首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Villani M  Barbieri A  Serra R 《PloS one》2011,6(3):e17703
A mathematical model is proposed which is able to describe the most important features of cell differentiation, without requiring specific detailed assumptions concerning the interactions which drive the phenomenon. On the contrary, cell differentiation is described here as an emergent property of a generic model of the underlying gene regulatory network, and it can therefore be applied to a variety of different organisms. The model points to a peculiar role of cellular noise in differentiation and leads to non trivial predictions which could be subject to experimental testing. Moreover, a single model proves able to describe several different phenomena observed in various differentiation processes.  相似文献   

2.
3.
This paper describes the use of a discrete mathematical model to represent the basic mechanisms of regulation of the bacteria E. coli in batch fermentation. The specific phenomena studied were the changes in metabolism and genetic regulation when the bacteria use three different carbon substrates (glucose, glycerol, and acetate). The model correctly predicts the behavior of E. coli vis-à-vis substrate mixtures. In a mixture of glucose, glycerol, and acetate, it prefers glucose, then glycerol, and finally acetate. The model included 67 nodes; 28 were genes, 20 enzymes, and 19 regulators/biochemical compounds. The model represents both the genetic regulation and metabolic networks in an inrtegrated form, which is how they function biologically. This is one of the first attempts to include both of these networks in one model. Previously, discrete mathematical models were used only to describe genetic regulation networks. The study of the network dynamics generated 8 (2(3)) fixed points, one for each nutrient configuration (substrate mixture) in the medium. The fixed points of the discrete model reflect the phenotypes described. Gene expression and the patterns of the metabolic fluxes generated are described accurately. The activation of the gene regulation network depends basically on the presence of glucose and glycerol. The model predicts the behavior when mixed carbon sources are utilized as well as when there is no carbon source present. Fictitious jokers (Joker1, Joker2, and Repressor SdhC) had to be created to control 12 genes whose regulation mechanism is unknown, since glycerol and glucose do not act directly on the genes. The approach presented in this paper is particularly useful to investigate potential unknown gene regulation mechanisms; such a novel approach can also be used to describe other gene regulation situations such as the comparison between non-recombinant and recombinant yeast strain, producing recombinant proteins, presently under investigation in our group.  相似文献   

4.

Background  

Graphical models (e.g., Bayesian networks) have been used frequently to describe complex interaction patterns and dependent structures among genes and other phenotypes. Estimation of such networks has been a challenging problem when the genes considered greatly outnumber the samples, and the situation is exacerbated when one wishes to consider the impact of polymorphisms (SNPs) in genes.  相似文献   

5.
6.
Xiong M  Li J  Fang X 《Genetics》2004,166(2):1037-1052
In this report, we propose the use of structural equations as a tool for identifying and modeling genetic networks and genetic algorithms for searching the most likely genetic networks that best fit the data. After genetic networks are identified, it is fundamental to identify those networks influencing cell phenotypes. To accomplish this task we extend the concept of differential expression of the genes, widely used in gene expression data analysis, to genetic networks. We propose a definition for the differential expression of a genetic network and use the generalized T2 statistic to measure the ability of genetic networks to distinguish different phenotypes. However, describing the differential expression of genetic networks is not enough for understanding biological systems because differences in the expression of genetic networks do not directly reflect regulatory strength between gene activities. Therefore, in this report we also introduce the concept of differentially regulated genetic networks, which has the potential to assess changes of gene regulation in response to perturbation in the environment and may provide new insights into the mechanism of diseases and biological processes. We propose five novel statistics to measure the differences in regulation of genetic networks. To illustrate the concepts and methods for reconstruction of genetic networks and identification of association of genetic networks with function, we applied the proposed models and algorithms to three data sets.  相似文献   

7.
Two types of auto-associative networks are well known, one based upon the correlation matrix and the other based upon the orthogonal projection matrix, both of which are calculated from the pattern vectors to be memorized. Although the latter type of networks have a desirable associative property compared to the former ones, they require, in conventional models, nonlocal calculation of the pattern vectors (i.e., pseudoinverse of a matrix) or some learning procedure based on the error correction paradigm. This paper proposes a new model of auto-associative networks in which the orthogonal projection is implemented in a special relation between the connections linking neuron-like elements. The connection weights can be determined by a Hebbian local learning, requiring no pseudoinverse calculation nor the error correction learning.  相似文献   

8.
9.
Autocatalytic cycles are rather widespread in nature and in several theoretical models of catalytic reaction networks their emergence is hypothesized to be inevitable when the network is or becomes sufficiently complex. Nevertheless, the emergence of autocatalytic cycles has been never observed in wet laboratory experiments. Here, we present a novel model of catalytic reaction networks with the explicit goal of filling the gap between theoretical predictions and experimental findings. The model is based on previous study of Kauffman, with new features in the introduction of a stochastic algorithm to describe the dynamics and in the possibility to increase the number of elements and reactions according to the dynamical evolution of the system. Furthermore, the introduction of a temporal threshold allows the detection of cycles even in our context of a stochastic model with asynchronous update. In this study, we describe the model and present results concerning the effect on the overall dynamics of varying (a) the average residence time of the elements in the reactor, (b) both the composition of the firing disk and the concentration of the molecules belonging to it, (c) the composition of the incoming flux.  相似文献   

10.
11.
Chen PC  Chen JW 《Bio Systems》2007,90(2):535-545
This paper presents an approach for controlling gene networks based on a Markov chain model, where the state of a gene network is represented as a probability distribution, while state transitions are considered to be probabilistic. An algorithm is proposed to determine a sequence of control actions that drives (without state feedback) the state of a given network to within a desired state set with a prescribed minimum or maximum probability. A heuristic is proposed and shown to improve the efficiency of the algorithm for a class of genetic networks.  相似文献   

12.
13.
A genetic model for colorectal tumorigenesis   总被引:414,自引:0,他引:414  
E R Fearon  B Vogelstein 《Cell》1990,61(5):759-767
  相似文献   

14.
15.
A duplication growth model of gene expression networks   总被引:8,自引:0,他引:8  
  相似文献   

16.

Background  

Gene regulation and metabolic reactions are two primary activities of life. Although many works have been dedicated to study each system, the coupling between them is less well understood. To bridge this gap, we propose a joint model of gene regulation and metabolic reactions.  相似文献   

17.
18.
Dynamical modeling has proven useful for understanding how complex biological processes emerge from the many components and interactions composing genetic regulatory networks (GRNs). However, the development of models is hampered by large uncertainties in both the network structure and parameter values. To remedy this problem, the models are usually developed through an iterative process based on numerous simulations, confronting model predictions with experimental data and refining the model structure and/or parameter values to repair the inconsistencies. In this paper, we propose an alternative to this generate-and-test approach. We present a four-step method for the systematic construction and analysis of discrete models of GRNs by means of a declarative approach. Instead of instantiating the models as in classical modeling approaches, the biological knowledge on the network structure and its dynamics is formulated in the form of constraints. The compatibility of the network structure with the constraints is queried and in case of inconsistencies, some constraints are relaxed. Common properties of the consistent models are then analyzed by means of dedicated languages. Two such languages are introduced in the paper. Removing questionable constraints or adding interesting ones allows to further analyze the models. This approach allows to identify the best experiments to be carried out, in order to discriminate sets of consistent models and refine our knowledge on the system functioning. We test the feasibility of our approach, by applying it to the re-examination of a model describing the nutritional stress response in the bacterium Escherichia coli.  相似文献   

19.

Background  

The study of synchronization among genetic oscillators is essential for the understanding of the rhythmic phenomena of living organisms at both molecular and cellular levels. Genetic networks are intrinsically noisy due to natural random intra- and inter-cellular fluctuations. Therefore, it is important to study the effects of noise perturbation on the synchronous dynamics of genetic oscillators. From the synthetic biology viewpoint, it is also important to implement biological systems that minimizing the negative influence of the perturbations.  相似文献   

20.
Gene networks are likely to govern most traits in nature. Mutations at these genes often show functional epistatic interactions that lead to complex genetic architectures and variable fitness effects in different genetic backgrounds. Understanding how epistatic genetic systems evolve in nature remains one of the great challenges in evolutionary biology. Here we combine an analytical framework with individual-based simulations to generate novel predictions about long-term adaptation of epistatic networks. We find that relative to traits governed by independently evolving genes, adaptation with epistatic gene networks is often characterized by longer waiting times to selective sweeps, lower standing genetic variation, and larger fitness effects of adaptive mutations. This may cause epistatic networks to either adapt more slowly or more quickly relative to a nonepistatic system. Interestingly, epistatic networks may adapt faster even when epistatic effects of mutations are on average deleterious. Further, we study the evolution of epistatic properties of adaptive mutations in gene networks. Our results show that adaptive mutations with small fitness effects typically evolve positive synergistic interactions, whereas adaptive mutations with large fitness effects evolve positive synergistic and negative antagonistic interactions at approximately equal frequencies. These results provide testable predictions for adaptation of traits governed by epistatic networks and the evolution of epistasis within networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号