Additionally, pharmacological inhibitors of mitochondrial complexes I, III, IV, i.e., rotenone (1 microM), myxothiazol (1 microM), antimycin A (1 microg/ml), and cyanide (1 mM), blocked HIF-2alpha induction in control MAH cells. Interestingly, the inhibitory effects of the mitochondrial inhibitors were dependent on O2 concentration such that at moderate-to-severe hypoxia (6% O2), HIF-2alpha induction was blocked by low inhibitor concentrations that were ineffective at more severe hypoxia (2% O2). Manipulation of the levels of reactive oxygen species (ROS) had no effect on HIF-2alpha induction. These data suggest that in this O2-sensitive cell line, mitochondrial O2 consumption, rather than changes in ROS, regulates HIF-2alpha during hypoxia.  相似文献   

17.
BackgroundCobalt is an important metal cofactor of many living cells. However, excessive cobalt is toxic and can cause cell death and even several diseases in humans. Saccharomyces cerevisiae is a useful tool for studying metal homeostasis and many of the genes and pathways are highly conserved in higher eukaryotes including humans.MethodsThe intracellular cobalt and reactive oxygen species (ROS) levels were measured by an atomic absorption spectrometer and DHE staining method, respectively. The expression of genes involved in scavenging oxidative stress was tested by qPCR method, while the expression of UPRE-lacZ report gene was analyzed via β-galactosidase activity assay.ResultsUsing a genome-scale genetic screen, 153 cobalt-sensitive and 37 cobalt-tolerant gene deletion mutants were identified from Saccharomyces cerevisiae. We showed that 101 of the cobalt-sensitive mutants accumulated higher intracellular cobalt compared to wild-type. The intracellular ROS levels in 112 of the mutants were induced by cobalt, which might be caused by the decreased expression of genes involved in scavenging oxidative stress in response to cobalt. Moreover, more than one-third of the cobalt-sensitive mutants were also sensitive to tunicamycin, and cobalt stress might induce the unfolded protein response (UPR) through serine/threonine kinase and endoribonuclease Ire1.ConclusionsThis study reinforced the fact that cobalt toxicity might be due to the high intracellular cobalt and ROS levels, and the endoplasmic reticulum stress responses induced by cobalt.General significanceElucidating the toxicity mechanisms of cobalt stress response will help reveal new routes for the treatment of the diseases induced by cobalt.  相似文献   

18.
Yang C  Yang Z  Zhang M  Dong Q  Wang X  Lan A  Zeng F  Chen P  Wang C  Feng J 《PloS one》2011,6(7):e21971
Hydrogen sulfide (H(2)S) has been shown to protect against oxidative stress injury and inflammation in various hypoxia-induced insult models. However, it remains unknown whether H(2)S protects human skin keratinocytes (HaCaT cells) against chemical hypoxia-induced damage. In the current study, HaCaT cells were treated with cobalt chloride (CoCl(2)), a well known hypoxia mimetic agent, to establish a chemical hypoxia-induced cell injury model. Our findings showed that pretreatment of HaCaT cells with NaHS (a donor of H(2)S) for 30 min before exposure to CoCl(2) for 24 h significantly attenuated CoCl(2)-induced injuries and inflammatory responses, evidenced by increases in cell viability and GSH level and decreases in ROS generation and secretions of IL-1β, IL-6 and IL-8. In addition, pretreatment with NaHS markedly reduced CoCl(2)-induced COX-2 overexpression and PGE(2) secretion as well as intranuclear NF-κB p65 subunit accumulation (the central step of NF-κB activation). Similar to the protective effect of H(2)S, both NS-398 (a selective COX-2 inhibitor) and PDTC (a selective NF-κB inhibitor) depressed not only CoCl(2)-induced cytotoxicity, but also the secretions of IL-1β, IL-6 and IL-8. Importantly, PDTC obviously attenuated overexpression of COX-2 induced by CoCl(2). Notably, NAC, a ROS scavenger, conferred a similar protective effect of H(2)S against CoCl(2)-induced insults and inflammatory responses. Taken together, the findings of the present study have demonstrated for the first time that H(2)S protects HaCaT cells against CoCl(2)-induced injuries and inflammatory responses through inhibition of ROS-activated NF-κB/COX-2 pathway.  相似文献   

19.
20.
Cell wall integrity is crucial for fungal growth, development and stress survival. In the model yeast Saccharomyces cerevisiae, the cell integrity Mpk1/Slt2 MAP kinase and calcineurin pathways monitor cell wall integrity and promote cell wall remodelling under stress conditions. We have identified the Cryptococcus neoformans homologue of the S. cerevisiae Mpk1/Slt2 MAP kinase and have characterized its role in the maintenance of cell integrity in response to elevated growth temperature and in the presence of cell wall synthesis inhibitors. C. neoformans Mpk1 is required for growth at 37 degrees C in vitro, and this growth defect is suppressed by osmotic stabilization. C. neoformans mutants lacking Mpk1 are attenuated for virulence in the mouse model of cryptococcosis. Phosphorylation of Mpk1 is induced in response to perturbations of cell wall biosynthesis by the antifungal drugs nikkomycin Z (a chitin synthase inhibitor), caspofungin (a beta-1,3-glucan synthase inhibitor), or FK506 (a calcineurin inhibitor), and mutants lacking Mpk1 display enhanced sensitivity to nikkomycin Z and caspofungin. Lastly, we show that calcineurin and Mpk1 play complementing roles in regulating cell integrity in C. neoformans. Our studies demonstrate that pharmacological inhibition of the cell integrity pathway would enhance the activity of antifungal drugs that target the cell wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号