首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sensitivity of a Polish provenance of dormant Corylus avellana seeds to extreme desiccation and cryopreservation in liquid nitrogen (LN, ?196°C) was investigated. No sensitivity to desiccation was observed as seeds readily germinated and exhibited seedling emergence, even when the critical water content (WC) of seeds (nuts devoid of pericarp) was reduced to 0.027 g H2O/g dry mass, g g?1 by drying. Results of germination and seedling emergence tests indicated that seeds tolerated cooling in LN when desiccated to a WC in the range of 0.05–0.10 and 0.08–0.10 g g?1, respectively. The results of this study demonstrate the feasibility of long‐term cryopreservation of European hazelnut seeds. As the seeds of this species have been classified in several different categories (orthodox, suborthodox and recalcitrant), based on their response to desiccation and low temperature, the assignment of the seeds of hazelnut to a specific category is provided and discussed.  相似文献   

2.
The relationships between water content of desiccated embryonic axes (using different methods of desiccation), the availability of water determined by differential scanning calorimetry (DSC) analysis and recovery percentage after liquid nitrogen (LN) exposure of Fortunella polyandra embryonic axes were investigated. The objectives were to understand thermal properties of desiccated embryonic axes during cryopreservation and to determine the critical moisture contents for successful cryopreservation of the embryonic axes. Excised embryonic axes were desiccated under laminar air flow (0, 10, 15, 30 and 45 min), over silica gel (0, 5, 15, 30 and 60 min), and ultra-rapidly (0, 5, 10, 20 and 25 min). Desiccation under laminar air flow resulted in an optimal water content of 0.150 gH2O g?1 dw and a survival of 50 % after cryopreservation, while the unfrozen water content (WCu) was 0.126 gH2O g?1 dw. After drying over silica gel, the optimal water content was 0.190 gH2O g?1 dw, where the survival was 40 % after cryopreservation and the WCu was determined as 0.177 gH2O g?1 dw. Using the flash-drying method, the optimal water content was found to be 0.145 gH2O g?1 dw, the survival was 50 % after cryopreservation and the WCu was 0.133 gH2O g?1 dw. Embryonic axes of F. polyandra showed low-to-moderate tolerance to desiccation. The results of the freezing transitions for all the desiccation times and methods showed that the onset temperature and the peak of the mean enthalpy decreased in size with decreasing water content. DSC elucidated the critical moisture contents and the cooling and melt enthalpies for successful cryopreservation of F. polyandra embryonic axes.  相似文献   

3.
Loss of viability in desiccation-sensitive seeds of Madhuca latifolia (Roxb.) J. F. Macbr., an important multipurpose tropical tree, was correlated with seed water content (WC). WC declined from 0.59 to 0.19 g g?1 fresh mass, 35 days after harvest from mother plant, at ambient conditions (temperature 25 ± 2 °C, relative humidity 50 ± 2%). The desiccation-induced reduction in viability was related with an accumulation of reactive oxygen species (ROS) that promoted lipid peroxidation associated loss of membrane integrity. Conducted study revealed 1.6–19 folds rise in lipid peroxidized products in desiccated M. latifolia seeds, and was found to be linked inversely with WC and germination percentage. Additionally, increased activities (7 and 13 folds) of lipid hydrolyzing enzymes; lipase (EC 3.1.1.3) and lipoxygenase (EC 1.13.11.12) respectively, were discernible in desiccating M. latifolia seeds. In summary, increased ROS, lipid oxidation, lipase and lipoxygenase were strongly correlated with viability loss in desiccating M. latifolia seeds.  相似文献   

4.
Maximising seed longevity is crucial for genetic resource preservation and longevity of orthodox seeds is determined by environmental conditions (water content and temperature). The effect of water content (down to 0.01 g·H2O·g?1) on seed viability was studied at different temperatures for a 5‐year storage period in taxonomically related species. Seeds of seven Brassicaceae species (Brassica repanda, Eruca vesicaria, Malcolmia littorea, Moricandia arvensis, Rorippa nasturtium‐aquaticum, Sinapis alba, Sisymbrium runcinatum) were stored at 48 environments comprising a combination of eight water contents, from 0.21 to 0.01 g·H2O·g?1 DW and six temperatures (45, 35, 20, 5, ?25, ?170 °C). Survival curves were modelled and P50 calculated for those conditions where germination was reduced over the 5‐year assay period. Critical water content for storage of seeds of six species at 45 °C ranged from 0.02 to 0.03 g·H2O·g?1. The effect of extreme desiccation at 45 °C showed variability among species: three species showed damaging effects of drying below the critical water content, while for three species it was neither detrimental nor beneficial to seed longevity. Lipid content could be related to longevity, depending on the storage conditions. A variable seed longevity response to water content among taxonomically related species was found. The relative position of some of the species as long‐ or short‐lived at 45 °C varied depending on the humidity at which storage behaviour was evaluated. Therefore, predictions of survival under desiccated conditions based on results obtained at high humidity might be problematic for some species.  相似文献   

5.
Biodiversity conservation programmes are underpinned by seed banking following drying to low water contents (WC), and supported by both the assessment and prediction of seed viability over time. The means of judging viability is thus crucial to the comprehension of seed vigour. We selected seeds of three species and one hybrid in the Salicaceae likely to have variation in tolerance to drying, processing and storage, including in relation to cryobanking, and compared survival growth as radicle emergence (germination) and normal seedling production. With three seed lots of Salix gracilistyla, air-drying to 8–10 % WC enhanced seed survival after 40 days’ storage at 5 °C as compared with non-treated seeds at 14–20 % WC. Four seed lots of Populus alba × P. glandulosa showed equally high germination (88–100 %) and proportions of normal seedlings (81–99 %) when stored at 5 °C for 7–10 weeks. Among seven seed lots of S. gracilistyla, two groups with different storage behaviour could be statistically distinguished with normal seedling production ranging from 0 to 45 % after storage at 5 °C for 13 weeks. Seed tolerance to WC manipulation and cryopreservation was very variable among species and seed lots. Seed lots of S. hallaisanensis and S. gracilistyla with ~80 % germination survived cryopreservation at 10 % WC, but were sensitive to lower WCs. In contrast, Populus seeds had greater desiccation tolerance combined with cryopreservation capability. With seed lots of all species and hybrids, cryopreservation had little effect on viability unless the high moisture freezing limit had been exceeded (~10–20 % WC, depending on seed lot). However, under all conditions of handling (drying, rehydration, storage at 5 °C or cryopreservation) using germination as the only indicator of viability over-estimated survival compared with normal seedling production.  相似文献   

6.
A new xylose fermenting yeast was isolated from over-ripe banana by enrichment in xylose-containing medium. The phylogenetic analysis of ITS1-5.8S-ITS2 region sequences of ribosomal RNA of isolate BY2 revealed that it shows affiliation to genus Pichia and clades with Pichia caribbica. In batch fermentation, Pichia strain BY2 fermented xylose, producing 15 g l?1 ethanol from 30 g l?1 xylose under shaking conditions at 28°C, with ethanol yield of 0.5 g g?1 and volumetric productivity of 0.31 g l?1 h?1. The optimum pH range for ethanol production from xylose by Pichia strain BY2 was 5–7. Pichia strain BY2 also produced 6.08 g l?1 ethanol from 30 g l?1 arabinose. Pichia strain BY2 can utilize sugarcane bagasse hemicellulose acid hydrolysate for alcohol production, efficiency of fermentation was improved by neutralization, and sequential use of activated charcoal adsorption method. Percent total sugar utilized and ethanol yield for the untreated hydrolysate was 17.14% w/v and 0.33 g g?1, respectively, compared with 66.79% w/v and 0.45 g g?1, respectively, for treated hemicellulose acid hydrolysate. This new yeast isolate showed ethanol yield of 0.45 g g?1 and volumetric productivity of 0.33 g l?1 h?1 from sugarcane bagasse hemicellulose hydrolysate detoxified by neutralization and activated charcoal treatment, and has potential application in practical process of ethanol production from lignocellulosic hydrolysate.  相似文献   

7.
The optimal cultivation conditions ensuring the maximal rate of citric acid (CA) biosynthesis by glycerol-grown mutant Yarrowia lipolytica NG40/UV7 were found to be as follows: growth limitation by inorganic nutrients (nitrogen, phosphorus, or sulfur), 28 °C, pH 5.0, dissolved oxygen concentration (pO2) of 50 % (of air saturation), and pulsed addition of glycerol from 20 to 80 g L?1 depending on the rate of medium titration. Under optimal conditions of fed-batch cultivation, in the medium with pure glycerol, strain Y. lipolytica NG40/UV7 produced 115 g L?1 of CA with the mass yield coefficient of 0.64 g g?1 and isocitric acid (ICA) amounted to 4.6 g L?1; in the medium with raw glycerol, CA production was 112 g L?1 with the mass yield coefficient of 0.90 g g?1 and ICA amounted to 5.3 g L?1. Based on the activities of enzymes involved in the initial stages of raw glycerol assimilation, the tricarboxylic acid cycle and the glyoxylate cycle, the mechanism of increased CA yield from glycerol-containing substrates in Y. lipolytica yeast was explained.  相似文献   

8.
Genebank conservation of pollen is valuable because it makes genetic resources immediately available for use in breeding programs. In the case of Citrus species, conserved anthers or pollen can be easily transported and used to develop new varieties with pathogen resistance and desirable quality and yield traits. The aim of this study was to develop and improve air-desiccation cryopreservation protocols for Citrus cavaleriei and Citrus maxima anthers in genebanks. In the current study, warming, rehydration, and in vitro germination conditions were optimized to achieve high levels of in vitro germination in Citrus pollen for ten cultivars after liquid nitrogen (LN) exposure. The optimal warming, rehydration, and in vitro germination medium formulations affected the germination levels after pollen cryopreservation, with species- and cultivar-dependent effects. The Citrus anthers were dehydrated to the moisture content of 5–14% before LN exposure and warmed at 25 (cryopreserved Citrus anthers with a moisture content of lower than 10%) or 37°C (a moisture content of 10% or higher), then rehydrated, and cultured on medium with 150-g L?1 sucrose, 0.1-g L?1 boric acid, 1.0-g L?1 calcium nitrate, 0.1-g L?1 potassium nitrate, 0.3-g L?1 magnesium sulfate, and 10-g L?1 agar. After 2 yr of storage, in vitro germination levels of Citrus pollen after cryopreservation were significantly higher (> 22% for all ten cultivars) than those of samples that were stored at 4°C (0%). In vitro germination levels of pollen from six of ten cultivars after cryopreservation remained relatively high after 2 yr of storage (38–93%). The highest viability of 93% was obtained for C. cavaleriei ‘2–3’. The methods identified in the current study could be used to cryopreserve C. cavaleriei and C. maxima anthers.  相似文献   

9.
This study, comprising three independent experiments, was conducted to optimize the zinc (Zn) application through seed coating for improving the productivity and grain biofortification of wheat. Experiment 1 was conducted in petri plates, while experiment 2 was conducted in sand-filled pots to optimize the Zn seed coating using two sources (ZnSO4, ZnCl2) of Zn. In the first two experiments, seeds of two wheat cultivars Lasani-2008 and Faisalabad-2008 were coated with 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75 and 2.00 g Zn kg?1 seed using ZnSO4 and ZnCl2 as Zn sources. The results of experiment I revealed that seed coating with 1.25 and 1.50 g Zn kg?1 seed using both sources of Zn improved the seedling emergence. However, seed coated with 1.25 and 1.50 g Zn kg?1 seed using ZnSO4 was better regarding improvement in seedling growth and seedling dry weight. The results of the second experiment indicated that seed coated with 1.25 and 1.50 g Zn kg?1 seed using ZnSO4 improved the seedling emergence and seedling growth of tested wheat cultivars. However, seed coating beyond 1.5 g Zn kg?1 seed using either Zn source suppressed the seedling emergence. Third experiment was carried out in glass house in soil-filled earthen pots. Seeds of both wheat cultivars were coated with pre-optimized treatments (1.25, 1.50 g Zn kg?1 seed) using both Zn sources. Seed coating with all treatments of ZnSO4 and seed coating with 1.25 g Zn kg?1 seed using ZnCl2 improved the seedling emergence and yield-related traits of wheat cultivars. Seed coating with 1.25 g Zn kg?1 seed also improved the chlorophyll a and b contents. Maximum straw Zn contents, before and after anthesis, were recorded from seed coated with 1.5 g Zn kg?1 seed using either Zn source. Increase in grain yield from seed coating followed the sequence 1.25 g Zn kg?1 seed (ZnSO4) >1.25 g Zn kg?1 seed (ZnCl2) >1.5 g Zn kg?1 seed (ZnSO4). However, increase in grain Zn contents from seed coated was 1.5 g Zn kg?1 seed (ZnCl2) >1.25 and 1.5 g Zn kg?1 seed (ZnCl2, ZnSO4) >1.25 g Zn kg?1 seed (ZnSO4). Seed coating with Zn increased the grain Zn contents from 21 to 35 %, while 33–55 % improvement in grain yield was recorded. In conclusion, wheat seeds may be coated with 1.25 g Zn kg?1 seed using either source of Zn for improving the grain yield and grain Zn biofortification.  相似文献   

10.
Carbon distribution and kinetics of Candida shehatae were studied in fed-batch fermentation with xylose or glucose (separately) as the carbon source in mineral medium. The fermentations were carried out in two phases, an aerobic phase dedicated to growth followed by an oxygen limitation phase dedicated to ethanol production. Oxygen limitation was quantified with an average specific oxygen uptake rate (OUR) varying between 0.30 and 2.48 mmolO2 g dry cell weight (DCW)?1 h?1, the maximum value before the aerobic shift. The relations among respiration, growth, ethanol production and polyol production were investigated. It appeared that ethanol was produced to provide energy, and polyols (arabitol, ribitol, glycerol and xylitol) were produced to reoxidize NADH from assimilatory reactions and from the co-factor imbalance of the two-first enzymatic steps of xylose uptake. Hence, to manage carbon flux to ethanol production, oxygen limitation was a major controlled parameter; an oxygen limitation corresponding to an average specific OUR of 1.19 mmolO2 g DCW?1 h?1 allowed maximization of the ethanol yield over xylose (0.327 g g?1), the average productivity (2.2 g l?1 h?1) and the ethanol final titer (48.81 g l?1). For glucose fermentation, the ethanol yield over glucose was the highest (0.411 g g?1) when the specific OUR was low, corresponding to an average specific OUR of 0.30 mmolO2 g DCW?1 h?1, whereas the average ethanol productivity and ethanol final titer reached the maximum values of 1.81 g l?1 h?1 and 54.19 g l?1 when the specific OUR was the highest.  相似文献   

11.
Phosphorus (P) deficiency is a major problem for Australian agriculture. Development of new perennial pasture legumes that acquire or use P more efficiently than the current major perennial pasture legume, lucerne (Medicago sativa L.), is urgent. A glasshouse experiment compared the response of ten perennial herbaceous legume species to a series of P supplies ranging from 0 to 384 µg g?1 soil, with lucerne as the control. Under low-P conditions, several legumes produced more biomass than lucerne. Four species (Lotononis bainesii Baker, Kennedia prorepens F.Muell, K. prostrata R.Br, Bituminaria bituminosa (L.) C.H.Stirt) achieved maximum growth at 12 µg P g?1 soil, while other species required 24 µg P g?1. In most tested legumes, biomass production was reduced when P supply was ≥192 µg g?1, due to P toxicity, while L. bainesii and K. prorepens showed reduced biomass when P was ≥24 µg g?1 and K. prostrata at ≥48 µg P g?1 soil. B. bituminosa and Glycine canescens F.J.Herm required less soil P to achieve 0.5 g dry mass than the other species did. Lucerne performed poorly with low P supply and our results suggest that some novel perennial legumes may perform better on low-P soils.  相似文献   

12.
Seeds of Shorea robusta (sal) are recalcitrant owing to its high desiccation sensitivity. Germinability in sal seed was lost rapidly from 100 to 0 % within 8 days. Protein oxidation examined separately in axis and cotyledon of ageing sal seeds by monitoring the levels of carbonyls, hydroperoxide, malondialdehyde and 4-hydroxy-2-nonenal adducts with protein, Amadori and Maillard reaction products. Changes in protease and proteasome activity were also estimated. The levels of all the modified proteins and activities of protease and proteasome were similar in axis and cotyledons. The amounts of carbonyls (5.5 fold in axis and 3.9 fold in cotyledons) and hydroperoxides (13.5 fold in axis and 12 fold in cotyledons) increased significantly as the seeds became non-viable. Similarly, the levels of malondialdehyde and 4-hydroxy-2-nonenal adducts promoted as the storage period advanced and reached tenfold both in the axis and cotyledons in non-viable seeds. The ageing also promoted levels of reducing sugar along with rapid enhancement in the levels of Amadori and Maillard reaction products, respectively, by 4.4 and 1.8 fold in 5 days sal seeds. Substantial promotion in protease activity both in the axis (sevenfold) and cotyledons (tenfold) of absolutely aged seeds was discernible. The activity of proteasome exhibited steady decline from 0.767 to 0.170 nmol min?1 g?1 DM in axis and 0.20–0.086 nmol min?1 g?1 DM in cotyledons of ageing sal seeds. Changes in the ROS and protein catabolism/oxidation have been discussed to establish loss of germinability in desiccating recalcitrant sal seeds.  相似文献   

13.
Manipulation of culture strategies was adopted to study the influence of nutrient stress, pH stress and precursor feeding on the biosynthesis of capsaicin in suspension and immobilized cell cultures of C. chinense. Cells cultured in the absence of one of the four nutrients (ammonium and potassium nitrate for nitrate and potassium stress, potassium dihydrogen orthophosphate for phosphorus stress, and sucrose for sugar stress) influenced the accumulation of capsaicin. Among the stress factors studied, nitrate stress showed maximal capsaicin production on day 20 (505.9 ± 2.8 μg g?1 f.wt) in immobilized cell, whereas in suspension cultures the maximum accumulation (345.5 ± 2.9 μg g?1 f.wt) was obtained on day 10. Different pH affected capsaicin accumulation; enhanced accumulation of capsaicin (261.6 ± 3.4 μg g?1 f.wt) was observed in suspension cultures at pH 6 on day 15, whereas in case of immobilized cultures the highest capsaicin content (433.3 ± 3.3 μg g?1 f.wt) was obtained at pH 5 on day 10. Addition of capsaicin precursors and intermediates significantly enhanced the biosynthesis of capsaicin, incorporation of vanillin at 100 μM in both suspension and immobilized cell cultures resulted in maximum capsaicin content with 499.1 ± 5.5 μg g?1 f.wt on day 20 and 1,315.3 ± 10 μg g?1 f.wt on day 10, respectively. Among the different culture strategies adopted to enhance capsaicin biosynthesis in cell cultures of C. chinense, cells fed with vanillin resulted in the maximum capsaicin accumulation. The rate of capsaicin production was significantly higher in immobilized cells as compared to freely suspended cells.  相似文献   

14.
In this study, after the expression of a pyruvate carboxylase gene (PYC) cloned from Meyerozyma guilliermondii in a marine-derived yeast Yarrowia lipolytica SWJ-1b, a transformant PG86 obtained had much higher PYC activity than Y. lipolytica SWJ-1b. At the same time, the PYC gene expression and citric acid (CA) production by the transformant PG86 were also greatly enhanced. When glucose concentration in the medium was 60.0 g L?1, CA concentration formed by the transformant PG86 was 34.02 g L?1, leading to a CA yield of 0.57 g g?1 of glucose. During a 10-L fed-batch fermentation, the final concentration of CA was 101.0 ± 1.3 g L?1, the yield was 0.89 g g?1 of glucose, the productivity was 0.42 g L?1 h?1 and only 5.93 g L?1 reducing sugar was left in the fermented medium within 240 h of the fed-batch fermentation. HPLC analysis showed that most of the fermentation products were CA.  相似文献   

15.
Hydroelectric reservoirs can stratify, producing favorable conditions for mercury methylation in the hypolimnion. The methylmercury (MeHg) can be exported downstream, increasing its bioavailability below the dam. Our objective was to assess the mercury levels in plankton, suspended particulate matter (SPM) and fish collected upstream (UP) and downstream (DW) from the Reservatório de Samuel dam, an Amazonian reservoir that stratifies during half of the year. Mercury concentrations in both SPM and plankton were similar between the two sites, which could indicate there are no conditions favoring methylation at the moment of sampling (absence of stratification). Almost all mercury found in the muscle of fishes was in organic form, and differences of mercury levels between sites were dependent on the fishes trophic level. Herbivores showed similar mean organic mercury levels (UP = 117 μg g?1; DW = 120 μg g?1; n = 12), whereas omnivores (UP = 142 μg g?1; DW = 534 μg g?1; n = 27) and carnivores (UP = 545 μg g?1; DW = 1,366 μg g?1; n = 69) showed significantly higher values below the dam. The absence of a reservoir effect in herbivores is expected, since they feed on grassy vegetation, near the riverbanks, which is not much influenced by mercury in aquatic systems. On the other hand, the higher mercury levels below the dam observed for omnivores and carnivores suggest a possible influence of the reservoir since they feed on items that could be contaminated by MeHg exported from upstream. The results highlight the necessity of assessing areas downstream of reservoirs.  相似文献   

16.
Alpine lakes receive a large fraction of their nutrients from atmospheric sources and are consequently sensitive to variations in both the amount and chemistry of atmospheric deposition. In this study we explored the spatial changes in lake water chemistry and biology along a gradient of dust deposition in the Wind River Range, Wyoming. Regional differences were explored using the variation in bulk deposition, lake water, sediment, and bedrock geochemistry and catchment characteristics. Dust deposition rates in the Southwestern region averaged 3.34 g m?2 year?1, approximately three times higher than deposition rates in the Northwestern region (average 1.06 g m?2 year?1). Dust-P deposition rates ranged from 87 µg P m2 day?1 in the Northwestern region to 276 µg P m2 day?1 in the Southwestern region. Subalpine and alpine lakes in the Southwestern region had greater total phosphorus (TP) concentrations (5–13 µg L?1) and greater sediment phosphorus (SP) concentrations (2–5 mg g?1) than similar lakes elsewhere in the region (1–8 µg L?1 TP, 0.5–2 mg g?1 SP). Lake phosphorus concentrations were related to dissolved organic carbon (DOC) across vegetation gradients, but related to the percent of bare rock, catchment area to lake area, and catchment steepness across dust deposition gradients. Modern phytoplankton and zooplankton biomasses were two orders of magnitude greater in the Southwest than in the Northwest, and alpine lakes in the Southwest had a unique diatom species assemblage with relatively higher concentrations of Asterionella formosa, Pseudostaurosira pseudoconstruens, and Pseudostaurosira brevistriata. These results suggests that catchment controls on P export to lakes (i.e. DOC) are overridden in dominantly bare rock basins where poor soils cannot effectively retain dust deposited P.  相似文献   

17.
The use of lignocellulosic residues for ethanol production is limited by toxic compounds in fermenting yeasts present in diluted acid hydrolysates like acetic acid and 2-furaldehyde. The respiratory deficient phenotype gives the cell the ability to resist several toxic compounds. So the aim of this work was to evaluate the tolerance to toxic compounds present in lignocellulosic hydrolysates like acetic acid and 2-furaldehyde in Pichia stipitis and its respiratory deficient strains. The respiratory deficient phenotype was induced by exposure to chemical agents such as acriflavine, acrylamide and rhodamine; 23 strains were obtained. The selection criterion was based on increasing specific ethanol yield (g ethanol g?1 biomass) with acetic acid and furaldehyde tolerance. The screening showed that P. stipitis NRRL Y-7124 ACL 2-1RD (lacking cytochrome c), obtained using acrylamide, presented the highest specific ethanol production rate (1.82 g g?1 h?1). Meanwhile, the ACF8-3RD strain showed the highest acetic acid tolerance (7.80 g L?1) and the RHO2-3RD strain was able to tolerate up to 1.5 g L?1 2-furaldehyde with a growth and ethanol production inhibition of 23 and 22 %, respectively. The use of respiratory deficient yeast phenotype is a strategy for ethanol production improvement in a medium with toxic compounds such as hydrolysed sugarcane bagasse amongst others.  相似文献   

18.
The study assessed the influence of sugar concentration (10, 20, 30, 50, 70, 100, 120 g l?1) on growth and ginsenoside biosynthesis in Panax quinquefolium hairy roots cultivated in shake flasks and a nutrient sprinkle bioreactor. The highest growth rate was achieved in medium containing 3–5 % sucrose. More than 70 g l?1 or less than 20 g l?1 sugar content in the medium induces significant inhibition of root growth when cultivated in shake flasks. The saponin content was determined using HPLC. The maximum yield (above 9 mg g?1 d.w.) of the sum of six examined ginsenosides (Rb1, Rb2, Rc, Rd, Re and Rg1) in hairy roots cultivated in shake flasks was obtained with 30 g l?1 sucrose in the medium. The sucrose concentration in the medium was found to correlate with saponin content in bioreactor-cultured specimens. A higher level of protopanaxadiol derivatives was found for lower (20 and 30 g l?1) sucrose concentrations; higher sucrose concentrations (50 and 70 g l?1) in the medium stimulated a higher level of Rg group saponins.  相似文献   

19.
Given that Cd accumulates within plant tissues to levels that are toxic to animals, it is necessary to understand the role of plants in highly Cd-contaminated systems and their subsequent impact on the health of animals. A solution culture experiment was conducted to elucidate the effects of increasing Cd2+ activity ({Cd2+}) on growth of Rhodes grass (Chloris gayana Kunth.) and signal grass (Brachiaria decumbens Stapf.). The shoot and root fresh mass of both Rhodes grass and signal grass was reduced by 50% at ca. 0.5 µM {Cd2+}. Elevated {Cd2+} resulted in a significant decrease in the tissue Mn concentration for both the shoots and roots, and caused a chlorosis of the veins in the shoots. Root hair growth was prolific even at high {Cd2+}, thus root hair growth appeared to be less sensitive to elevated Cd than was root growth per se. The critical shoot tissue concentrations (50% reduction in growth), 230 µg g?1 for Rhodes grass and 80 µg g?1 for signal grass, exceeded the maximum level of Cd tolerated in the diet of animals (ca. 5 µg g?1). When assessing the risk associated with the revegetation of Cd-contaminated sites with Rhodes grass or signal grass, careful consideration must be given, therefore, to the transfer of toxic concentrations of Cd to grazing animals and through the wider food chain.  相似文献   

20.
This study explores the possibility of producing ethanol using the acid hydrolysate of three abundant agar-containing red seaweeds (agarophytes): Gelidium amansii, Gracilaria tenuistipitata, and Gracilariopsis chorda. The main component in the seaweed samples was agar, which ranged from 20 to 51 % (g g?1 dry weight). After optimizing acid hydrolysis, 100 g of seaweed was hydrolyzed at 130 °C for 15 min with 0.2 M H2SO4. Then, 120 mL of a 1:2 mixture of the hydrolysate broth and basal medium was fermented in a 200-mL bottle at 30 °C for 96 h. Of the three seaweeds, G. amansii had the best ethanol yield, producing 0.23 g g?1 of galactose or 45 % of the theoretical yield. This yield increased to 60 % after detoxification of the hydrolysate with activated carbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号