首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Melanin-based traits involved in animal communication have been traditionally viewed as occurring under strict genetic control. However, it is generally accepted that both genetic and environmental factors influence melanin production. Medical studies suggest that, among environmental factors influencing melanization, oxidative stress could play a relevant role. On the other hand, genetic control would be exerted by the melanocortin system, and particularly by the alpha-melanocyte-stimulating hormone (α-MSH), which triggers the production of eumelanins (black pigments). To determine how the melanocortin system and an exogenous source of oxidative stress interact in the expression of melanin-based plumage, developing red-legged partridges (Alectoris rufa) were manipulated. Some partridges were injected with α-MSH, while other birds received a pro-oxidant molecule (diquat) in drinking water. Controls and birds receiving both treatments were also studied. Both α-MSH- and diquat-treated individuals presented larger eumelanin-based traits than controls, but α-MSH+diquat-treated birds showed the largest traits, suggesting that oxidative stress and melanocortins promote additive but independent effects. Diquat also induced a decline in the level of a key intracellular antioxidant (glutathione), which is associated with high expression of eumelanin-based signals in other bird species. Some scenarios for the evolution of melanin-based traits in relation to oxidative stress are proposed.  相似文献   

2.
The mechanisms that make that the costs of producing high-quality signals are unaffordable to low-quality signalers are a current issue in animal communication. The size of the melanin-based bib of male house sparrows Passer domesticus honestly signals quality. We induced the development of new bibs while treating males with buthionine-sulfoximine (BSO), a substance that depletes the levels of the antioxidant glutathione (GSH) and the amino acid cysteine, two elements that switch melanogenesis from eumelanin to pheomelanin. Final bib size is negatively related to pheomelanin levels in the bib feathers. BSO reduced cysteine and GSH levels in all birds, but improved phenotypes (bibs larger than controls) were only expressed by high-quality birds (BSO birds with largest bibs initially). Negative associations between final bib size and cysteine levels in erythrocytes, and between pheomelanin and cysteine levels, were observed in high-quality birds only. These findings suggest that a mechanism uncoupling pheomelanin and cysteine levels may have evolved in low-quality birds to avoid producing bibs of size not corresponding to their quality and greater relative costs. Indeed, greater oxidative stress in cells was not observed in low-quality birds. This may represent the first mechanism maintaining signal honesty without producing greater relative costs on low-quality signalers.  相似文献   

3.
黑色素羽毛装饰反映了鸟类的抗氧化和免疫能力吗?   总被引:5,自引:0,他引:5  
Anders P. M 《动物学报》2006,52(1):202-208
鸟类信号系统研究认为,不同于类胡萝卜素,基于黑色素的羽色装饰不需要昂贵的生理代价。然而,羽毛色素细胞的黑色素沉积与抗氧化能力和免疫系统有很强的联系,而抗氧化能力和免疫系统在提高有机体适合度方面具有重要的功能。黑色素细胞的生长对氧化环境压力十分敏感;并且,黑色素本身似乎就具有抗氧化剂的功能。相应地,把抗氧化剂用于以黑色素为基础羽色发育,还是用于其它方面例如免疫调节和免疫刺激等,个体也许必须对此做出权衡。组织中的抗氧化功能大多与代谢活动有关,也就是和自由基的最高水平有关。此外,人们发现,在哺乳动物中调节黑色素沉积的激素,即α黑素细胞刺激素,在鸟类上皮组织的色素沉积中也具有同样的功能。这种进化保守的激素是免疫和炎症反应的一个重要介体。它下调前炎性细胞因子、免疫介导细胞因子和协同刺激分子,以及主要组织相容性复合体Ⅰ类分子在单核细胞的表达以及抗体的产生,而上调抑制因子白介素。黑色素在羽毛上的大量沉积,也可能反映出免疫系统在局部免疫应答的负调控能力。这些将黑色素沉积和抗氧化剂以及免疫功能联系起来的机制,表明基于黑色素的羽色信号具有一定的生理代价,这些对以往关于黑色素的优势作用的假说提出质疑  相似文献   

4.
The control mechanisms and information content of melanin-based colourations are still debated among evolutionary biologists. Recent hypotheses contend that molecules involved in melanogenesis alter other physiological processes, thereby generating covariation between melanin-based colouration and other phenotypic attributes. Interestingly, several molecules such as agouti and glutathione that trigger the production of reddish-brown pheomelanin have an inhibitory effect on the production of black/grey eumelanin, whereas other hormones, such as melanocortins, have the opposite effect. We therefore propose the hypothesis that phenotypic traits positively correlated with the degree of eumelanin-based colouration may be negatively correlated with the degree of pheomelanin-based colouration, or vice versa. Given the role played by the melanocortin system and glutathione on melanogenesis and resistance to oxidative stress, we examined the prediction that resistance to oxidative stress is positively correlated with the degree of black colouration but negatively with the degree of reddish colouration. Using the barn owl (Tyto alba) as a model organism, we swapped eggs between randomly chosen nests to allocate genotypes randomly among environments and then we measured resistance to oxidative stress using the KRL assay in nestlings raised by foster parents. As predicted, the degree of black and reddish pigmentations was positively and negatively correlated, respectively, with resistance to oxidative stress. Our results reveal that eumelanin- and pheomelanin-based colourations can be redundant signals of resistance to oxidative stress.  相似文献   

5.
The synthesis of melanins, which are the most common animal pigments, is influenced by glutathione (GSH), a key intracellular antioxidant. At high GSH levels, pheomelanin (the lightest melanin form) is produced, whereas production of eumelanin (the darkest melanin form) does not require GSH. Oxidative damage typically increases with age, and age-related decreases in GSH have accordingly been found in diverse organisms. Therefore, there should be positive associations between the capacity to produce eumelanic traits, GSH levels, and senescence, whereas there should be negative associations between the capacity to produce pheomelanic traits, GSH levels, and senescence. We explored this hypothesis in a free-ranging population of wild boars Sus scrofa of different ages. As expected from the fact that pheomelanogenesis consumes GSH, levels of this antioxidant in muscle tended to be negatively related to pheomelanization and positively related to eumelanization in pelage, and the degree of pelage pheomelanization was positively related to oxidative damage as reflected by levels of thiobarbituric-acid-reactive substances (TBARS), which is consistent with the hypothesis that pheomelanin synthesis has physiological costs. In our cross-sectional sample, GSH levels did not show senescence effects, and we did not detect senescence effects in pelage melanization. Prime body condition and low TBARS levels were also associated with hair graying, which is attributable to a loss of melanin produced by oxidative stress, thus raising the possibility that hair graying constitutes a signal of resistance to oxidative stress in wild boars. Our results suggest that the degree of melanization is linked to GSH levels in wild boars and that their antioxidant damage shows senescence effects.  相似文献   

6.
Melanin pigments are responsible for most non-structural brown, black and grey colouration in animals. The extent to which melanin-based colouration in birds is genetically or environmentally determined has been subject to controversy. One reason for this it is paucity of empirical data on the role of key environmental factors, such as food availability, on the development of melanin-based traits. We analysed whether brown and grey colouration in rumps of Eurasian kestrels Falco tinnunculus is based on melanin and examined the relationships between high inter-annual variation in main food supply, parental condition and the expression of grey colouration in male nestlings. We also performed a partial cross-fostering experiment to allocate randomly nestlings among environments. The proportion of male nestlings with predominantly grey colouration was higher in years with abundant prey (voles). The only variable associated with intra-annual variation of grey colouration in male nestlings was body mass of the female rearing them. The colouration of nestlings in the cross-foster experiment was correlated with the body mass of their foster mother, but not with that of their genetic mother. Melanin colouration did not correlate with T-cell mediated immune response. These results indicate that this melanin-based trait reflects the environmental conditions in which the nestlings grew up.  相似文献   

7.
Resveratrol is a dietary polyphenol that displays neuroprotective properties in several in vivo and in vitro experimental models, by modulating oxidative and inflammatory responses. Glutathione (GSH) is a key antioxidant in the central nervous system (CNS) that modulates several cellular processes, and its depletion is associated with oxidative stress and inflammation. Therefore, this study sought to investigate the protective effects of resveratrol against GSH depletion pharmacologically induced by buthionine sulfoximine (BSO) in C6 astroglial cells, as well as its underlying cellular mechanisms. BSO exposure resulted in several detrimental effects, decreasing glutamate-cysteine ligase (GCL) activity, cystine uptake, GSH intracellular content and the activities of the antioxidant enzymes glutathione peroxidase (GPx) and glutathione reductase (GR). Moreover, BSO increased reactive oxygen/nitrogen species (ROS/RNS) levels and pro-inflammatory cytokine release. Resveratrol prevented these effects by protecting astroglial cells against BSO-induced cytotoxicity, by modulating oxidative and inflammatory responses. Additionally, we observed that pharmacological inhibition of heme oxygenase 1 (HO-1), an essential cellular defense against oxidative and inflammatory injuries, abolished all the protective effects of resveratrol. These observations suggest HO-1 pathway as a cellular effector in the mechanism by which resveratrol protects astroglial cells against GSH depletion, a condition that may be associated to neurodegenerative diseases.  相似文献   

8.
Oxidative stress is closely associated with diabetes and is a major cause of insulin resistance. Impairment of hepatic insulin action is thought to be responsible for perturbations in hepatic glucose metabolism. In this study, we found that oxidative stress is involved in the dysregulation of gene expression of phosphoenolpyruvate carboxykinase (PEPCK), a key gluconeogenic enzyme, by a mechanism independent of insulin. Elevation of oxidative stress by injection of ferric nitrilotriacetate in rats increased the expression of hepatic PEPCK mRNA. To examine the direct action of oxidative stress on PEPCK expression, we treated H4IIE hepatoma cells with buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis. BSO increased intracellular oxidative stress and the expression of PEPCK mRNA. Inhibition of p38 mitogen-activated protein kinase (p38 MAP kinase), which mediates responses to oxidative stress, suppressed the induction of PEPCK mRNA by BSO. These results suggest that oxidative stress dysregulates hepatic PEPCK expression by an insulin-independent mechanism.  相似文献   

9.
It is well known that glutathione, the major intracellular antioxidant, is closely involved in the metabolism and bioactivity of selenium. In the present study, glutathione was demonstrated to play a dual role on selenite (Se)-induced oxidative stress and apoptosis in human hepatoma HepG(2) cells. The experiment was carried out in two different modes to modulate intracellular reduced glutathione (GSH) content. In Mode A (pretreatment), cells were pretreated with N-acetylcysteine (NAC), buthionine sulfoximine (BSO), or GSH prior to Se exposure. In Mode B (simultaneous treatment), cells were treated with Se and NAC, BSO, or GSH simultaneously. It was found that Se-induced oxidative stress and apoptosis are closely related to the intracellular level of GSH. Both the increase and depletion of GSH content significantly enhanced Se-induced oxidative stress and apoptosis in HepG(2) cells. Results from this study clearly demonstrated that GSH has a dual role in the effects of Se on cancer cells: (i) GSH acts as a pro-oxidant, facilitating Se-induced oxidative stress, and (ii) GSH acts as an antioxidant, protecting against Se-induced oxidative stress and apoptosis. Understanding such a unique association between GSH and Se may help to explain the controversy in the literature over the complex relationship between selenium and glutathione, and ultimately the capability of selenium to prevent cancer.  相似文献   

10.
Although it is recognized that certain environmental factors are important determinants of the expression of melanin‐based traits, their influence in wild populations of animals is poorly known. One of these factors is the availability of amino acids that serve as precursors of melanins. Here we measured eumelanin and pheomelanin content in feathers of northern goshawk Accipiter gentilis nestlings, hypothesizing that, if the availability of melanin precursors is related to food abundance and habitat quality, plumage melanization should be affected by those variables. Although the eumelanin content increased with food abundance as predicted, the levels of this variable were higher in low‐quality habitats (homogeneous coniferous forests) and in nestlings in poor condition, and the pheomelanin content and eumelanin:pheomelanin ratio were lower and higher, respectively, in subpopulations where nestlings were in poorer condition. Therefore, environmental availability of melanin precursors seems to determine plumage melanization in goshawks, but our findings may also be explained by the differential effects of environmental oxidative stress on both forms of melanin, as eumelanin and pheomelanin production are favoured under high and low levels, respectively, of oxidative stress.  相似文献   

11.
Sexually selected traits confer greater reproductive benefits to individuals with more elaborate forms of the signal. However, whether these signals convey reliable information about the physiology underlying trait development remains unknown in many species. The steroid hormone corticosterone (CORT) mediates important physiological and behavioral processes during the vertebrate stress response, and CORT secretion itself can be modulated by melanocortins. Thus, sexually selected melanin-based plumage coloration could function as an honest signal of an individual's ability to respond to stressors. This hypothesis was tested in North American barn swallows, Hirundo rustica erythrogaster, where males with darker ventral plumage color exhibit higher phaeomelanin content and are more successful at reproduction. Because reproductive behavior occurs months after plumage signals are developed, we also addressed the potential temporal disconnect of physiological state during trait development and trait advertisement by analyzing three different measurements of CORT levels in adult males during the breeding season (trait advertisement) and in nestling males while they were growing their feathers (trait development). Variation in adult plumage color did not predict baseline or stress-induced CORT, or stress responsiveness. Likewise, there was no relationship between nestling plumage color and any of the CORT measurements, but heavier nestlings had significantly lower baseline CORT. Our finding that a predominantly phaeomelanin-based trait is unrelated to circulating CORT suggests that phaeomelanin and eumelanin signals may convey different physiological information, and highlights the need for further study on the biochemical links between the hypothalamic–pituitary–adrenal (HPA) axis and the production of different melanin-based pigments.  相似文献   

12.
Colour polymorphism results from the expression of multiallelic genes generating phenotypes with very distinctive colourations. Most colour polymorphisms are due to differences in the type or amount of melanins present in each morph, which also differ in several behavioural, morphometric and physiological attributes. Melanin-based colour morphs could also differ in the levels of glutathione (GSH), a key intracellular antioxidant, because of the role of this molecule in melanogenesis. As GSH inhibits the synthesis of eumelanin (i.e. the darkest melanin form), individuals of darker morphs are expected to have lower GSH levels than those of lighter morphs. We tested this prediction in nestlings of two polymorphic raptors, the booted eagle Hieraaetus pennatus and the Eleonora's falcon Falco eleonorae, both of which occur in two morphs differing in the extent of eumelanic plumage. As expected, melanic booted eagle nestlings had lower blood GSH levels than light morph eagle nestlings. In the Eleonora's falcon, however, melanic nestlings only had lower GSH levels after controlling for the levels of other antioxidants. We also found that melanic female eagle nestlings had higher levels of antioxidants other than GSH and were in better body condition than light female eagle nestlings. These findings suggest an adaptive response of melanic nestlings to compensate for reduced GSH levels. Nevertheless, these associations were not found in falcons, indicating species-specific particularities in antioxidant machinery. Our results are consistent with previous work revealing the importance of GSH on the expression of melanic characters that show continuous variation, and suggest that this pathway also applies to discrete colour morphs. We suggest that the need to maintain low GSH levels for eumelanogenesis in dark morph individuals may represent a physiological constraint that helps regulate the evolution and maintenance of polymorphisms.  相似文献   

13.
Oxidative stress is increasingly recognized as a key selective force shaping evolutionary trade-offs. One such trade-off involves investing in immunity versus combating oxidative stress. While there is broad evidence that mounting an immune response causes increased oxidative stress, the effect that increased oxidative stress during development has at a later stage on immune responsiveness remains little known. The production of melanin-based coloration in vertebrates is influenced by oxidative stress and by hormones, such as the alpha-melanocyte-stimulating hormone (α-MSH). Oxidative stress could impair immunity, and this might be a cost associated with the production of melanin traits. α-MSH has immunomodulatory effects, with most evidence pointing towards an improvement of immunity (improved pro-inflammatory activity). Here, we investigated the effects of an oxidative challenge (exposure to a pro-oxidant compound, diquat) and of experimentally elevated α-MSH on the cell-mediated immune responses (CMIR) of growing young (1 month old) red-legged partridges Alectoris rufa in captivity. CMIR were assessed in response to primary and secondary challenges with phytohemagglutinin (PHA). We specifically tested whether an oxidative challenge during growth and development had a delayed effect (4 months after exposure) on immunity. We found that the diquat treatment did not affect primary CMIR, but significantly reduced secondary CMIR. Elevated α-MSH increased primary CMIR in males, but not in females. Our experimental results are consistent with a trade-off between investing in activities that generate oxidative stress (e.g., growth, reproduction, production of ornaments) versus investing in immunity, and shed new lights onto the inter-relationships between immunity, oxidative stress and the expression of melanin-based coloration in vertebrates, revealing a novel, delayed physiological cost that can contribute to ensuring honest signaling.  相似文献   

14.
Stress during early development can induce substantial long‐term effects in organisms. In the case of birds, despite growth compensations, nestlings reared under harsh conditions typically show reduced survival chances in adulthood. It has been proposed that environmental early‐life stressors could affect longevity via effects on telomere length, possibly mediated through oxidative stress. However, the link between these processes is not clear. In this study, we experimentally manipulated brood size in spotless starlings (Sturnus unicolor) to test the causal relationship between early stress, oxidative and corticosterone‐mediated stress and telomere shortening. Our results show that experimentally enlarged brood sizes led to a reduction in morphometric development on nestlings, the effect being stronger for females than males. Additionally, basal corticosterone levels increased with increasing brood size in female nestlings. Neither plasma antioxidant status nor malondialdehyde levels (a marker of lipid peroxidation) were affected by experimental brood size, although the levels of a key intracellular antioxidant (glutathione) decreased with increasing brood size. We found that the treatment showed a quadratic effect on nestling telomere lengths: these were shortened either by increases or by decreases in the original brood size. Our study provides experimental evidence for a link between developmental stress and telomere length, but does not support a direct causal link of this reduction with corticosterone or oxidative stress. We suggest that future studies should focus on how telomere length responds to additional markers of allostatic load.  相似文献   

15.
Oxidative stress plays an important role during inflammatory diseases and antioxidant administration to diminish oxidative stress may arrest inflammatory processes. Boron has been implicated to modulate certain inflammatory mediators and regulate inflammatory processes. Here we investigated the role of the tripeptide glutathione (GSH) in modulating the effects of boric acid (BA) on lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF-alpha) formation in THP-1 monocytes. Interestingly, we found that BA had no significant effects on both TNF-alpha production and intracellular GSH contents, whereas it could inhibit LPS-induced TNF-alpha formation and ameliorated the d,l-buthionine-S,R-sulfoximine (BSO)-induced GSH depletion. Twenty-four hour incubation with BSO induced a decrease of the intracellular GSH and an increase of TNF-alpha. Treatment with N-acetyl-l-cysteine (NAC) did not significantly increase intracellular content of GSH but significantly reduced the secretion of TNF-alpha. BSO-pretreatment for 24h enhanced the LPS-induced secretion and mRNA expression of TNF-alpha further. BA inhibited LPS-stimulated TNF-alpha formation was also seen after GSH depletion by BSO. These results indicate that BA may have anti-inflammatory effect in the LPS-stimulated inflammation and the effect of BA on TNF-alpha secretion may be induced via a thiol-dependent mechanism.  相似文献   

16.
Vertebrate vocalizations are widespread secondary sexual signals used for mate attraction and territory defence, and variation in signal quality is often condition dependent and impacts reproductive outcomes. Although vocal signal performance is known to reflect various aspects of male quality, few studies have examined the underlying mechanisms mediating its costs and hence its honesty. Using a population of Arctic‐breeding snow buntings (Plectrophenax nivalis), we compared the ‘Oxidation Handicap Hypothesis’, which predicts that testosterone‐induced increases in oxidative stress provide a direct mechanistic basis for ensuring the honesty of many secondary sexual signals, to the ‘Aerobic Activity Hypothesis, which predicts that it is the aerobic activity involved with signal production (i.e. vocal performance or defending a large territory) and not testosterone directly that links signal quality and oxidative stress. Males singing at faster rates had higher levels of both reactive oxygen metabolites and non‐enzymatic antioxidant capacity in the plasma (i.e. without an increase in overall oxidative stress), enabling certain males to produce high‐quality signals while also mitigating the costs of an associated increase in oxidative stress. However, these results were completely independent of plasma testosterone levels, supporting the role of aerobic performance in directly affecting oxidative stress. Although song performance was not linked to reproductive parameters in our data set, our research is the first to test these competing hypotheses in a behavioural trait and results suggest that oxidative stress may be an underlying physiological cost preventing low‐quality individuals from producing high‐quality signals.  相似文献   

17.
Many animals develop bold patches of black or brown colorationthat are derived from melanin pigments and serve as sexual orsocial signals. At present, there is much debate among behavioralecologists over whether melanin-based color signals are costlyto produce. Studies that have manipulated crude aspects of nutrition(i.e., total food intake) or health have generally found melanin-basedplumage ornaments to be less responsive to such factors thanother types of extravagant color (e.g., carotenoid or structuralbased). However, a recently advanced hypothesis argues thatlimited minerals in the diet, such as calcium (Ca), zinc (Zn),and iron (Fe), may serve to increase melanin pigment productionand maintain signal honesty. Here, I experimentally tested whethervariation in the calcium content of the diet affects the colorand extent of melanin-based plumage in male zebra finches (Taeniopygiaguttata). Calcium supplementation increased the size, but notdarkness, of the black breast plumage patch in fledgling andadult males; however, sexually selected, carotenoid-based redbeak coloration was not affected by the diet manipulation. Theseresults are the first to support the idea that acquisition ofminerals from the diet is a unique, limiting factor for theexpression of ornamental melanin coloration in animals.  相似文献   

18.
Understanding the function of variation in sleep requires studies in the natural ecological conditions in which sleep evolved. Sleep has an impact on individual performance and hence may integrate the costs and benefits of investing in processes that are sensitive to sleep, such as immunity or coping with stress. Because dark and pale melanic animals differentially regulate energy homeostasis, immunity and stress hormone levels, the amount and/or organization of sleep may covary with melanin‐based colour. We show here that wild, cross‐fostered nestling barn owls (Tyto alba) born from mothers displaying more black spots had shorter non‐REM (rapid eye movement) sleep bouts, a shorter latency until the occurrence of REM sleep after a bout of wakefulness and more wakefulness bouts. In male nestlings, the same sleep traits also correlated with their own level of spotting. Because heavily spotted male nestlings and the offspring of heavily spotted biological mothers switched sleep–wakefulness states more frequently, we propose the hypothesis that they could be also behaviourally more vigilant. Accordingly, nestlings from mothers displaying many black spots looked more often towards the nest entrance where their parents bring food and towards their sibling against whom they compete. Owlets from heavily spotted mothers might invest more in vigilance, thereby possibly increasing associated costs due to sleep fragmentation. We conclude that different strategies of the regulation of brain activity have evolved and are correlated with melanin‐based coloration.  相似文献   

19.
Exposure to nanoparticles (NPs) may cause vascular effects including endothelial dysfunction and foam cell formation, with oxidative stress and inflammation as supposed central mechanisms. We investigated oxidative stress, endothelial dysfunction and lipid accumulation caused by nano-sized carbon black (CB) exposure in cultured human umbilical vein endothelial cells (HUVECs), THP-1 (monocytes) and THP-1 derived macrophages (THP-1a). The proliferation of HUVECs or co-cultures of HUVECs and THP-1 cells were unaffected by CB exposure, whereas there was increased cytotoxicity, assessed by the LDH and WST-1 assays, especially in THP-1 and THP-1a cells. The CB exposure decreased the glutathione (GSH) content in THP-1 and THP-1a cells, whereas GSH was increased in HUVECs. The reactive oxygen species (ROS) production was increased in all cell types after CB exposure. A reduction of the intracellular GSH concentration by buthionine sulfoximine (BSO) pre-treatment further increased the CB-induced ROS production in THP-1 cells and HUVECs. The expression of adhesion molecules ICAM-1 and VCAM-1, but not adhesion of THP-1 to HUVECs or culture dishes, was elevated by CB exposure, whereas these effects were unaffected by BSO pre-treatment. qRT-PCR showed increased VCAM1 expression, but no change in GCLM and HMOX1 expression in CB-exposed HUVECs. Pre-exposure to CB induced lipid accumulation in THP-1a cells, which was not affected by the presence of the antioxidant N-acetylcysteine. In addition, the concentrations of CB to induce lipid accumulation were lower than the concentrations to promote intracellular ROS production in THP-1a cells. In conclusion, exposure to nano-sized CB induced endothelial dysfunction and foam cell formation, which was not dependent on intracellular ROS production.  相似文献   

20.
In order to investigate the function of haem oxygenase in neuronal cell death or survival, we have determined in PC12 cells whether induction of haem oxygenase mRNA and protein or inhibition of haem oxygenase activity may be able to modulate the cell response to an oxidative stress. Inhibition of glutathione biosynthesis by buthionine sulfoximine (BSO) has indeed been demonstrated, in this cell line, to decrease the intracellular content of glutathione and to trigger a gradual and programmed cell death. Inhibition of haem oxygenase by zinc protoporphyrin IX, a potent inhibitor of this enzyme, or by a recently described peptidic inhibitor, induced a significant decrease in the toxicity of BSO. This protective action was not due to an alteration in the metabolism of glutathione and was still observed when the protecting agent was added several hours after BSO treatment. Induction of haem oxygenase-1 mRNA and protein by either haemin or pyrrolidine dithiocarbamate was associated with no protection or a significant reduction in the toxicity of BSO respectively. Our results indicate that induction of haem oxygenase-1 is not obligatorily associated with an improved resistance towards oxidative stress and suggest that a byproduct of haem degradation may also become detrimental.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号