首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xanthan gum (XG) is one of the most effective thickener agents used worldwide. In foods products, one of the factors affecting its physical properties is the ionic strength of the medium. Though it is well known that XG rheological properties in aqueous media depend on both type and concentration of electrolytes, correlations between such dispersion properties and molecular aspects of dispersed XG chains are still to be more deeply studied. Thus, in the present study, aqueous XG dispersions [200 mg?(100 mL)?1] added of Na, K, Mg or Ca chlorides (ionic strength 50 mM or 100 mM) were rheologically characterized, and the corresponding results were explained based on different physicochemical analyses. Comparing to the control (unsalted XG dispersion), KCl and CaCl2 tended to produce a more drastic decrease of apparent viscosities of XG dispersions than NaCl and MgCl2. In dynamic-oscillatory assays, the predominance of elastic character over viscous character was more evident for XG dispersions containing KCl and CaCl2, in particular at frequencies > 0.1 Hz. XG dispersions containing KCl or CaCl2 also presented smaller pH and |ζ-potentials| values, as well as greater densities and average hydrodynamic diameters of dispersed XG chains, when compared to respective counterparts containing NaCl or MgCl2. As the decreasing order of the cations radii is K+?>?Ca2+ ≈ Na+?>?Mg2+, our results allowed deducing that not only the net electric charges of the cations, but also their sizes, should be considered when analyzing the effect of chloride salts on rheological properties of XG aqueous dispersions, according to the desired for this hydrocolloid (weak thickener, strong thickener or pro-gelling agent).  相似文献   

2.
The objective of this research was to use a counter-current leaching process (CCLP) with leachate treatment to develop a remediation process for contaminated soils at a small-arms shooting range (SASR). The soil contaminant concentrations were 245 mg Cu kg?1, 3,368 mg Pb kg?1, 73 mg Sb kg?1, and 177 mg Zn kg?1. The CCLP includes three acid leaching steps (1M H2SO4 + 4M NaCl, t = 1 h, T = 20°C, soil suspension = 100 g L?1), followed by one water rinsing step (1 h). Seven counter-current remediation cycles were completed, and the average resulting metal removals were 93.2 ± 3.5% of Cu, 91.5 ± 5.7% of Pb, 82.2 ± 10.9% of Sb, and 30.0 ± 11.4% of Zn. The metal leaching performances decreased with the number of completed cycles. Soil treated with the CCLP with leachate treatment process met the USEPA threshold criteria of 5 mg Pb L?1 in the TCLP leachate. The CCLP allows a decrease of the water use by 32.9 m3 t?1 and the chemicals’ consumption by approximately 2,650 kg H2SO4, 6,014 kg NaCl, and 1,150 kg NaOH per ton of treated soil, in comparison to standard leaching processes. This corresponds to 78%, 69%, 83%, and 67% of reduction, respectively.  相似文献   

3.
A sandy culture experiment was conducted to investigate the effects of exogenous CaCl2 on the indole alkaloid accumulation in Catharanthus roseus under salt stress. One-month seedlings of C. roseus were treated with the different concentrations of NaCl (0, 50, and 100 mmol l? 1) and 7.5 mmol l? 1 CaCl2. The plant samples were analyzed after 7 days of the treatments. The NaCl-stressed plants showed decrease of fresh and dry weight and increase of malondialdehyde (MDA) content compared to control. Tryptophan decarboxylase (TDC) activity increased significantly under 50 mmol l? 1 NaCl without CaCl2 addition, 50 mmol l? 1 NaCl with 7.5 mmol l? 1 CaCl2, and CaCl2 treatment without NaCl addition. There was a significant increase in peroxidase activity under NaCl stress compared to control. The vindoline, catharanthine, vincristine, and vinblastine contents increased under salt stress (especially with 50 mmol l? 1 NaCl treatment with or without CaCl2). Addition of CaCl2 to NaCl-stressed plants increased biomass, TDC activity, vindoline, and catharanthine contents and lowered MDA and vincirstine contents compared to the plants without CaCl2. The plants treated with CaCl2 alone showed higher TDC activity, vindoline, catharanthine, and vinblastine content when compared to control. The results showed that exogenous CaCl2 could promote the indole alkaloid metabolism under salt stress.  相似文献   

4.
An in vitro plant regeneration system was established from the spores of Pteris vittata and identification of its tolerance, and accumulation of gametophytes and callous, to arsenic (As) and copper (Cu) was investigated. The highest frequency (100%) of callus formation was achieved from gametophyte explants treated with 0.5 mg l?1 6-benzylaminopurine (6-BA) + 0.5 mg l?1 gibberellin acid (GA). Furthermore, sporophytes were differentiated from the callus tissue derived from gametophyte explants on MS medium supplemented with 0.5 mg l?1 6-BA, 0.5–1.0 mg l?1 GA and additional 300 mg l?1 lactalbumin hydrolysate (LH) for 4 weeks. The optimum combination of ½ MS + 1.0 mg l?1 GA + 0.5 mg l?1 6-BA + 300 mg l?1 LH promoted sporophyte formation on 75 ± 10% of the callus. Every callus derived from gametophyte explants could achieve 3–4 sporophytes. The in vitro growth of gametophyte and callus was accelerated in the medium containing Na3AsO4 lower than 0.5 mM, but this growth was inhibited with 2 mM Na3AsO4. And with the increase of Na3AsO4 in the culture medium from 0 to 2 mM, the As accumulation in gametophytes and callus increased and achieved a level of 763.3 and 315.4 mg kg?1, respectively. Gametophytes and calluses transplanted to culture medium, supplemented with different concentrations of CuSO4, are similar to those in Na3AsO4, and the Cu accumulation in gametophytes could achieve 7,940 mg kg?1 when gametophytes were subcultured in medium containing 3 mM CuSO4. These results suggested that the high efficiency propagation system could be a useful and rapid means to identify other heavy metal tolerance and accumulation. Further, the regeneration ability of callus made it possible for genetic transformation of this fern.  相似文献   

5.
The roles of gibberellic acid (GA3) and ethylenediaminetetraacetic acid (EDTA) in phytoremediation of cadmium (Cd)-contaminated soil by Parthenium hysterophorus plant was investigated. GA3 (10?9, 10?7, and 10?5M) was applied as a foliar spray. EDTA was added to soil in a single dose (160 mg/kg soil) and split doses (40 mg/kg soil, four split doses). GA3 and EDTA were used separately and in various combinations. P. hysterophorus was selected due to its fast growth and unpalatable nature to herbivores to reduce the entrance of metal into the food chain. The Cd phytoextraction potential of the P. hysterophorus plant was evaluated for the first time. Cd significantly reduced plant growth and dry biomass (DBM). GA3 alone increased the plant growth and biomass in Cd-contaminated soil, whereas EDTA reduced it. GA3 in combination with EDTA significantly increased the growth and biomass. The highest significant DBM was found in treatment T3 (10?5M GA3). All treatments of GA3 or EDTA significantly enhanced the plant Cd uptake and accumulation compared with control (C1). The highest significant root and stem Cd concentrations were found in the combination treatment T11 (GA3 10?5M + EDTA split doses), whereas in leaves it was found in the EDTA treatments. Cd concentration in plant parts increased in the order of stem < leaves < roots. The combination treatment T9 (GA3 10?7M + EDTA split doses) showed the significantly highest total Cd accumulation (8 times greater than control C1, i.e., only Cd used). The GA3 treatments accumulated more than 50% of the total Cd in the roots, whereas the EDTA treatments showed more than 50% in the leaves. Root dry biomass showed a positive and significant correlation with Cd accumulation. GA3 is environment friendly as compared with EDTA. Therefore, further investigation of GA3 is recommended for phytoremediation research for the remediation of metal-contaminated soil.  相似文献   

6.
Greenhouse-grown cut flower roses are often irrigated with moderately saline irrigation water. The salt/ballast ions are either present initially in poor quality raw water or reclaimed municipal water, or accumulated in greenhouse irrigation water that is captured and reused. Such ions can inhibit root absorption of essential nutrients. The objective of this work was to quantify the influence of NaCl concentration on the uptake of nitrate and potassium by roses and develop a predictive model of uptake inhibition based on NaCl, NO3 ?, and K+ concentration. One year-old rose plants (Rosa spp. ‘Kardinal’ on ‘Natal Briar’ rootstock) were moved into growth chambers where nitrogen and potassium depletion were monitored during 6 days. Eight different initial NaCl treatments varying from zero to 65 mol m?3 were used and within these there were two initial NO3 ? and K+ concentrations: high concentration (HC, 7.0 mol m?3 and 2.6 mol m?3 NO3 ? and K+ respectively) or low concentration (LC, 3.5 mol m?3 and 1.3 mol m?3 NO3 ? and K+ respectively). Plant NO3 ? uptake was negatively affected by NaCl concentration. NO3 ? maximum influx (Imax) declined from 5.1 µmol to 2.5 µmol per gram of plant dry weight per hour as NaCl concentration increased from zero to 65 mol m?3. A modified Michaelis–Menten (M–M) equation taking into account inhibition by NaCl provided the best fit for NO3 ? uptake in response to varying NaCl concentration. K+ uptake was unaffected by NaCl concentration. A M–M equation that did not include inhibition was suitable for describing K+ uptake at varying NaCl concentration. The resulting empirical models could assist with decision making, such as: adjustment of NO3 ? fertilization based on NaCl concentration, necessity of water desalinization, or determination of the desired leaching fraction.  相似文献   

7.
The influence of Ca2+ salts on the resistance of red-osier dogwood (Cornus sericea) seedlings to salinity was investigated. Red-osier dogwood seedlings were exposed to 5 and 10 mM of CaCl2 or CaSO4 in the presence or absence of 50 mM NaCl for 40 days in a controlled environment. Seedlings exposed to CaCl2 and CaSO4 recovered from NaCl-induced transpiration reduction after 20 days at a concentration of 10 mM and after 30 days at a concentration of 5 mM; while in absence of additional Ca2+, the seedlings recovered only after 40 days. Addition of 10 mM Ca2+ to NaCl treatment also limited the accumulation of proline in leaf tissues and caused an increase in leaf and lateral shoot K+ content. These results suggest that 10 mM Ca2+ could alleviate, at least in part, the osmotic effect of NaCl on red-osier dogwood via control of stomatal closure. On the other hand, ion analysis showed that Ca2+ addition was able to reduce the NaCl-induced Na+ concentration only in stem tissues suggesting that Ca2+ had only a limited effect on the ionic stress. The present study also showed an unexpected NaCl-induced increase in Ca2+ content of leaves, lateral shoots and stems that was not observed in our previous hydroponics experiments and seems to be more characteristic of plants growing on sandy soils.  相似文献   

8.
Growth, osmotic adjustment, antioxidant enzyme defense and principle medicinal component bacoside A was studied in in vitro raised shoots of Bacopa monnieri under different concentrations of KCl and CaCl2 (0, 50, 100, 150 or 200 mM). Significant reduction was observed in shoot number per culture; shoot length, fresh weight, dry weight and tissue water content (TWC) when shoots were exposed to increasing KCl and CaCl2 concentrations (50–200 mM) as compared to control. Minimum damage to the membrane as assessed by malondialdehyde (MDA) content was noticed in control in contrast to sharp increase in KCl and CaCl2 stressed shoots. Higher amounts of free proline, glycine betaine and total soluble sugars (TSS) accumulated in KCl and CaCl2 exposed shoots compared to the controls. Among different concentrations of KCl and CaCl2, increasing concentration of CaCl2 showed more increase in osmolyte accumulation. Na+ content decreased with increasing concentrations of KCl and CaCl2. Accumulation of K+ increased significantly in KCl (50–100 mM) stressed shoots as compared to control, while it decreased in CaCl2 treated shoots indicating that it prevents the uptake of K+ ions. Ca2+ accumulation significantly increased with increasing concentrations of CaCl2 up to 150 mM but decreased at higher concentrations. Shoots treated with KCl and CaCl2 (0–100 mM) showed higher antioxidant enzyme (SOD, CAT, APX and GPX) activities but KCl suppressed the activities at higher concentrations. Accumulation of bacoside A was enhanced with an increase in KCl and CaCl2 concentration up to 100 mM. It appears from the data that accumulation of osmolytes, and elevated activities of antioxidant enzymes play an important role in osmotic adjustment in shoot cultures of Bacopa and the two salts tested have a positive effect on bacoside accumulation.  相似文献   

9.
Suaeda fruticosa Forssk is a leaf succulent obligate halophyte that produces numerous seeds under saline conditions. Seeds are a good source of high quality edible oil and leaves are capable of removing substantial amount of salt from the saline soil besides many other economic usages. Little is known about the biochemical basis of salt tolerance in this species. We studied some biochemical responses of S. fruticosa to different exogenous treatments under non-saline (0 mM), moderate (300 mM) or high (600 mM) NaCl levels. Eight-week-old seedlings were sprayed twice a week with distilled water, hydrogen peroxide (H2O2, 100 μM), glycine betaine (GB, 10 mM), or ascorbic acid (AsA, 20 mM) for 30 days. At moderate (300 mM) NaCl, leaf Na+, Ca2+ and osmolality increased, along with unchanged ROS and antioxidant enzyme activities, possibly causing a better plant growth. Plants grew slowly at 600 mM NaCl to avoid leaf Na+ buildup relative to those at 300 mM NaCl. Exogenous application of distilled water and H2O2 improved ROS scavenging mechanisms, although growth was unaffected. ASA and GB alleviated salt-induced growth inhibition at 600 mM NaCl through enhancing the antioxidant defense system and osmotic and ion homeostasis, respectively.  相似文献   

10.
A novel gene (amyZ) encoding a cold-active and salt-tolerant α-amylase (AmyZ) was cloned from marine bacterium Zunongwangia profunda (MCCC 1A01486) and the protein was expressed in Escherichia coli. The gene has a length of 1785 bp and encodes an α-amylase of 594 amino acids with an estimated molecular mass of 66 kDa by SDS-PAGE. The enzyme belongs to glycoside hydrolase family 13 and shows the highest identity (25 %) to the characterized α-amylase TVA II from thermoactinomyces vulgaris R-47. The recombinant α-amylase showed the maximum activity at 35 °C and pH 7.0, and retained about 39 % activity at 0 °C. AmyZ displayed extreme salt tolerance, with the highest activity at 1.5 M NaCl and 93 % activity even at 4 M NaCl. The catalytic efficiency (k cat/K m) of AmyZ increased from 115.51 (with 0 M NaCl) to 143.30 ml mg?1 s?1 (with 1.5 M NaCl) at 35 °C and pH 7.0, using soluble starch as substrate. Besides, the thermostability of the enzyme was significantly improved in the presence of 1.5 M NaCl or 1 mM CaCl2. AmyZ is one of the very few α-amylases that tolerate both high salinity and low temperatures, making it a potential candidate for research in basic and applied biology.  相似文献   

11.
Withania somnifera is an important medicinal plant that contains withanolides as bioactive compounds. We have investigated the effects of macroelements and nitrogen source in hairy roots of W. somnifera with the aim of optimizing the production of biomass and withanolide A content. The effects of the macroelements NH4NO3, KNO3, CaCl2, MgSO4 and KH2PO4 at concentrations of 0, 0.5, 1.0, 1.5 and 2.0× strengths and of nitrogen source [NH4 +/NO3 ? (0.00/18.80, 7.19/18.80, 14.38/18.80, 21.57/18.80, 28.75/18.80, 14.38/0.00, 14.38/9.40, 14.38/18.80, 14.38/28.20 and 14.38/37.60 mM)] in Murashige and Skoog medium were evaluated for biomass and withanolide A production. The highest accumulation of biomass (139.42 g l?1 FW and 13.11 g l?1 DW) was recorded in the medium with 2.0× concentration of KH2PO4, and the highest production of withanolide A was recorded with 2.0× KNO3 (15.27 mg g?1 DW). The NH4 +/NO3 ? ratio also influenced root growth and withanolide A production, with both parameters being larger when the NO3 ? concentration was higher than that of NH4 +. Maximum biomass growth (148.17 g l?1 FW and 14.79 g l?1 DW) was achieved at NH4 +/NO3 ? ratio of 14.38/37.60 mM, while withanolide A production was greatest (14.68 mg g?1 DW) when the NH4 +/NO3 ? ratio was 0.00/18.80 mM. The results are useful for the large scale cultivation of Withania hairy root culture for the production of withanolide A.  相似文献   

12.
The use of plant growth regulators is well established and they are used in many fields of plant science for enhancing growth. Brassica juncea plants were treated with 2.5, 5.0 and 7.5 μM auxin indole-3-butyric acid (IBA), which promotes rooting. The IBA-treated plants were also sprayed with 100 μM gibberellic acid (GA3) and kinetin (Kin) to increase leaf-foliage. Gold (I) chloride (AuCl) was added to the growth medium of plants to achieve required gold concentration. The solubilizing agent ammonium thiocyanate (1 g kg?1) (commonly used in mining industries to solubilize gold) was added to the nutrient solution after six weeks of growth and, two weeks later, plants were harvested. Plant growth regulators improved shoot and root dry biomass of B. juncea plants. Inductively Coupled Plasma Optical Emission Spectrometry analysis showed the highest Au uptake for plants treated with 5.0 μM IBA. The average recovery of Au with this treatment was significantly greater than the control treatment by 45.8 mg kg?1 (155.7%). The other IBA concentrations (2.5 and 7.5 μM) also showed a significant increase in Au uptake compared to the control plants by 14.7 mg kg?1 (50%) and 42.5 mg kg?1 (144.5%) respectively. A similar trend of Au accumulation was recorded in the roots of B. juncea plants. This study conducted in solution culture suggests that plant growth regulators can play a significant role in improving phytoextraction of Au.  相似文献   

13.
High salinity wastewaters have limited treatment options due to the occurrence of salt inhibition in conventional biological treatments. Using recirculating marine aquaculture effluents as a case study, this work explored the use of Constructed Wetlands as a treatment option for nutrient and salt loads reduction. Three different substrates were tested for nutrient adsorption, of which expanded clay performed better. This substrate adsorbed 0.31 mg kg?1 of NH4 +?N and 5.60 mg kg?1 of PO4 3??P and 6.9 mg kg?1 dissolved salts after 7 days of contact. Microcosms with Typha latifolia planted in expanded clay and irrigated with aquaculture wastewater (salinity 2.4%, 7 days hydraulic retention time, for 4 weeks), were able to remove 94% NH4 +?N (inlet 0.25 ± 0.13 mg L?1), 78% NO2 ??N (inlet 0.78 ± 0.62 mg L?1), 46% NO3 ??N (inlet 18.83 ± 8.93 mg L?1) whereas PO4 3??P was not detected (inlet 1.41 ± 0.21 mg L?1). Maximum salinity reductions of 52% were observed. Despite some growth inhibition, plants remained viable, with 94% survival rate. Daily treatment dynamics studies revealed rapid PO4 3??P adsorption, unbalancing the N:P ratio and possibly affecting plant development. An integrated treatment approach, coupled with biomass valorization, is suggested to provide optimal resource management possibilities.  相似文献   

14.
Cadmium (Cd) and zinc (Zn) phytoavailability and their phytoextraction by Sedum plumbizincicola using different nitrogen fertilizers, nitrification inhibitor (dicyandiamide, DCD) and urease inhibitor (N-(n-Butyl) thiophosphoric triamide, NBPT) were investigated in pot experiments where the soil was contaminated with 0.99 mg kg?1 of Cd and 241 mg kg?1 Zn. The soil solution pH varied between 7.30 and 8.25 during plant growth which was little affected by the type of N fertilizer. The (NH4)2SO4+DCD treatment produced higher NH4+?N concentrations in soil solution than the (NH4)2SO4 and NaNO3 treatment which indicated that DCD addition inhibited the nitrification process. Shoot Cd and Zn concentrations across all treatments showed ranges of 52.9–88.3 and 2691–4276 mg kg?1, respectively. The (NH4)2SO4+DCD treatment produced slightly higher but not significant Cd and Zn concentrations in the xylem sap than the NaNO3 treatment. Plant shoots grown with NaNO3 had higher Cd concentrations than (NH4)2SO4+DCD treatment at 24.0 and 15.4 mg kg?1, respectively. N fertilizer application had no significant effect on shoot dry biomass. Total Cd uptake in the urea+DCD treatment was higher than in the control, urea+NBPT, urea+NBPT+DCD, or urea treatments, by about 17.5, 23.3, 10.7, and 25.1%, respectively.  相似文献   

15.
Pistachio is a tree of the arid and semi-arid regions where salinity and boron (B) toxicity can be major environmental stresses. In this study, individual and combined effects of different concentrations of NaCl (0, 800, 1600, 2400 and 3200 mg kg?1 soil) and B (0, 2.5, 5.0, 10.0 and 20.0 mg kg?1 soil) were studied on growth, gas-exchange and mineral composition of pistachio seedlings for a duration of 120 days. Excess amounts of salinity (> 1600 mg NaCl kg?1 soil) and B (20.0 mg kg?1 soil) significantly reduced the plant growth and CO2 assimilation, which was associated with accumulation of Na, Cl and B in leaves. There was also a decline in cell membrane stability index (MSI). Reduced stomatal conductance (g s) was the primary cause of inhibition of photosynthesis rate (P N) under mild to moderate salinity. However, under severe salt stress and B toxicity, non-stomatal effects contributed to the inhibition of CO2 assimilation in addition to the decline in g s value. Application of 5.0–10.0 mg B kg?1 soil significantly improved the plant growth and P N and also recovered the MSI as countermeasures against salt stress. These observations were related to the role of B in cell membrane structure and functioning which reduced the concentration of toxic ions in the leaves. However, cell membrane damages and chlorophyll loss in plants affected by salt were observed to be exacerbated when excess amounts of B were present. In conclusion, the results revealed that optimizing the B nutrition can improve the performance of pistachio seedlings under salt stress, and NaCl also showed a mitigating effect on B toxicity if its concentration in the soil is kept under the plant salt tolerance threshold.  相似文献   

16.
The effect of salinity on the non-enzymic and enzymic antioxidant activity, shoot proliferation and nutrient accumulation was studied in in vitro cultures of the rootstock CAB-6P (Prunus cerasus L.). Three concentrations (0, 30 and 60 mM) of NaCl or CaCl2 were added to a modified MS medium. Between the two salt treatments used, only the explants treated with CaCl2 presented significant decrease in growth parameters. The concentrations of Na+ and Cl in the explants treated with NaCl were increased, as NaCl in the culture medium increased. Furthermore, in the explants treated with CaCl2 the concentrations of Ca2+ and Cl were increased while that of K+ decreased, as CaCl2 concentration increased. The activity of peroxidase in leaves as well as the number of its anionic isoforms was increased under 30 mM CaCl2 as well as 60 mM NaCl or CaCl2. On the contrary, increasing salinity, from 0 to 60 mM CaCl2, resulted in a reduction of the catalase activity in leaves followed by disappearance of the only one catalase isoform that was detected in leaves (60 mM CaCl2). In the stems of the explants treated with NaCl the peroxidase activity was reduced. In the stems and leaves of the explants grown in saline substrate the non-enzymic antioxidant activity was significantly increased. The results suggest that the stems and leaves of CAB-6P explants presented variable antioxidant responses that were depended on the salt form used. The contribution of enzymic and non-enzymic protection mechanisms to the adaptation of CAB-6P explants under salinity stress is discussed.  相似文献   

17.

Background and aims

Sufficient soil phosphorus (P) is important for achieving optimal crop production, but excessive soil P levels may create a risk of P losses and associated eutrophication of surface waters. The aim of this study was to determine critical soil P levels for achieving optimal crop yields and minimal P losses in common soil types and dominant cropping systems in China.

Methods

Four long-term experiment sites were selected in China. The critical level of soil Olsen-P for crop yield was determined using the linear-plateau model. The relationships between the soil total P, Olsen-P and CaCl2-P were evaluated using two-segment linear model to determine the soil P fertility rate and leaching change-point.

Results

The critical levels of soil Olsen-P for optimal crop yield ranged from 10.9 mg kg?1 to 21.4 mg kg?1, above which crop yield response less to the increasing of soil Olsen-P. The P leaching change-points of Olsen-P ranged from 39.9 mg kg?1 to 90.2 mg kg?1, above which soil CaCl2-P greatly increasing with increasing soil Olsen-P. Similar change-point was found between soil total P and Olsen-P. Overall, the change-point ranged from 4.6 mg kg?1 to 71.8 mg kg?1 among all the four sites. These change-points were highly affected by crop specie, soil type, pH and soil organic matter content.

Conclusions

The three response curves could be used to access the soil Olsen-P status for crop yield, soil P fertility rate and soil P leaching risk for a sustainable soil P management in field.  相似文献   

18.
The influence of NO 3 ? -N on growth and osmotic adjustment was studied in Tamarix laxa Willd., a halophyte with salt glands on its twigs. Seedlings of T. laxa Willd. were exposed to 1 mM (control) or 300 mM NaCl, with 0.05, 1 or 10 mM NO 3 ? -N for 24 days. The relative growth rate of seedlings at 300 mM NaCl was lower than that of control plants at all NO 3 ? -N levels, but the concentrations of organic N and total N in the twigs did not differ between the two NaCl treatments. Increasing NO 3 ? supply under 300 mM NaCl improved the growth of T. laxa, indicating that NO 3 ? played positive roles in improving salt resistance of the plant. The twigs of T. laxa Willd. accumulated mainly inorganic ions, especially Na+ and Cl?, to lower osmotic potential (Ψs): the contributions of Na+ and Cl? to Ψs were estimated at 31% and 27% respectively, at the highest levels of supply of both NaCl and NO 3 ? -N. The estimated contribution of NO 3 ? -N to Ψs was as high as 20% in the twigs in these conditions, indicating that NO 3 ? was also involved in osmotic adjustment in the twigs. Furthermore, increases in tissue NO 3 ? were accompanied by decreases in tissue Cl? and proline under 300 mM NaCl. The estimated contribution of proline to Ψs declined as with NO 3 ? -N supply increased from 1 to 10 mM, while the contributions of nitrate to Ψs were enhanced under 300 mM NaCl. This suggested that higher accumulation of nitrate in the vacuole alleviated the effects of salinity stress on the plant by balancing the osmotic potential. In conclusion, NO 3 ? -N played both nutritional and osmotic roles in T. laxa Willd. in saline conditions.  相似文献   

19.
This work aimed to study the regulation of K+/Na+ homeostasis and the physiological responses of salt-treated sorghum plants [Sorghum bicolor (L.) Moench] grown with different inorganic nitrogen (N) sources. Four days after sowing (DAS), the plants were transferred to complete nutrient solutions containing 0.75 mM K+ and 5 mM N, supplied as either NO3 ? or NH4 +. Twelve DAS, the plants were subjected to salt stress with 75 mM NaCl, which was applied in two doses of 37.5 mM. The plants were harvested on the third and seventh days after the exposure to NaCl. Under the salt stress conditions, the reduction of K+ concentrations in the shoot and roots was higher in the culture with NO3 ? than with NH4 +. However, the more conspicuous effect of N was on the Na+ accumulation, which was severely limited in the presence of NH4 +. This ionic regulation had a positive influence on the K+/Na+ ratio and the selective absorption and transport of K+ in the plants grown with NH4 +. Under control and salt stress conditions, higher accumulation of free amino acids and soluble proteins was promoted in NH4 + grown roots than NO3 ? grown roots at both harvesting time, whereas higher accumulation of soluble sugars was observed only at 7 days of salt stress exposure. Unlike the NH4 + grown plants, the gas exchanges of the NO3 ? grown plants were reduced after 7 days of salt stress. These results suggest that external NH4 + may limit Na+ accumulation in sorghum, which could contribute to improving its physiological and metabolic responses to salt stress.  相似文献   

20.
Light scattering and viscometric studies have been carried out on two preparations, A and B, of rooster comb hyaluronate. Sedimentation rate studies have also been performed with A. Light scattering measurements in 0.2 m KCl for preparation A gave a molecular weight of 3.3 × 106 and for B, 1.0 × 106. In (0.1–0.3) M NaCl similar measurements gave a particle weight for A of (4.4–6.4 × 106 and for B (1.7–2.8 × 106. In 0.066 m CaCl2 molecular weight values of 9.5 × 106 for A and 1.7 × 106 for B were obtained. Thus in the presence of Na+ and Ca2+ ions aggregates of chains persisted into dilute solution. Measurements by light scattering on A and B in 4 m guanidinium chloride gave values in the same range as those obtained in 0.2 m KCl. Sedimentation rate studies on A gave values of 10.3 Svedbergs in 0.2 m KCl and 12.2 Svedbergs in 0.2 m NaCl and 0.066m CaCl2. The shear dependence of the viscosity was studied using a conicylindrical viscometer at shear rates between 0.5 and 20 s?1. Preparation A in 0.2 m KCl and NaCl yielded values for (νsp/cc→0 of 5000 and 7100 ml g?1 respectively in keeping with the tendency to aggregate. The behaviour for preparation B was similar. In 0.066 m CaCl2 there was a marked dependence of viscosity on shear speed below 10 s?1 for all concentrations and the value of (νsp/c)→0 at 0 s?1 for preparation A was 7700 ml g?1 while at a shear rate of 8 s?1 (νsp/c)c→0 ? 5000 ml g ?1. Similar effects were found for preparation B and the data suggest associations of chains disruptable by weak shear forces. The increase in viscosity with concentration in the presence of 0.066 m CaCl2 was much less than in the presence of KCl or NaCl, suggesting that the Ca2+ had a marked effect on the ”rigidity’ of the molecules in solution. A viscometric titration experiment with Ca2? showed that a level of 0.02 m CaCl2 in 0.2 m NaCl was sufficient to produce the change in viscosity presented above and that significant perturbations of the viscosity were present at 0.005?0.01 m CaCl2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号