首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Barley seedlings 48 h after the onset of germination on filter paper treated for 24 h by 1 mM cadmium (Cd), 3 mM nickel (Ni) or 0.5 mM mercury (Hg) showed similar approximately 45% root growth inhibition. Although root growth inhibition was similar, loss of cell viability evaluated, as Evans blue uptake was distinct among Cd, Ni and Hg treated roots. While Cd and Hg caused cell death along the whole barley root (0–8 mm), Ni induced significant loss of cell viability only in root cells 6–8 mm distance from the root tip. Our results suggest that different metabolic processes are activated in different parts of barley root in relation to distance from the root tip during heavy metal (HM) treatment. Some of them are characteristic for several HMs such as inhibition of ascorbic acid oxidase or glutathione-S-transferase stimulation, while others are specific for individual HMs, e.g. activation of acid phosphatase and lipoxygenase by Cd and Hg, or inhibition of ascorbate peroxidase by Ni and Hg treatment.  相似文献   

2.
All of the analyzed heavy metals significantly inhibited root growth, but in addition to Cd exposure an elevated IAA-POD activity was detected under Co, Cu and Hg treatment, while Ni and Pb inhibited its activity. The Cd-induced IAA-POD activity increased from the root apex towards to the mature region of root tips. However similar or even more severe root growth inhibition was observed by exogenously applied IAA, IAA-POD activity was activated only at high IAA concentrations. Elevated Cd-induced H2O2 production was detected both in the absence or in the presence of IAA in the reaction mixture, but in the case of IAA as a possible substrate for PODs the production of H2O2 increased markedly just in the Cd-treated roots. Exogenously applied H2O2 also activated IAA-POD activity. Our results indicated that in the development of Cd toxicity syndrome the production of ROS during IAA degradation by elevated IAA-POD activity plays a crucial role, mainly under severe Cd stress.  相似文献   

3.
Maize root peroxidases (POD) may also have polyphenol oxidase (PPO) activity as shown by using 3-amino-9-ethylcarbazole or DOPA as hydrogen donor to detect isoenzymes after disc gel electrophoresis. Copper chelators inhibited POD activity, and since PODs are haemoproteins, it can be concluded that copper chelators are not entirely specific for Cu enzymes. This raises the question whether PPO are only Cu enzymes. In POD preparations contaminated by catalase, POD activity could be over-estimated; this could be due to the auto-oxidation of the hydrogen donor or to stimulation of PPO activity by oxygen, as demonstrated with DOPA, dopamine and gallic acid. No correlation was found between the chemical nature of the substrate and the type of peroxidatic or oxidatic oxidation.  相似文献   

4.
Transient exposure of barley roots to Cd, IAA or H2O2 for 30 min resulted in a significant root growth inhibition. Cd significantly increased the GST activity of roots 6 h after the end of short-term treatment. This increase was more relevant in root segment containing differentiation zone than in root segment just immediately behind the root apex. In contrast to Cd treatment, the short-term exposure of barley roots to IAA resulted in a significant increase of GST activity along the whole root tip and this increase was detectable already 3 h after the treatment with 10 μM IAA. Similarly to IAA, exogenously applied 10 mM H2O2 for 30 min caused significant increase of GST activity along the whole root tip 6 h after the treatment. This increase was already detectable 3 h after the exposure, but only in the differentiation zone of root tip. Auxin influx or signalling inhibitor considerable decreased the Cd- or IAA-induced GST activity in barley root tips. The strong activation of GST even after a brief exposure of barley roots to Cd support the crucial role of GST in the Cd-induced stress response in which presumably IAA and H2O2 play an important signalling role including the activation of GST.  相似文献   

5.
In the present work we investigated the activity of glutathione S-transferase (GST) and glutathione peroxidase (GPX) in barley root tip and their relation to root growth inhibition induced by different abiotic stresses. Cadmium-induced root growth inhibition is strongly correlated with increased GST and GPX activity. Similarly, strong induction of GPX and GST activity was observed in Hg-treated root tips, where also the highest root growth inhibition was detected. Relationship between increased GST activity and root growth inhibition was also observed during other heavy metal treatments. On the other hand, only a slight increase of GPX activity was observed after application of Pb, Ni, and Zn, while Co did not affect GPX activity. Similarly to Hg and Cd, Cu treatment caused a strong increase in GPX activity. GPX activity in barley root tips was not affected by cold, heat or drought treatment and only a slight increase was observed after salt or H2O2 treatment. Apart from salt treatment, only a weak increase in GST activity was observed during heat, drought and H2O2 stresses, while during cold treatment its activity slightly decreased. Some detected differences in the spatial distribution of GST and GPX activity along the root tip suggests that at least two proteins are responsible for these activities. These proteins play a crucial role not only during stresses, but also in unstressed seedlings in the differentiation processes of root tip. The application of different inhibitors suggests that the main proportion of these activities detected in barley root tip are probably catalysed by GSTs possessing also GPX activity.  相似文献   

6.
The plant cytoskeleton orchestrates such fundamental processes in cells as division, growth and development, polymer cross-linking, membrane anchorage, etc. Here, we describe the influence of Cd2+, Ni2+, Zn2+, and Cu2+ on root development and vital organization of actin filaments into different cells of Arabidopsis thaliana line expressing GFP-FABD2. CdSO4, NiSO4, CuSO4, and ZnSO4 were used in concentrations of 5–20 µM in this study. It was found that Cd, Ni, and Cu cause dose-dependent primary root growth inhibition and alteration of the root morphology, whereas Zn slightly stimulates root growth and does not affect the morphology of Arabidopsis roots. This growth inhibition/stimulation correlated with the various sensitivities of microfilaments to Cd, Ni, Cu, and Zn action. It was established that Cd, Ni, and Cu affected predominantly the actin filaments of meristematic cells. Cells of transition and elongation zones demonstrated strong actin filament sensitivity to Cd and Cu. Microfilaments of elongating root cells were more sensitive to Ni and Cu. Although Cd, Ni, and Cu stimulated root hair growth after long-term treatment, actin filaments were destroyed after 1 h exposure with these metals. Zn did not disrupt native actin filament organization in root cells. Thus, our investigation shows that microfilaments act as sensitive cellular targets for Cd, Ni, and Cu. More data on effects on native actin filaments organization would contribute to a better understanding of plant tolerance mechanisms to the action of these metals.  相似文献   

7.
The effect of Cd on oxalate oxidase (OxO) activity and its localisation were analysed in barley root. In Cd-treated roots OxO activity was strongly induced in the region 2–4 mm behind the root tip and in the area toward the root base. In situ analyses showed that Cd-induced OxO activity was localised to the cell wall (CW) of early metaxylem vascular bundles and surrounding parenchyma cells and was accompanied by lignification of metaxylem vessels. OxO activation was also observed during treatment with other heavy metals (HMs), salt treatment and at elevated non-optimal temperature. In contrast to HM activation of OxO and lignification, high temperature and NaCl indeed activated OxO but did not induce lignification of metaxylem vessels. These results suggest that oxalate oxidase as an H2O2-generating enzyme is activated in response to several stresses, however the ectopic lignification of metaxylem vessels is activated specifically by HMs. This HM-induced premature root xylogenesis due to ectopic lignification of metaxylem vessels probably causes shortening of the root elongation zone and therefore a reduction in root growth.  相似文献   

8.
The effect of Cd on oxalate oxidase (OxO) activity and its localisation were analysed in barley root. In Cd-treated roots OxO activity was strongly induced in the region 2–4 mm behind the root tip and in the area toward the root base. In situ analyses showed that Cd-induced OxO activity was localised to the cell wall (CW) of early metaxylem vascular bundles and surrounding parenchyma cells and was accompanied by lignification of metaxylem vessels. OxO activation was also observed during treatment with other heavy metals (HMs), salt treatment and at elevated non-optimal temperature. In contrast to HM activation of OxO and lignification, high temperature and NaCl indeed activated OxO but did not induce lignification of metaxylem vessels. These results suggest that oxalate oxidase as an H2O2-generating enzyme is activated in response to several stresses, however the ectopic lignification of metaxylem vessels is activated specifically by HMs. This HM-induced premature root xylogenesis due to ectopic lignification of metaxylem vessels probably causes shortening of the root elongation zone and therefore a reduction in root growth.  相似文献   

9.
Short-term exposure (15 min) of barley roots to different chemical elements revealed that Cd, Cu, Hg and Pb were the most toxic ones causing a marked root growth inhibition even at µM concentrations. Gd, La, Al, Cr, As, Zn, Ni and Se inhibited root growth to a similar extent only at mM concentrations. Despite the high 20 mM concentration, Co caused only a slight, while Mn, Mg or Ca did not evoke any root growth inhibition. Elements at concentrations inhibiting root growth caused a considerable accumulation of indole-3-acetic acid in the root apex. While Cr, As and Zn inhibited, Cd, Cu, Hg, Pb, Gd, La and Al markedly stimulated the generation of reactive oxygen species in the beginning of differentiation zone. Auxin signalling inhibitor alleviated or prevented root growth inhibition, reactive oxygen species generation and the stimulation of lipoxygenase and glutathione peroxidase activity by various elements, indicating a key role of auxin signalling in the stress response of barley root tip. On the other hand, it did not affect or even had an additive effect on dehydroascorbate reductase and ascorbic acid oxidase activity in combination with different elements. Our results indicate that the primary response of barley roots to the presence of various chemical elements during the short-term treatment is not a specific but rather a general adaptive stress response enabling the plant to survive adverse conditions.  相似文献   

10.
重金属复合胁迫下碱蓬萌发生长及富集特征   总被引:1,自引:0,他引:1  
为探究重金属复合胁迫对金川镍铜矿区广布植物碱蓬Suaeda salsa(L.)Pall.的影响,根据当地环境条件及预实验结果设置胁迫梯度,测定分析重金属胁迫下碱蓬种子萌发和芽期生理指标,并从野外站台取样研究碱蓬重金属富集能力。结果表明:无论是单一胁迫还是低浓度复合胁迫(Cu20和Ni20复合),发芽期碱蓬的生长均呈现"低促高抑"的趋势,即低浓度(≤40 mg/L)时促进碱蓬生长,高浓度(≥80 mg/L)时抑制碱蓬生长;高浓度复合胁迫(Cu320和Ni320复合)下均抑制碱蓬的生长。MDA(丙二醛)的含量随胁迫浓度的增加而增加;胁迫组可溶性蛋白和游离脯氨酸含量整体上高于对照组;单一胁迫下POD(过氧化物酶)活性随胁迫浓度增加而增加;复合胁迫下低浓度提高POD活性,高浓度抑制POD活性;碱蓬叶片的平均转移系数(TF)大于茎部,且平均转移系数大于1.00;碱蓬叶片的富集系数(BCF)大于根部大于茎部。碱蓬对Cu和Ni均具有很高的耐受性,但对于Cu的耐性强于Ni;低浓度时Cu、Ni复合胁迫对碱蓬生长的促进作用强于Cu、Ni单一胁迫,高浓度时则相反;碱蓬具有较高的重金属富集和转移能力;在当前矿区土壤环境背景下,碱蓬可以作为矿区生态恢复和重金属污染修复的备选植物。  相似文献   

11.
Copper (Cu2+) significantly inhibits the growth of radish (Raphanus sativus) seedlings at the concentration of 1 μM. As far as the relationship between the growth of radish roots and peroxidase (POD) activity is concerned, the reduction of radish roots is correlated with the induction of cationic and anionic PODs. The data show that the increase of cationic PODs (pI 8.6 and pI 9.3) and anionic PODs (pI 5.1 and pI 3.5) activities was correlated with the rise in lignin content in Cu-treated tissues. In our investigation, among the radish root PODs, the cationic pI 8.6 POD isozyme displayed a high affinity (Km of 57.9 μM) for syringaldazine and the similar value of catalytic efficiency jointly with the anionic pI 5.1 POD, 0.14 and 0.12 μM–1 s–1, respectively. The results suggest that the increase of cationic POD (pI 8.6) induced by Cu treatment can be a good candidate for lignification in radish roots.  相似文献   

12.
Spermidine applied for 18 h to intact maize seedlings through their roots reduces root growth 70%, and the effect is reversible. Histological observations of longitudinal sections of 0.4-cm root apical segments from 2-day-old maize seedlings grown for 18 h in 0.5 m CaSO4 solution with or without 1 mm spermidine contribute to the explanation of spermidine-dependent slow root growth. In the meristematic zone a strong reduction of the mitotic index and in the elongation zone an inhibition of cell elongation occur simultaneously. Cell shape analysis along the growth axis of the maize root apex expressed in terms of form factor (FCircle) values substantiates the dual effect of spermidine on mitotic activity and cell elongation.Abbreviations PA polyamine(s) - Spm spermine - Spd spermidine  相似文献   

13.
The localization, biotransformation, and chemical speciation of copper in root tips of cucumber (Cucumis sativus) were investigated using synchrotron-based micro X-ray fluorescence (μ-XRF) and micro X-ray absorption near edge structure (μ-XANES). The highest content of Cu was found in root cap and meristematic zone whereas low Cu content in elongation and maturation zone. There was a dramatic increase of Cu content in root cap and meristematic zone after treatment with 100 μM CuSO4 for 72 h. The μ-XANES analysis revealed that most of Cu in root tip was bound with alginate, citrate, and cysteine-like ligands whereas rarely deposited in form of CuO. From root cap to maturation zone, the proportion of Cu bound with alginate-like ligands increased whereas that bound with citrate-like ligands decreased. The proportion of Cu bound with cysteine-like ligands increased from root cap to elongation zone but sharply declined in maturation zone. The results suggested that Cu was chelated by S ligands in the cell walls which protect protoplasm against possible damage caused by Cu excess.  相似文献   

14.
Previously we identified a major quantitative trait locus (QTL) qTaLRO‐B1 for primary root length (PRL) in wheat. Here we compare proteomics in the roots of the qTaLRO‐B1 QTL isolines 178A, with short PRL and small meristem size, and 178B, with long PRL and large meristem size. A total of 16 differentially expressed proteins were identified: one, transforming growth factor (TGF)‐beta receptor‐interacting protein‐1 (TaTRIP1), was enriched in 178A, while various peroxidases (PODs) were more abundantly expressed in 178B. The 178A roots showed higher TaTRIP1 expression and lower levels of the unphosphorylated form of the brassinosteroid (BR) signaling component BZR1, lower expression of POD genes and reduced POD activity and accumulation of the superoxide anion O2? in the root elongation zone compared with the 178B roots. Low levels of 24‐epibrassinolide increased POD gene expression and root meristem size, and rescued the short PRL phenotype of 178A. TaTRIP1 directly interacted with the BR receptor TaBRI1 of wheat. Moreover, overexpressing TaTRIP1 in Arabidopsis reduced the abundance of unphosphorylated BZR1 protein, altered the expression of BR‐responsive genes, inhibited POD activity and accumulation of the O2? in the root tip and inhibited root meristem size. Our data suggested that TaTRIP1 is involved in BR signaling and inhibited root meristem size, possibly by reducing POD activity and accumulation of O2? in the root tip. We further demonstrated a negative correlation between the level of TaTRIP1 mRNA and PRL of landraces and modern wheat varieties, providing a valuable insight for better understanding of the molecular mechanism underlying the genotypic differences in root morphology of wheat in the future.  相似文献   

15.
In this study, we investigated responses of growing and intact tobacco (N. tabacum cv Xanthi) seedlings to a fungal elicitor, a xylanase from Trichoderma viride (TvX). In addition to the induction of defense gene expression, TvX treatment caused the retardation of growth of seedlings. In the TvX-treated seedlings, growth of primary roots was markedly reduced through repression of cell division and longitudinal cell elongation in a meristematic zone and an elongation zone, respectively. However, cell differentiation to form vascular bundles and root hairs continued. In the TvX-treated root cap, disappearance of starch granules in columella cells and aggregation of border cells were observed. Furthermore, the TvX-induced growth retardation was restored after removal of the elicitor, resulting in a plastic alteration of root architecture. Therefore, the fungal elicitor might act as an environmental cue that regulates root growth and development as well as the ordinary defense responses in plant seedlings. These findings suggest a novel aspect of plant growth regulation via a plant–microbe interaction in the rhizosphere.  相似文献   

16.
In the present study, we investigated the alteration of reactive oxygen species production along the longitudinal axis of barley root tips during Cd treatment. In unstressed barley root tips, H2O2 production decreased from the root apex towards the differentiation zone where again, a slight increase was observed towards the more mature region of root. An opposite pattern was observed for O 2 ?? and OH? generation. The amount of both O 2 ?? and OH? was highest in the elongation zone, decreased in the root apex and at the differentiation zone of root, then increased again towards the more mature region of root. An elevated Cd-induced O 2 ?? production started in the elongation zone and increased further along the differentiation zone of barley root tip. In contrast, Cd-induced H2O2 production was localised to the root elongation zone and to the beginning of the differentiation zone. In contrast to Cd-induced H2O2 and O 2 ?? production, Cd reduced OH? production along the whole barley root tip. Our results suggest that not only an increase but also the spatial distribution of reactive oxygen species production is involved in the Cd-induced stress response of barley root tip.  相似文献   

17.
Salix species are widely used as vegetation filters because of their flourishing root system and fast growth rate. However, studies have yet to determine whether the root system functions in vegetable filters with mixed heavy metal (HM) pollution or whether initial cutting participates in the phytoextraction of HMs. This study aims to determine the function of the root system and initial cutting as vegetation filters in the absorption and accumulation of Cd and Cu. Thick (>1?cm in diameter) and fine (<1?cm in diameter) initial cuttings of Salix matsudana were planted in a nutrient solution with single and mixed (Cd?+?Cu) treatments. The roots of several initial cuttings were removed daily to eradicate rhizofiltration. Results revealed that the existence of the root system altered distribution and interaction of Cd and Cu in plant organs and enhanced tolerance and phytoextraction capacity of plants. The initial cuttings could also absorb and accumulate HMs in the early growth stages of willow without roots. Cu inhibited the plant absorption and accumulation of Cd and promoted Cd transport to shoots. Cd inhibited the Cu absorption of the root system. Our study provided essential data regarding woody species as vegetation filters of HM pollution.  相似文献   

18.
This study evaluated the effect of composted cow manure (CCM) on the chemical fractionation and retention degree of heavy metals (HMs) in mine tailings from Zimapán, México. In a greenhouse experiment, mine tailings from three deposits were incubated for 3 months; experimental units were placed in a PVC container, where increasing doses of CCM were applied. HM pseudo-total concentrations, HM extractions with ethylenediaminetetraacetic acid (EDTA, 0.05 M), and a sequential chemical extraction (SCE) were carried out. The HM concentrations were determined by atomic absorption spectrophotometry. The pseudo-total concentrations of Pb, Cu, Cd, and Ni found were up to 1506, 206, 27, and 23 mg kg?1, respectively; extractable Pb was up to 42%; 21% for Cu; 51% for Cd; and 16% of Ni of the pseudo-total concentrations of each metal. Treatment with 12% of CCM in mine tailing decreased EDTA-extractable HM concentrations, while the SCE revealed a decrease in exchangeable fraction and an increase in the organic fraction of HM. A positive correlation between CCM application and organic fractions of HMs was found, although the highest increasements were recorded in the organic fraction.  相似文献   

19.
The expression of defence-related peroxidases Prx7 and Prx8 in barley roots grown under selected abiotic stress conditions (toxic metals: Cd, Al, Co, Cu, Hg; drought, salinity, extreme temperatures: heat, cold) and compounds activating (2,4-D) or inhibiting (SHAM) POD activity as well as H2O2 and H2O2 scavenger (DTT) was characterized. Strong Cd concentration dependent expression of Prx8 peroxidase gene was observed, which correlated with root growth inhibition induced by Cd- and some other stress factors (heavy metals, heat and salinity). Application of H2O2 did not cause changes in expression of Prx8, but H2O2 scavenger (DTT) as well as the inhibitor (SHAM) and the activator (2,4-D) of PODs induced increase in Prx8 expression. Our results demonstrate that root growth inhibition during any disturbance of active oxygen species (AOS) in root tissue is correlated with up-regulation of Prx8 gene expression in barley roots.  相似文献   

20.
Currently, heavy metal (HM) contamination in greenhouse soils is a significant concern due to the rapid expansion of greenhouse agriculture. However, it is difficult to accurately assess HM pollution in greenhouse soils in China due to the lack of local geochemical baseline concentrations (GBCs) or corresponding background values. In the present study, the GBCs of HMs in Dongtai, a representative greenhouse area of China, were established from subsoils using cumulative frequency distribution (CFD) curves. The pollution levels of HMs and potential ecological risks were investigated using different quantitative indices, such as geo-accumulation index (Igeo), pollution index (PI), pollution load index (PLI) and ecological risk index (RI), based on these regional GBCs. The total concentrations of six metals (Cd, Cr, Cu, Ni, Pb and Zn) in surface soils were determined and shown to be lower than the concentrations reported in other greenhouse regions of China. The GBCs of Cd, Cr, Cu, Ni, Pb and Zn were 0.059–0.092, 39.20–54.50, 12.52–15.57, 20.63–23.26, 13.43–16.62 and 43.02–52.65 mg kg−1, respectively. Based on this baseline criterion, Cd, Pb and Zn accumulated in the surface soils because they were present at concentrations higher than their baseline values. The soils were moderately polluted by Cd according to the Igeo values, and the PI results indicated that moderate Cd contamination was present in this area. The large variation of Igeo value of Cd revealed that Cd in this area was likely influenced by agricultural activities. The PLI showed that most of the study area was moderately polluted. However, an analysis of the RI showed that the investigated HMs had low ecological risks. Correlation analysis and principle component analysis suggested that the Cd, Pb and Zn in the greenhouse soils mainly originated from anthropogenic sources (agricultural activities, atmospheric deposition etc.), while Cr, Cu, and Ni originated from natural sources. The findings of this study illustrated the necessity of GBC establishment at the local scale to facilitate more accurate HM evaluation of greenhouse soils. It is advisable to pay more attention to Cd, which could cause environmental problems in the greenhouse system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号